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Dependen
y Reordering Features for Japanese-EnglishPhrase-Based TranslationbyJason Edward Katz-BrownSubmitted to the Department of Ele
tri
al Engineering and Computer S
ien
eon August 22, 2008, in partial ful�llment of therequirements for the degree ofMaster of Engineering in Computer S
ien
e and EngineeringAbstra
tTranslating Japanese into English is very 
hallenging be
ause of the vast di�eren
e inword order between the two languages. For example, the main verb is always at thevery end of a Japanese senten
e, whereas it 
omes near the beginning of an Englishsenten
e. In this thesis, we develop a Japanese-to-English translation system 
apableof performing the long-distan
e reordering ne
essary to �uently translate Japaneseinto English. Our system uses novel feature fun
tions, based on a dependen
y parseof the input Japanese senten
e, whi
h identify 
andidate translations that put de-penden
y relationships into 
orre
t English order. For example, one feature identi�estranslations that put verbs before their obje
ts. The weights for these feature fun
-tions are dis
riminatively trained, and so 
an be used for any language pair. In ourJapanese-to-English system, they improve the BLEU s
ore from 27.96 to 28.54, andwe show 
lear improvements in subje
tive quality.We also experiment with a well-known te
hnique of training the translation systemon a Japanese training 
orpus that has been reordered into an English-like word order.Impressive results 
an be a
hieved by naively reordering ea
h Japanese senten
e intoreverse order. Translating these reversed senten
es with the dependen
y-parse-basedfeature fun
tions gives further improvement.Finally, we evaluate our translation systems with human judgment, BLEU s
ore,and METEOR s
ore. We 
ompare these metri
s on 
orpus and senten
e level andexamine how well they 
apture improvements in translation word order.Thesis Supervisor: Mi
hael CollinsTitle: Asso
iate Professor of Computer S
ien
e
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Chapter 1
Introdu
tion
Japanese senten
es have vastly di�erent anatomy 
ompared to English senten
es.For example, the main verb of a Japanese senten
e always 
omes at the end of thesenten
e, whereas it 
omes near the beginning of an English senten
e. It follows thatto translate a Japanese senten
e into English, one must proli�
ally and a

uratelyreorder the Japanese words to get a �uent English translation. In this thesis, we builta ma
hine translation system that 
an learn to do this reordering between Japaneseand English senten
es a

urately, using a novel te
hnique that 
an be applied totranslation between any language pair.Our te
hnique is to translate a dependen
y graph of the Japanese senten
e witha phrase-based translation system. This dependen
y graph tells us how the Japanesewords relate to ea
h other. Our translator uses this dependen
y analysis to reorderthe Japanese words during translation and produ
e English translations that havekey dependen
y relations in the 
orre
t order. For example, it is 
riti
al that a
tiveEnglish verbs 
ome before their obje
t. The system automati
ally learns to performthe long-distan
e reordering of a senten
e-�nal Japanese verb to before its obje
t.Many Japanese�English ma
hine translation systems, su
h as Yahoo Babel Fish [Ya-hoo, 2008℄, rely on hand-built grammars and reordering rules, whi
h are 
ostly toassemble and update. Re
ent systems take a wholly statisti
al approa
h, requiringonly a large 
orpus of parallel text for training. However, these systems perform long-distan
e word reordering neither e�
iently nor a

urately. This thesis 
ontributes a15



powerful long-distan
e reordering model to today's best statisti
al ma
hine transla-tion systems. In Chapter 2, we review where our work �ts into the lands
ape ofprevious work on statisti
al reordering models.We introdu
e two methods of in
orporating Japanese dependen
y analysis into astate-of-the-art Japanese�English ma
hine translation system to improve translationquality. The �rst method is to reorder the Japanese training 
orpus into an English-like word order before training, as Wang et al. [Wang et al., 2007℄ showed to bee�e
tual for Chinese translation. The se
ond method is to add feature fun
tionsthat identify translations in whi
h 
ertain dependen
y relations are translated in the
orre
t order. Used together, these methods improved BLEU s
ore 27.96�28.74 onthe test 
orpus used in the NTCIR-7 Patent Translation Task [Fujii et al., 2007℄. Weexpli
ate these two methods in Chapters 3 and 4.Several automati
 metri
s like BLEU s
ore have been developed to automati
ally
ompare the quality of ma
hine translation systems, but their ability to 
apture dif-feren
es in word order is suspe
t [Callison-Bur
h et al., 2006℄. In Chapter 5, wepresent detailed analysis of the results of our or
hestra of experiments. We 
omparethree measures of translation quality: human evaluation, BLEU s
ore [Papineni etal., 2001℄, and METEOR fragmentation s
ore [Lavie and Agarwal, 2007℄. We showthat despite its la
k of an expli
it reordering metri
, in pra
ti
e BLEU s
ore is usefulfor evaluating systemati
 di�eren
es in word order.In Chapter 6, we outline future work and reframe the 
ontributions of this thesis.Let us start by brie�y looking at the 
hallenges of translating Japanese intoEnglish and previewing for how this thesis will ta
kle them. Se
tion 1.1 intro-du
es Japanese grammar, and Se
tion 1.2 gives ba
kground on 
urrent approa
hes toJapanese�English ma
hine translation. Se
tion 1.3 looks at problems with existingsystems, and we �nish up with an overview of how this thesis improves the state ofthe art: Se
tion 1.4 introdu
es novel features that integrate dependen
y analysis intoa phrase-based translation system and Se
tion 1.5 shows how reordering Japanesesenten
es into English word order before translating 
an also improve translationquality. 16



1.1 Japanese grammati
al 
hallengesThe word order of Japanese is very di�erent from that of English. Two features ofJapanese grammar a

ount for many of the di�eren
es that make Japanese ma
hinetranslation 
hallenging. First, the verb 
omes at the end of the senten
e, as in thisexample.(1.1) 先生が お茶を 飲みました 。Tea
her-Nom tea-A

 drank .�The tea
her drank tea.�The verb `飲みました', �to drink�, 
omes at the end of the senten
e, and its subje
tand obje
t pre
ede it. In an English translation of this senten
e, the word orderwould be Subje
t�Verb�Obje
t; in Japanese, the most natural word order is Subje
t�Obje
t�Verb.1 If we were to translate this senten
e from Japanese to English withoutreordering the words, we might get �By the tea
her tea was drunk�. Su
h unnaturalpassivization is 
ommon in some statisti
al Japanese�English translation systems,and is a problem that our thesis aims to quash.The se
ond notable feature of Japanese grammar is that most words have ex-pli
it 
ase markers. A word's 
ase represents the fun
tion it plays in the senten
e:subje
t, obje
t, nounal modi�er, et
. Japanese puts one syllable after most wordsto expli
itly mark the word's 
ase. In the above example, `が' (the subje
t marker)marks `先生' (�tea
her�) as the subje
t of the senten
e. Similarly `を' (the obje
tmarker) marks `お茶' (�tea�) as the obje
t of the senten
e. These short 
ase markersare sometimes 
alled �parti
les� or �postpositions� be
ause in Japanese they alwaysimmediately follow the word they atta
h to.Be
ause ea
h word has its role in the senten
e demarked in its surfa
e form, thewords in this senten
e 
an be s
rambled with the meaning and grammati
ality ofthe senten
e preserved, as long as the verb stays at the end.(1.2) お茶を 先生が 飲みました 。tea-A

 Tea
her-Nom drank .1Approximately 75% of world's languages are Subje
t�Obje
t�Verb [Crystal, 1997℄, so long-distan
e verbal reordering is a 
riti
al issue not only for Japanese�English translation.17



�The tea
her drank tea.�This s
rambling also presents a 
hallenge to existing translation systems and is ad-dressed in our work.The previous examples showed that in Japanese, the main verb always 
omes atthe end of the senten
e. Many patterns in Japanese are similar; verb phrases havethe verb at the end, noun phrases have the noun at the end, and so on. To statethis phenomenon with more formal linguisti
 terminology, the head of a phrase isthe word in the phrase that determines its synta
ti
 type; for example, the head ofthe English noun phrase �the girl who was sitting and drinking tea� is the noun �girl�.Similarly, in Japanese:(1.3) 正座して お茶を 飲んでいた 女の子sitting and tea-A

 was drinking girl�the girl who was sitting and drinking tea�Noti
e that the nounal head �girl� is at the end of the 
lause, while in English it isat the beginning of the 
lause. In general, we 
an say that Japanese is head-�nalwhile English is more head-initial. Swapping head orientation is a di�
ult aspe
t ofJapanese�English translation. We next take a look at how this is handled in 
urrenttranslation systems.1.2 State-of-the-art Japanese�English translation ap-proa
hesCurrent ma
hine translations systems fall into three 
ategories:Rule-based sytems rely on hand-built synta
ti
 parsers and many manually-editedtransfer rules. Rule-based Japanese�English systems have been around formore than 30 years and are of high quality. Example: Yahoo! Japan Translationat http://honyaku.yahoo.
o.jp.Phrase-based systems are trained only on a large 
orpus of parallel text, fromwhi
h they learn a set of multi-word phrases and a language model, without18



using synta
ti
 knowledge [Koehn et al., 2003℄. A well-known example is GoogleTranslate at http://translate.google.
om.Hybrid systems 
ombine a statisti
al (sometimes phrase-based) model with syn-ta
ti
 knowledge. One su

essful example is the dependen
y treelet system ofQuirk et al. [2005℄.In a nutshell, the translation system developed in this thesis 
lassi�es as a hybridsystem. We started with the open-sour
e Moses statisti
al phrase-based transla-tor [Koehn et al., 2007℄, and modi�ed it to in
orporate a synta
ti
 parse analysis toimprove reordering de
isions.The largest available 
olle
tion of Japanese�English parallel text is Utiyama'sPatent Parallel Corpus [Utiyama et al., 2007℄, so in this thesis we fo
us on examplesfrom the domain of patent translation. Gloss 1.4 shows an example from our test
orpus. Translations from the best available Japanese�English translation systemsare given in Table 1.2.(1.4) プリアンプ 3は 入力された 再生信号を 増幅して ＡＧＣアンプ4へ 出力する 。Preamp 3-TOP input-Passive reprodu
tion signal-A

 amplify and AGC amp 4-to output .�The preamp 3 ampli�es an input reprodu
tion signal, and sends out to an AGCampli�er 4.�Table 1.1: Comparison of translations of Gloss 1.4.MosesImproved MosesBaseline Google YahooThe preampli�er3 ampli�es the re-produ
ed signal,whi
h is outputto the AGC am-pli�er 4.
The preampli�er 3,the input playba
ksignal is ampli�edand output to theAGC ampli�er 4. 3 preamp input sig-nal is ampli�ed byplaying the AGCampli�er, the out-put 4. Pre-amp 3 ampli�esan input reprodu
-tion signal and out-puts it to AGC am-pli�er 4.Translations from Yahoo and MosesImproved are very good, while o�eringsfrom MosesBaseline and Google are unnatural or in
orre
t. In the next se
tion,we will dis
uss the short
omings of these systems.19



1.3 State-of-the-art foiblesIn Table 1.2, Yahoo is the translation from Yahoo Japan Translation, a rule-basedsystem under development sin
e 1987 [Cross Language, 2008℄.2 The other three sys-tems are phrase-based. Systems Google and MosesBaseline translate 
ontentwords and idioms a

urately, but for the most part es
hew synta
ti
 analysis. A la
kof synta
ti
 sensibility leads to several systemati
 errors.Most noti
eably, word order is in
orre
t. In both the Google and Moses-Baseline translations, the verb �ampli�ed� follows its obje
t �reprodu
tion signal�.Phrase-based systems employ several s
oring fun
tions for ranking hypothesis trans-lations. One su
h feature fun
tion penalizes ea
h reordered phrase. This featurefun
tion is helpful for translating from, for example, Fren
h→English, where wordorder is largely preserved, but is not useful for Japanese�English translation, anden
ourages verbs to stay at the end of their 
lause. The Google translation blithelyleaves �output� as the last word in the senten
e.The 
omponent most responsible for reordering in phrase-based systems is the lan-guage model, whi
h gives a higher s
ore to translations 
omposed of n-grams thatappeared often in a large 
orpus of English training text. The language model helps toen
ourage phrases to reorder into a grammati
al a translation, but the grammati
alword order 
hosen by the language model often does not maintain the meaning of theoriginal Japanese senten
e. For example, 
onsider the Moses baseline: �The pream-pli�er 3, the input playba
k signal is ampli�ed. . . � The main verb is made passive,keeping the original verb-obje
t Japanese word order while remaining grammati
al.In the pro
ess, the subje
t (what is performing the ampli�
ation) is separated fromthe verb. The meaning of the senten
e is lost.In 
ontrast, rule-based systems, like Yahoo's, perform well translating patent data,for two reasons. First, highly regular legalese 
an be parsed by handwrit grammars,whi
h are 
omposed of thousands of spe
ial-
ase rules that o

asionally break down2Yahoo Japan Translation uses software from Cross Language, a 
ompany spe
ializing inJapanese-Chinese-Korean translation servi
es. Its translation quality is mu
h better than Systran,another eponymous system translation servi
es 
ompany's produ
t, whi
h is what Yahoo Babel Fishuses for its ba
kend [Yahoo, 2008℄. 20



on more 
olloquial text. More 
olloquial text, in 
ontrast, omits many 
ase markersand understood pronouns so is mu
h harder to parse. Se
ond, literal translations area

eptable be
ause idiomati
 patterns are rare in patent text. Rule-based systemsmust have spe
ial rules for any expression whi
h it translates idiomati
ally.In this thesis, we improve the phrase-based de
oder Moses to perform synta
ti
ally-motivated reordering, and thus aim to a
hieve the best of both worlds. The transla-tion from MosesImproved uses a synta
ti
 dependen
y analysis to improve on theMoses baseline. This method is introdu
ed nextly.1.4 Dependen
y analysis in a phrase-based transla-torThe major 
ontribution of this thesis is a method to integrate synta
ti
 dependen
yinformation into the Moses phrase-based translator. The idea is to translate a depen-den
y tree, instead of a �at senten
e. For example, the dependen
y parse identi�esa senten
e's main verb and obje
t. During translation, we 
an give higher s
ores totranslation hypotheses that put the main verb before its obje
t.Let's look at how this works for Gloss 1.4. Figure 1-1 shows its dependen
y parse.Arrows indi
ate dependen
ies. For instan
e, the arrow between them indi
ates that
Figure 1-1: Preamp dependen
y parse example.�amplify� depends on �reprodu
tion signal-A

�. Further observing that �reprodu
tionsignal-A

� has a

usative 
ase, and knowing that the target language English hasSubje
t�Verb�Obje
t order, the translator 
an prefer to translate the verb �amplify�before it translates its obje
t �reprodu
tion-signal�. We will 
odify this preferen
eby introdu
ing a feature fun
tion in Moses that 
ounts o

urren
es of a verb beingtranslated before its obje
t. 21



In addition, we will introdu
e feature fun
tions for a range of grammati
al 
on-stru
ts: a feature that 
ounts when relative 
lauses are translated after the nounthey modify, one that 
ounts when genitive modi�ers are translated after the nounthey modify, and so on. We 
ould have a feature for every part-of-spee
h and 
asepairwise 
ombination. Furthermore, we introdu
e a 
ohesion 
onstraint in the samevein as [Cherry, 2008℄We dis
riminatively train the weights of these features to identify the most usefulfeatures and maximize translation quality. This dis
riminative training step is impor-tant to tune the system for the grammati
al features of the target language. Whilethe verb-before-its-obje
t feature fun
tion identi�es good English translations, if wewere translating into Japanese, we would give a negative weight to the verb-before-its-obje
t feature. This setup would 
orre
tly prefer to translate Japanese verbs aftertheir obje
ts.1.5 Synta
ti
 reordering in the prepro
essorWe experimented with one more te
hnique to reorder the Japanese training data intoan English-like word order before running Moses training (following [Wang et al.,2007℄). When translating an unseen Japanese senten
e, we �rst preorder it intothis English-like word order, then translate preordered Japanese senten
e with thespe
ially-trained Moses setup. With this approa
h, the burden of reordering phrasesis pushed to a synta
ti
 prepro
essing step, and the Moses translator itself 
an performa largely monotoni
 (no reordering) translation, at whi
h it ex
els.The 
hallenge is to build an algorithm that reorders a Japanese senten
e into apseudo-Japanese senten
e that has the same words but in English-like word order.In this thesis I des
ribe two su
h algorithms. The �rst is fast and naive, and simplyreverses the order of all tokens after splitting the senten
e at pun
tuation and `は',the topi
 marker. The se
ond algorithm uses three linguisti
ally-motivated heuristi
sfor �attening a tree formed from a dependen
y parse.For illustration, Gloss 1.5 shows the preamp senten
e reordered with the naive22



reverse prepro
essor, whi
h will be des
ribed in detail in Se
tion 4.2.(1.5) は 3 プリアンプ する 出力 へ 4 アンプ ＧＣ Ａ て し 増幅 を 信号 再生 た れ さ 入力 。TOP -3 preamp output to 4 amp GCA and amplify A

-repr. signal input-Passive .To 
omplete the example, we 
ould insert several fun
tion words into the English glossgiven above to 
omplete a �uent senten
e: �The 3 preamp outputs to 4 amp ACG andampli�es the reprodu
tion signal that has been input.� This shows that we 
ould translatethe prepro
essor-reordered Japanese senten
e into English with a monotoni
 translation.In our experiments, we found an improvement in translation quality using the naivereverse prepro
essor. Surprisingly, we saw a smaller improvement using the linguisti
ally-motived smarter prepro
essor, whi
h usually produ
ed more a

urately English-like pseudo-Japanese.We a
hieved the best translation quality when 
ombining approa
hes: use the reverseprepro
essor and an assortment of dependen
y-motivated feature fun
tions at optimal weights.Altogether, we a
hieved a BLEU s
ore improvement of 27.96�28.74
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Chapter 2
Related Work
This 
hapter outlines re
ent work on statisti
al reordering models in ma
hine trans-lation. Methods span a wide gamut: prepro
essing te
hniques, reranking te
hniques,linguisti
ally-informed reordering 
onstraints, lo
al distortion models, tree-to-tree andtree-to-string translators, and dependen
y treelet systems.2.1 Reordering during prepro
essingCollins et al. [2005℄ introdu
ed a very e�e
tive te
hnique for building a phrase-basedsystem with long-distan
e reordering ability. Working on German�English, theywrote rules to transform a deep parse of the German senten
e so that its words readin English word order. They parse the German training data, apply these rules totransform it into English word order in a prepro
essing step, then train a phrase-based system on the reordered data. Before translation, they perform the samereordering on the input senten
e. This led to a signi�
ant improvement in Englishoutput word order. Wang et al. [2007℄ followed up with analogous experiments forChinese�English.In Chapter 4, we apply the same te
hnique to Japanese�English translation, withtwo twists. First, we introdu
e a trivially 
omputable reordering algorithm for puttingJapanese into English word order, in addition to a reordering algorithm that �attensa Japanese dependen
y tree into English word order. Se
ond, our algorithms keep25



the dependen
y information from the tree imbedded in the reordered senten
es sothat the dependen
y analysis 
an be used by the de
oder to make smart reorderingde
isions at de
oding time.Kanthak et al. [2005℄ further developed the preordering te
hnique. Their systemautomati
ally learns how to reorder sour
e senten
es into target language word orderfrom monotonization of training data word alignments. However the weakness of theirbaseline de
oder, whi
h failed to translate 37% of their Japanese test 
orpus, makesit di�
ult to tell how e�e
tive their automati
ally-trained sour
e-side reorderer is.Li et al. [2007℄ takes the idea of Kanthak et al. one step further. First theytrained a statisti
al sour
e-side reordering model, whi
h predi
ts whether a node ofa tree should keep its 
hildren in order or invert them, by using word alignments anddeep parses of the sour
e senten
es of the training data. To translate a senten
e,they generate the 10 best preorders with their reordering model, then translates allof the preorders with a phrase-based de
oder (using a maximum distortion limit of 4)and out of the 10 pi
k the translation with highest 
ombined sour
e-side reorderingmodel s
ore and de
oder s
ore. They worked with Chinese�English and a
hieved animprovement over their no-preordering baseline of the same magnitude as Wang etal. [2007℄. The advantage of Li et al.'s work is that there is no need for handwrit treereordering rules.2.2 Reranking phrase-based system outputO
h et al. [2004℄ tested a range of global synta
ti
 features on 1000-best outputof a phrase-based system. They found no signi�
ant improvements from statisti
alfeatures, in
luding target-side parse tree probability, tree-to-string model probabil-ity, tree-to-tree model probability, and word alignment s
ores from a Tree AdjoiningGrammar. One interesting �nding was that a state-of-the art statisti
al parser tendedto assign higher probability to ungrammati
al ma
hine translation output than tohuman-translated referen
es. This is one reason that we 
hose to in
orporate only asour
e-side dependen
y analysis. 26



Ni
hols et al. [2007℄ developed a Japanese�English Moses system and a separaterule-based translator based on three man months of hand
rafted transfer rules. Theparser, also based on handwrit rules, 
an parse 65% of senten
es, and the transferrules su

eed 33% of the time. When available, their system pi
ks the rule-basedtranslation (about 13% of the time) and otherwise falls ba
k on the Moses translation.They found that the rule-based system makes poor word 
hoi
es, while the Mosessystem has trouble preserving the stru
ture of the senten
e.2.3 Reordering models for phrase-based systemsZens et al. [2004℄ implemented several reordering 
onstraints in a phrase-based Japanese�Englishde
oder.1 The �rst 
onstraint is the same as the maximum distortion limit in Moses(see Se
tion 3.5.1) and the se
ond is the �ITG 
onstraint�, where only reorderings that
ould have been made by either straight or inverted 
ombo of 
ontiguous �blo
ks� areallowed. Ea
h blo
k is a 
ombination of phrase pairs 
ontinguous on both the sour
eand target side. These 
onstraints aid in ruling out 
ertain reorderings that are moreprobable to be bad, but do not aid in identifying reorderings that preserve meaningof the original senten
e.Kanthak et al. [2005℄ subsequently built a de
oder that takes as input a weighted�nite-state reordering automaton with 
onstraints based on the work of Zens etal. [2004℄. They added additional reordering 
onstraints under whi
h words at theend of a senten
e are translated �rst, in a spe
ial 
ase for Japanese. Otherwise trans-du
er paths are weighted to prefer monotoni
 translation. It is hard to tell how welltheir reordering automaton works, be
ause they 
ompare it to a baseline that allowsno reordering.Tillmann [2004℄ introdu
ed a lo
al, lexi
alized, phrase orientation model. Thismodel, now implemented in Moses and des
ribed in detail in Se
tion 3.4.5, predi
tswhether a phrase swaps position with the previous or next phrase based on phrase1The �de
oder� is the program that sear
hes for the best translation of a senten
e; we examineits anatomy in Se
tion 3.2. 27



alignment of the training data. In a later work, Tillmann and Zhang [2005℄ built amaximum-likelihood trained log-linear model to predi
t the same thing. Al-Onaizanand Papineni [2006℄ developed a similar model that assigns a probability distributionover possible relative jumps 
onditioned on sour
e words. In another alike te
hnique,Kuhn et al. [2006℄ wrote a de
oder that 
hooses the next phrase to translate based ona lexi
alized de
ision tree trained on phrase alignment of the training data. As partof their dis
riminatively trained system with millions of features, Liang et al. [2006℄added thousands of phrase-orientation features for ea
h part of spee
h pair, but it isdi�
ult to gauge their utility be
ause their de
oder allowed very limited reordering.Xiong et al. [2006℄ developed a similar reordering model that estimates the proba-bility of two given �blo
ks� 
ombining in straight or inverted order, where a blo
k is apair of sour
e and target 
ontiguous sequen
es of words. (A blo
k 
ould be one phrasepair, or a 
ombination of multiple 
ontiguous phrase pairs.) They employ the �rstand last word of ea
h blo
k as features, and use phrase alignments from the trainingdata as reordering examples in a maximum-entropy framework. Zhang et al. [2007℄improved on Xiong et al.'s model by in
orporating part of spee
h and dependen
yfeatures 
onditioned on blo
k boundary words. It is un
lear how well these blo
kreordering models 
an handle long-distan
e reordering with a series of independentde
isions based only on blo
k boundary features. After translating a Japanese sen-ten
e, the best-s
oring translation may never have 
ompared the position of the mainverb relative to its obje
t.Cherry [2008℄ in
orporated dependen
y information into Moses and added a fea-ture fun
tion that 
ounts how often a dependen
y subtree's translation is interruptedby translating a di�erent part of the tree. Cherry found that senten
es translated
ohesively tend to re
eive higher BLEU s
ore and human judgment than un
ohesivetranslations. In Se
tion 3.6.2, we des
ribe a 
omparable 
ohesion feature that wein
orporated in our experiments. 28



2.4 Hierar
hi
al phrasesChiang [2007℄ introdu
ed a model akin to a phrase-based system but with hierar
hi
alphrases. Ea
h phrase 
an in
lude nonterminals where other phrases 
an nest. Long-distan
e reordering patterns 
an be learned automati
ally with this me
hanism. Forexample, the Chinese�English phrase pair ≪[1℄ 的 [2℄, the [2℄ of [1℄≫ swaps theposition of its two arguments, whi
h 
ould be arbitrarily long.2 The major ideais that the hierar
hi
al phrase model is formally syntax-based in that it uses theSyn
hronous Context-Free Grammar formalism, but not linguisti
ally syntax-based,be
ause it indu
es a grammar from a parallel text without relying on any linguisti
assumptions or annotations (like the Penn Treebank). Be
ause to our knowledgeChiang's model has only been applied to Chinese�English translation, it is unknownhow well hierar
hi
al phrases 
an do as the only motivators of long-distan
e reorderingin a language pair like Japanese�English that requies a lot of it.2.5 Tree-to-string translationSystems that de
ode by translating a parse tree bottom-up have re
ently 
ome intovogue. The de
oder of Riezler and Maxwell III [2006℄ feeds dependen
y parse snippetsinto a grammar generation 
omponent and s
ores with feature fun
tions similar toa phrase-based de
oder, using dependen
y snippet transfer rules instead of phrasepairs. Huang et al. [2006℄ o�er a similar setup using parse-tree-to-string transdu
ers,and Liu et al. [2006℄ 
ontribute a system using tree-to-string alignment templates.In general, tree-based de
oders must ta
kle di�
ult 
hallenges in e�
ien
y andhow to integrate varied information sour
es like a language model. This thesis avoidssu
h issues by in
orporating a sour
e-side dependen
y analysis in an existing phrase-based de
oder, whi
h translates in an e�
ient left�to�right manner with an easilyextendable log-linear s
oring model. Still, by de
oding in a �at string-to-string man-ner, we make at least theoreti
al 
on
essions in preserving senten
e meaning and2In a Japanese�English, we might see a very similar phrase pair ≪[1℄ の [2℄, the [1℄ that [2℄≫.We introdu
e a feature to handle this inversion in Se
tion 5.6.2.29



target-language grammati
ality.2.6 Tree-to-tree translationDing and Palmer [2005℄ fo
us on dependen
y-tree to dependen
y-tree translationusing a syn
hronous dependen
y insertion grammar indu
ed from the training data,but do not build a head-reordering model for �attening the resulting dependen
y tree,so they systemati
ally generate translations su
h as �foreign �nan
ial institutions thepresident of�. Correspondingly, their system 
ould not model the head-initial tohead-�nal inversion 
ru
ial for Japanese�English translation. Lin [2004℄ developeda similar tree-to-tree system based on assembling linear paths through a sour
e-sidedependen
y tree, but like Ding and Palmer they in
orporated no language model ordis
riminative reordering model, whi
h led to disappointing BLEU s
ores.Cowan et al. [2006℄ stepped it up with a system based on Aligned Extended Pro-je
tions, whi
h 
onsist of a pair of 
orresponding 
lausal tree stru
tures extra
tedfrom the training data using deep parsers for both sour
e and target languages. Thissystem ex
els at 
lausal translation, but does not yet model how to reorder 
lauses.Clausal reordering is not 
riti
al for their language pair, German�English, but isimportant when translating Japanese senten
es, whi
h often have deeply nested de-penden
ies ordered oppositely 
ompared to English.2.7 Dependen
y treelet translationIn their �dependen
y treelet� system, Quirk et al. [2005℄ parse the sour
e side ofthe training data, proje
t these dependen
y trees onto the target side using wordalignments, then extra
t dependen
y treelet pairs. A treelet is de�ned to be anarbitrary 
onne
ted subgraph of the dependen
y tree. The de
oder 
overs the sour
edependen
y tree with treelet pairs bottom-up and s
ores hypotheses with a log-linearmodel in
orporating typi
al features, su
h as language model and word alignmentprobabilities, and a novel order model. 30



Their order model assigns a probability to the word order of a target tree given asour
e tree. This order model makes the assumption that the position of ea
h 
hild
an be modeled independently in terms of its position relative to its head (parentin the dependen
y graph). Their features model whether a modi�er is ordered tothe left or right of its head, and how far away, with features parameterized on wordand part of spee
h of the head and modi�er. Quirk et al. [2005℄ train the ordermodel as a de
ision tree. Menezes et al. [2006℄ later upgraded it to a log-linear modelwith features 
hosen to maximize performan
e on a development set. Chang andToutanova [2007℄ introdu
ed a global order model that ranks n-best dependen
y treeoutput of the treelet system using lo
al features that 
apture head-relative movementand global features that 
apture the surfa
e movement of words in a senten
e.In Se
tion 3.6.1, we introdu
e a similar set of features that model head-relativemovement using a sour
e-side dependen
y parse. We additionally 
ondition our fea-tures on the 
ase of the modi�er and head, and simplify the model so it predi
ts onlyif a modi�er should be on the left or right side of the head. We es
hew lexi
alizedfeatures in our model, but they 
ould easily be added by further parameterizing ourfeatures, whi
h we leave as future work.Menezes and Quirk [2007℄ improved on their initial treelet approa
h with the�dependen
y order template� system that avoids the 
ombinatorial explosion of re-ordering treelets that they en
ountered in their 2005 e�ort, whi
h ne
essitated stri
tpruning of the sear
h spa
e. They introdu
e order templates, whi
h are unlexi
al-ized transdu
tion rules mapping dependen
y trees 
ontaining only parts of spee
hto unlexi
alized target language trees. These order templates are extra
ted fromsour
e-side dependen
y trees and word alignments of the training data.At translation time, order templates are 
ombined with relevant treelet transla-tion pairs to 
onstru
t lexi
alized transdu
tion rules. Menezes and Quirk 
ite twoadvantages of this approa
h: the de
oder needs only to 
onsider reorderings that are
aptured in some order template, and reordering knowledge 
an generalize to un-
ommon words be
ause the order templates spe
ify only part of spee
h. Our featurefun
tions play a role similar to order templates and share the positives: they aim the31



de
oder's beam so that 
orre
t reorderings are not pruned, and they 
an pi
k up thefully-lexi
alized phrase table and language model be
ause our features 
ondition onlyon part of spee
h and 
ase.Xiong et al. [2007℄ also in
rementally improved the treelet system of Quirk etal. [2005℄ to support dis
ontinuous output phrases and generalized treelets withimbedded variables, in a manner reminis
ient of Chiang's hierar
hi
al phrases.
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Chapter 3
Synta
ti
 Feature Fun
tions forPhrasal Reordering
This 
hapter introdu
es the major 
ontribution of this thesis: synta
ti
 feature fun
-tions for a state-of-the art phrase-based ma
hine Japanese�English translation sys-tem that signi�
antly improve reordering de
isions. These features s
ore Englishtranslation hypotheses using a dependen
y parse of the sour
e Japanese senten
e. Weadd many su
h feature fun
tions, one per dependen
y relationship we wish to model,and dis
riminatively train their weights. The most useful single feature in
reasedBLEU s
ore 27.97�28.35. Combining the three most useful additional features, wea
hieved a 27.96�28.54 BLEU in
rease.We give a whirlwind pi
ture of the Moses phrase-based translation system andshow where these new feature fun
tions �t in the translation pro
ess. Then we detailthe feature fun
tions themselves.3.1 Moses phrase-based translation systemPhrase-based systems represent the state of the art in ma
hine translation; phrase-based systems, like Google's, have dominated the NIST Ma
hine Translation Evalu-ation, held yearly sin
e 2001 [NIST, 2006℄.Moses is another high-quality phrase-based translation system [Koehn et al., 2007℄.33



Moses is free software and a
tively developed by many resear
hers around the world(most notably at the University of Edinburgh) and has been used as a baseline systemfor several major translation workshops [WMT Baseline, 2007; Fujii et al., 2007℄. Itin
ludes open-sour
e implementations of everything needed to build a translationsystem between any language pair. The most important of these 
omponents is thede
oder, whi
h performs the a
tual sear
h for the best Japanese translation of aninput English senten
e.3.2 Framing the sear
h problemThe job of the de
oder is to sear
h for the best English translation e (of length I) ofa given Japanese senten
e f (of length J). The de
oder 
hooses the English senten
ewith highest probability:
ê = argmaxeI

1

{

Pr
(

eI
1

∣

∣fJ
1

)} (3.1)Be
ause the sear
h spa
e is all possible English senten
es, formulating this sear
hproblem e�
iently is 
hallenging, and will be an important topi
 of dis
ussion later.We 
an use Bayes' rule to rewrite the probability in Equation 3.1 as:
ê = argmaxeI

1

{

Pr
(

eI
1

)

· Pr
(

fJ
1

∣

∣eI
1

)} (3.2)Framing the sear
h problem in this way, 
alled the sour
e-
hannel approa
h [Brownet al., 1993℄, is appealing in theory, if we have a

ess to the true probability distri-butions Pr
(

eI
1

) and Pr
(

fJ
1

∣

∣eI
1

). In pra
ti
e, to model Pr
(

eI
1

), we use an n-gramlanguage model, and to model Pr
(

fJ
1

∣

∣eI
1

), we use phrase 
o-o

urren
e probabilitieslearned during training. These methods provide poor approximations to the truedistributions, so the 
ombination in Equation 3.2 may be suboptimal. One moreproblem with this approa
h is that it is not 
lear how to extend this system withmore dependen
ies, like additional data or s
oring fun
tions.To 
ombat these problems, O
h and Ney [2001℄ introdu
ed a maximum entropy34



model that dire
tly models the posterior probability, and leads to the following de
i-sion rule:
ê = argmaxeI

1

{

Pr
(

eI
1

∣

∣fJ
1

)} (3.3)
= argmaxeI

1

M
∑

m=1

λmhm(eI
1, f

J
1 ) (3.4)In Equation 3.4, we have a set of M feature fun
tions hm(eI

1, f
J
1 ), m = 1, ...,M usedto s
ore translation hypotheses. For ea
h feature fun
tion, there is a model parameter

λm that gives a relative weight to the feature.Now we have framed the translation problem in terms of writing feature fun
tionsthat 
an identify good translations and setting the weights for those features. We
an re
over the sour
e-
hannel approa
h as a spe
ial 
ase if we make our �rst featurefun
tion the log of the language model probability, and our se
ond an estimate of
Pr

(

fJ
1

∣

∣eI
1

) based on hidden phrasal alignments (
overed in the next se
tion) and 
o-o

urren
e 
ounts of aligned phrases in the training data. We 
an furthermore add asmany feature fun
tions as we wish, if we think they may be aidant in distinguishinggood translations from bad. Before we introdu
e more feature fun
tions in Se
tion 3.4,we must develop the phrase-based translation model that Moses is built on.3.3 Phrase-based translationTo translate an input Japanese senten
e, we will segment it into phrases, translateea
h phrase into English, then reorder those phrases to produ
e the output Englishtranslation. In the 
ontext of this dis
ussion, a phrase means simply a 
ontiguoussequen
e of words in either language; it is not used in any linguisti
 sense. The build-ing blo
k of phrase-based systems is the phrase pair, whi
h 
omprizes a Japanesephrase and its English translation. Training our translation model 
onsists of auto-mati
ally learning a phrase table from the parallel training 
orpus. For more detailon this training pro
ess, see [Koehn, 2007℄.To 
odify the notion of phrases into our translation model, we follow [O
h and35



Ney, 2004℄ and introdu
e a hidden phrasal de
omposition by segmenting the Japanesesenten
e fJ
1 and English senten
e eI

1 ea
h into a sequen
e of K phrases (k = 1, . . . , K):
fJ

1 = f̃K
1 , f̃k = fjk−1+1, . . . , fjk

(3.5)
eJ
1 = ẽK

1 , ẽk = eik−1+1, . . . , eik (3.6)We further introdu
e a hidden phrasal alignment πK
1 between the Japanese phrases

f̃K
1 and the English phrases ẽK

1 . This alignment is a permutation of the English phrasepositions 1, . . . , K, so that ẽk and f̃πk
are translations of ea
h other. We �nally de�ne

zk as the phrase pair (a pair of strings) that is used to translate the kth Japanesephrase:
ẽk

zk←→ f̃πk
(3.7)Hen
e, in the de
oding pro
ess, we simultaneously sear
h for 1) the optimal seg-mentation of the Japanese senten
e into phrases; 2) the optimal English translationfor ea
h phrase; and 3) the optimal way to order these phrases into an English sen-ten
e. We use hidden variables zk

1 , a ve
tor of the phrase pairs used, and πK
1 , theirpermutation from Japanese to English order, to help us s
ore hypotheses. With thismodel, our feature fun
tions take the fun
tional form

h(eI
1, f

J
1 , πK

1 , zK
1 ). (3.8)3.4 Baseline feature fun
tionsOur baseline Moses setup uses the following feature fun
tions.3.4.1 Language modelIn our experiments, we used a 5-gram language model:

hLM(eI
1, f

J
1 , πK

1 , zK
1 ) = log

I+1
∏

i=1

p
(

ei

∣

∣ei−4, . . . , ei−1

) (3.9)36



The language model pi
ks translations whi
h look like grammati
al English, with-out regard to whether or not they are an adequate translation of the original Japanesesenten
e.Al-Onaizan and Papineni [2006℄ illustrated the inability of the language modelto dis
riminate 
orre
t reorderings by itself. They rearranged a 
orpus of Englishsenten
es into Arabi
 word order, then tried to translate them into English with aphrase-based de
oder and no distortion model ex
ept an English language model.As they in
reased the maximum reordering limit so that words 
ould freely reorder,English word order re
overy rapidly deteriorated. While the language model is veryimportant in produ
ing grammati
al English, we must rely on 
omplementary re-ordering models to preserve the meaning of the original senten
e.
3.4.2 Translation modelMoses models Pr

(

eI
1

∣

∣fJ
1

) by s
oring ea
h phrase separately:
hTM(eI

1, f
J
1 , πK

1 , zK
1 ) = log

K
∏

k=1

p
(

zk

∣

∣f
jπk

jπk−1+1

) (3.10)In Equation 3.10, the phrase translation probability distribution is estimated by rel-ative unsmoothed frequen
y in the training data. Moses also in
ludes inverted prob-abilities to model Pr
(

eI
1

∣

∣fJ
1

), whi
h are otherwise analogous to the above, and the�lexi
al weighting� of ea
h phrase, whi
h is des
ribed on p. 5 of [Koehn et al., 2003℄.These translation model features together pi
k translations whi
h have all of theright 
ontent words, but not ne
essarily in the right pla
e (target language phrasesmay be in the wrong order) or with agreeable dependen
ies (two phrase translationsmight make sense independently, but be laughable together be
ause of word senseambiguity). 37



3.4.3 Word and phrase penaltiesThese are simple features to 
ount how many words long the hypothesis is:
hWordPenalty(eI

1, f
J
1 , πK

1 , zK
1 ) = I (3.11)And how many phrases long it is:

hPhrasePenalty(eI
1, f

J
1 , πK

1 , zK
1 ) = K (3.12)These features provide a straightforward method to tune output translation length.One reason this is important is that our Japanese prepro
essor splits senten
es intomany more tokens than there are English words in an optimal translation.3.4.4 Distortion penaltyThis feature is roughly a measure of how far phrases have been reordered 
omparedto a monotoni
 translation. This is 
omputed by the negative sum over the distan
e(in the sour
e language) of phrases that are 
onse
utive in the target language:

hDistortion(eI
1, f

J
1 , πK

1 , zK
1 ) = −

K+1
∑

k=1

∣

∣jπk−1 − jπk−1

∣

∣ (3.13)where jπ0
is de�ned to equal 0 and jπK+1−1 is de�ned to equal J .In a Japanese�English system, this feature is of little help to distinguish qualitytranslations. Be
ause of the vast di�eren
e in English and Japanese word order,non-monotoni
 translation is the norm rather than the ex
eption. For most of oursystems, this feature got a very low or negative weight (λDistortion) after parametertuning. With a negative weight, this feature en
ourages non-monotoni
 translations.If we 
onsider language pairs with similar word order like Fren
h�English, forwhi
h the �rst phrase-based translation systems were developed, this distortion penaltyis extremely bene�
ial. In the words of O
h and Ney [2004℄, it �simply takes into a
-
ount that very often a monotone alignment is a 
orre
t alignment.�38



3.4.5 Lo
al lexi
al reorderingFinally, Moses in
ludes a set of features that improve lo
al reordering de
isions. Theymodel how often a phrase is translated monotoni
ally relative to the phrase beforeit, how often a phrase swaps pla
e with the phrase before it, and how often a phraseis translated dis
ontinuously relative to the phrase before it. Additionally, analogousfeatures are in
luded for modeling how a phrase is ordered relative to the phrase afterit. Knowing whether a phrase prefers monotoni
 translation or to swap with a neigh-bor is very useful for a language like Spanish, where these lo
al lexi
al reorderingfeatures give a signi�
ant gain in BLEU s
ore, as shown in Appendix C of [Koehn etal., 2007℄. For example, in Spanish, adje
tives follow the noun they modify; �greensalsa� is, deli
iously, `salsa verde' [Knight, 1999℄. In a Spanish�English translationsystem, Moses's lo
al lexi
al reordering features 
an give a higher s
ore to translationhypotheses that 
orre
tly swap adje
tives to 
ome before the noun they modify.However, these features are not su�
ient for Japanese�English translation. First,a lo
al reordering model o�ers little help to reorder verbs from the end of a Japanesesenten
e. Often the Japanese verb must leapfrog many phrases to get to its Englishproper spot between its subje
t and obje
t. In this 
ase, the Moses lo
al reorderingfeatures 
an only tell the de
oder to reorder the verb, not to where.Se
ond, the s
rambling property of Japanese means that 
ontiguous phrases donot ne
essarily have a relation to ea
h other. Therefore statisti
s 
ounting how aphrase is ordered relative to the previous and next phrase are not very meaningful.Furthermore, these 
ounts are learned from phrase alignments indu
ed from the train-ing 
orpus. Based on our personal observations of our Japanese�English data, phrasealignments in the training data are very noisy and not reliable for learning reorderingpatterns.Still, these lo
al reordering feature fun
tions have some utility for Japanese�Englishtranslation. One merit is that they 
an handle the agglutinative morphology ofJapanese verbs. To in�e
t a Japanese verb (to make it negative, past tense, polite, orotherwise) one appends morphemes to the end of the verb. This is demonstrated by39



segmented output from our Japanese prepro
essor in Gloss 3.1. In this example, theverb �gaze� has an ending that makes it negative together with a politeness marker,and an ending that puts it into past tense together with another politeness marker.(3.1) 私 は 星 を 眺め ませ ん でし た 。I TOP stars A

 gaze at [polite℄ not [polite℄ [past tense℄ .�I did not gaze at the stars.�It is natural to translate this senten
e with phrase pairs: ≪私 は, I≫ ≪星 を, thestars≫≪眺め, gaze at≫≪ませんでした, did not≫. The lo
al reordering featureshould identify that the in�e
tion �did not� should swap with the verb stem �gazeat�, and that this verb stem should in turn swap with its obje
t �stars�. These tworeorderings lead to the 
orre
t permutation of the English phrases.Noti
e that one word is often split over more than one phrase during translationbe
ause of abundant Japanese morphology. Here, the verb `眺めませんでした' (�didnot gaze at�) is translated as part of two distin
t phrases: `星を眺め' and `ませんで
した'.3.5 Beam sear
hIt is 
lear that Moses needs long-distan
e reordering features to e�e
tively translateJapanese to English, but we must be 
areful that our features are e�
iently 
om-putable during the de
oding pro
ess. This se
tion introdu
es the de
oding ma
hineryand the 
onstraints it imposes on the stru
ture of our features.Moses, like most phrase-based de
oders, performs the sear
h in Equation 3.4 withan iterative beam sear
h [Koehn et al., 2007℄. It is 
alled a beam sear
h be
ausethe de
oder explores the spa
e of possible translations breadth-�rst, translating onephrase at a time, but qui
kly dis
ards very low-s
oring translations. This leads to thepossibility of sear
h errors, where the highest-s
oring translation under our model isnot found. Pra
ti
ally, these errors are not a prohibitive problem; still, it is useful iffeatures 
an identify promising translations as early on as possible to prevent themfrom being dis
arded. 40



The de
oder keeps a sta
k of hypotheses. It expands ea
h hypothesis in the sta
kby translating one un
overed Japanese phrase, appending this translation to the endof its work-in-progress English translation, and adding the new resulting hypothesisto the sta
k. The Japanese phrase that was translated be
omes 
overed in thisnew hypothesis. In this way the de
oder assembles English hypothesis translationsfrom left to right, translating one Japanese phrase at a time. The order in whi
h itpi
ks Japanese phrases to translate determines the word order of the English outputsenten
e.These are the 
riti
al data that ea
h hypothesis 
ontains:
• phrase pair translated by this hypothesis
• ba
k link to the previous hypothesis that this one expands, whi
h allows us tore
over the English translation
• bit ve
tor representing whi
h Japanese words have been translated
• ve
tor of feature fun
tion s
ores
• s
ore, 
omputed by taking the dot produ
t of the feature s
ores ve
tor with thefeature weight ve
torLet us take a look at examples of translation hypotheses for the preamp exampleintrodu
ed in Chapter 1, reprodu
ed here with spa
es between words.(3.2) プリアンプ 3 は 入力 さ れ た 再生 信号を 増幅 し て Ａ ＧＣ アンプ 4 へ 出力 する 。Preamp 3-TOP input-Passive repr. signal-A

 amplify and AGC amp 4-to output .�The preamp 3 ampli�es an input reprodu
tion signal, and sends out to an AGCampli�er 4.�After translating several phrases of the preamp example, this is a promising hy-pothesis: 41



Preamp Hypothesis #149442Expands #84738Covers プリアンプ 3は . . . . . . . . . . . . . . . . . . ≪を増幅し≫ . . . . . . . . .. . . . . . . . . . . . . . . . . .Phrase pair ≪を 増幅 し, ampli�es the≫Features < Distortion = −12,WordPenalty = 5,LM =

−25.821, . . . >S
ore −101.988 + future 
ost− 103.270 = −205.258(Ellipses represent un
overed words in the 
overage ve
tor.)Hypothesis #149442 is expanded into many hypotheses, and among the best isHypothesis #318530: Preamp Hypothesis #318530Expands #149442Covers プリアンプ 3 は ≪入力 さ れ た 再生 信号≫ を 増幅 し . . . . . .. . . . . . . . . . . . . . . . . . . . .Phrase pair ≪入力 さ れ た 再生 信号, reprodu
ed signal , whi
h is≫Features < Distortion = −21,WordPenalty = 10,LM =

−40.422, . . . >S
ore −102.947 + future 
ost− 102.049 = −204.995To 
omplete this example, Table 3.1 lists a very small subset of the phrase tablethat 
ould next be used to expand Hypothesis #149442.3.5.1 Sear
h e�
ien
yBe
ause the sear
h spa
e of all possible English senten
es is so huge, the Moses de-
oder takes a number of measures to keep the sear
h pro
ess e�
ient. The �rstis a hard limit on how far phrases 
an reorder. With a maximum distortion limit
MaxDistortion, the next phrase the de
oder pi
ks to translate must start within
MaxDistortion words from the leftmost un
overed word. For many language pairs,this limit is important for high quality translations, and setting MaxDistortion > 6begins to hurt translation quality [Koehn et al., 2005℄. For Japanese�English we42



て with the
て through
て based on
ａ ｇｃ アンプ the ag
 ampli�er
ａ ｇｃ アンプ ag
 ( automati
 gain 
ontrol ) ampli�er
ａ ｇｃ アンプ in
luding the ag
 ampli�er
へ into
へ on
へ to a
へ 出力 is output to the
へ 出力 output
へ 出力 to output
へ 出力 する outputs to the
へ 出力 する to output the
へ 出力 する and outputs the result to the
する with
する , the
する beTable 3.1: Phrase table ex
erpt.found that having no distortion limit gave highest translation quality. However, de-
oding our test set with no distortion limit (de�ned as MaxDistortion = 0) takes onaverage 37 se
onds per senten
e, whi
h is 5 times longer than with MaxDistortion =

9. Thus there is an important tradeo� between quality and speed. (See Se
tion 5.4for distortion limit experiments.)Ea
h hypothesis is s
ored before it is added to the sta
k, and at ea
h step, thede
oder prunes the sta
k to keep only the highest-s
oring hypotheses. There is an-other quality-speed tradeo� in setting the maximum size of the hypothesis sta
k. Thedefault sta
k size is 100; in
reasing this to 200 improves quality slightly (28.46�28.63BLEU) but also 
auses translation to take almost twi
e as long. One more optimiza-tion Moses implements is to re
ombine identi
al hypotheses (as measured by whi
hJapanese words have been translated and end of the English translation), and keeponly the higher-s
oring hypothesis. We now must formulize how to s
ore a hypothesiswhi
h may have a set of un
overed Japanese words yet to be translated.We �rst de
ompose ea
h feature fun
tion into a sum of the 
ontributions from ea
hEnglish phrase used in the translation. This allows us to 
al
ulate a feature's value43



for a hypothesis by adding together 1) the 
ontribution of the last translated Englishphrase and 2) the previous value of the feature in the hypothesis this one was expandedfrom. As a simple example, 
onsider the word penalty feature, WordPenalty, ofEquation 3.11, whi
h equals the number of words in the senten
e. Let's say that ahypothesis A is expanded into hypothesis B by adding English phrase C of length
C.length to the end. The value of B's WordPenalty feature is equal to the valueof A's WordPenalty feature plus the 
ontribution of C, whi
h is C.length.A hypothesis's s
ore is then the dot produ
t of the feature s
ores ve
tor with thefeature weight ve
tor. In addition, be
ause the pruning 
ompares translations thatmay have translated di�ering subsets of Japanese words, we also add a heuristi
 tothe s
ore that estimates the future 
ost of translating the un
overed Japanese words.1Unfortunately, many useful feature fun
tions do not de
ompose ni
ely into 
ontri-butions from ea
h used phrase pair, and we are unable to in
orporate them into ourbeam sear
h. One approa
h to in
orporate su
h global features, used for example byO
h et al. [2004℄, is to use them in an n-best reranking step. With this method, thee�
a
y of the features is limited by the quality of the translations in the n-best list; ifthe n-best list does not 
ontain translations with the needed long-distan
e reordering,there is no hope for the reranker to pi
k a good translation. As a result, O
h et al.
ould not a
hieve a signi�
ant improvement in Chinese�English translation qualitywith their global synta
ti
 feature fun
tions reranking a 1000-best list. Hen
e we willfo
us our attention on designing only features that 
an be integrated dire
tly into abeam sear
h.Let us re
ap the 
onstraints that the de
oder imposes on the spa
e of possiblefeature fun
tions:
• Must de
ompose into a sum of 
ontributions from ea
h phrase pair used trans-lation.
• Ea
h su
h 
ontribution must be a fun
tion of only1See [O
h and Ney, 2004℄ for the derivation of su
h a heuristi
, and [Koehn, 2007℄ for an expla-nation of how it is implemented in Moses. 44



� The input Japanese senten
e.� Whi
h Japanese phrase was last translated to expand this hypothesis, andthe English phrase used for their translation.� A bit ve
tor representing whi
h Japanese words have been translated.3.6 Long-distan
e reordering feature fun
tionsWith the previous dis
ussion in mind, we aim to build long-distan
e reordering fea-tures with multipronged merits:1. Model reordering over an arbitrarily long distan
e2. Consistently perform head-�nal to head-initial reordering3. E�e
tive even in the wake of Japanese s
rambling4. Resistant to noisy word alignments in training data5. Appli
able to any language pair6. Computable e�
iently in a phrase-based de
oderOur features will use a dependen
y parse and 
ount the number of times a 
ertaindependen
y pattern o

urs. One example is a feature that 
ounts how many timesin a senten
e a verb is translated before its obje
t. If we give this feature highpositive weight, it will 
ause the de
oder to prefer senten
es with verbs pre
eedingtheir obje
ts, as is 
orre
t English. If instead we give this feature negative weight,the de
oder will prefer senten
es with verbs 
oming after their obje
ts, as would bepreferred for translating into other languages, like Korean, Hindi, or another Subje
t�Obje
t�Verb language.Dis
riminative training 
an automati
ally assign optimal weights to optimize trans-lation quality on a development 
orpus [O
h and Ney, 2001℄. In this way, our transla-tion system does not need to know that English is a Subje
t�Verb�Obje
t language,or any grammati
al property of English; these properties are learned automati
ally45



during dis
riminative training. To emphasize the appli
ability of these features toany language pair, we use sour
e and target language to refer to the languages weare translating to and from.We also introdu
e two more types of features in addition to these pairwise depen-den
y pattern 
ounters. One en
ourages 
ohesively translating all words of 
ertainlinguisti
 phrases before moving on to another phrase, and one dis
ourages reorderingphrases a
ross pun
tuation marks.We now introdu
e notation that will allow us to formally de�ne these features. Weview ea
h hypothesis as a state transition, wherein one new phrase is translated. As ittranslates left�to�right one phrase at a time, the de
oder assembles a sequen
e of statetransitions. When all sour
e phrases have been translated, the de
oder's sequen
e ofstate transitions maps to (eI
1, f

J
1 , πK

1 , zK
1 ), whi
h feature fun
tions s
ore. In line withthe dis
ussion in Se
tion 3.5.1, feature fun
tions that 
an be e�
ien
y implementedin the de
oder must de
ompose into 
ontributions from ea
h state transition.We use the variable q to denote a hypothesis. We de�ne qk as the kth hypothesisin the de
oder's state transition sequen
e underlying (eI

1, f
J
1 , πK

1 , zK
1 ). Then we 
ande�ne e�
iently-
omputable feature fun
tions in the form

h(eI
1, f

J
1 , πK

1 , zK
1 ) =

K
∑

k=1

χ(fJ
1 , qk). (3.14)

χ(fJ
1 , qk) is a real-valued de
omposed feature fun
tion that 
al
ulates thefeature we wish to model of the state transition qk in the 
ontext of the originalJapanese senten
e fJ

1 .Variable k of Equation 3.14 has no meaning in the 
ontext of the de
oder's beamsear
h, so we write our new features in terms of some general hypothesis q:
χ(fJ

1 , q) (3.15)46



We de�ne a hypothesis (or state transition, if you prefer) q to 
ontain these �elds:
q.source : sour
e language phrase
q.target : target language phrase
q.start : index of the �rst word of the phrase in the sour
e senten
e
q.end : index of the last word of the phrase in the sour
e senten
e

q.coverageJ
1 : q.coveragej = 1 if the jth sour
e word has been translated, 0 otherwise.(Range [q.start, q.end] is 
overed in q.coverage.)To give a simple 
on
rete example of this notation, Equation 3.16 gives the de�nitionof the de
omposed feature fun
tion for the WordPenalty feature (Se
tion 3.4.3),whi
h 
ounts how many words are in the target side of the phrase pair.

χWordPenalty(f
J
1 , q) = q.target.length (3.16)3.6.1 Pairwise dependen
y orderThese features require the input senten
e to have the following annotations:

• words grouped into 
hunks, where a 
hunk roughly 
orresponds to a shortlinguisti
 phrase.
• part of spee
h of ea
h 
hunk
• grammati
al 
ase of ea
h 
hunk
• dependen
y of ea
h 
hunkChunks are loosely de�ned; they 
ould be any non-overlapping grouping of 
on-tiguous words. In the same way, when we translate Japanese, �words� are looselyde�ned. As we will see in examples, our Japanese prepro
essor (Se
tion 5.2) splitssenten
es with high granularity into small tokens, often splitting at morpheme bound-aries. Still we use �word� to des
ribe ea
h token of Japanese input, even though many47



of them 
ould not be 
onsidered proper words. If we were to translate from English,it might work well to 
onsider ea
h English word as its own 
hunk.We de�ne a 
hunk x to 
ontain these �elds:
x.parent : 
hunk that this 
hunk modi�es or NULL

x.children : list of 
hunks that modify this 
hunk
x.pos : part of spee
h
x.case : 
ase
x.start : index of the �rst word of the 
hunk in the sour
e senten
e
x.end : index of the last word of the 
hunk in the sour
e senten
e

Chunks are important be
ause they allow our features to 
onsider reorderinggroups of words together. To illustrate, Gloss 3.3 shows our previous stargazingexample (Gloss 3.1) divided into 
hunks.(3.3) 〈私 は〉 〈星 を〉 〈眺め ませ ん でし た〉 。

〈I TOP〉 〈stars A

〉 〈gaze at [polite℄ not [polite℄ [past tense℄〉 .�I did not gaze at the stars.�All of the tokens that belong to the verb are grouped in one 
hunk. The topi
marker and a

usative 
ase marker (whi
h marks the obje
t) are also grouped togetherin 
hunks with their noun. Resulting 
hunks like 〈星を〉 (stars-A

) are 
alled bunsetsu(文節) in Japanese grammar. A bunsetsu 
onsists of a 
ontent word and a�xedfun
tion words like 
ase markers or verbal morphology [Suzuki and Toutanova, 2006℄.One pe
uliarity to note in Gloss 3.3 is that the period is not in any 
hunk. Ourfeatures gra
efully ignore any words that are not in 
hunks. Furthermore, the depen-den
y stru
ture 
an 
onsist of multiple subtrees that are not 
onne
ted. The onlyrestri
tion that we impose on the dependen
y graph is that ea
h 
hunk have at mostone parent; that is, ea
h 
hunk modi�es at most one other 
hunk.48



We 
an now formulate our obje
tive in reordering Gloss 3.3 thusly: irregardlessof how the de
oder segments the senten
e into phrases, we would like as mu
h ofthe verbal 
hunk `眺めませんでした' to be translated before the a

usative 
hunk`星を' as possible. To this end, we will de�ne a feature fun
tion VerbBeforeA

that 
ounts up what fra
tion of the verbal 
hunk is translated before its a

usativemodi�er.Example: De�ning the VerbBeforeA

 featureWe begin with two indi
ator fun
tions that identify 
hunks relevant to the VerbBe-foreA

 feature:
is_accusative(x) =











1, if x.pos = `Noun' and x.case = `A

';
0, otherwise. (3.17)

is_verb(x) =











1, if x.pos = `Verb';
0, otherwise. (3.18)Then we de�ne two helper fun
tions that 
ompute what fra
tion of some 
hunk wasalready translated before q (Equation 3.19), and what fra
tion was translated by q(Equation 3.20).

frac_already_covered(x, q)

=
num. words in x 
overed in q.coverageJ

1 and not in range [q.start, q.end]num. words in x (3.19)
frac_translated(x, q) =

num. words in x in range [q.start, q.end]num. words in x
(3.20)Finally, we de�ne χVerbBeforeA

(fJ

1 , q), the de
omposed feature fun
tion forVerbBe-foreA

. For every dependen
y between a verb and its a

usative obje
t in thesenten
e, Equation 3.21 
ounts up the fra
tion of the verbal 
hunk that has alreadybeen translated times the fra
tion of the a

usative 
hunk is translated by q.49



We letX = set of 
hunks that overlap [q.start, q.end] a

ording to dependen
y parse of fJ
1 .

χVerbBeforeA

(fJ
1 , q) =

∑

x∈X























is_accusative(x) · is_verb(x.parent)

· frac_already_covered(x.parent, q)

· frac_translated(x, q)























(3.21)
Next we look at a how to 
ompute χVerbBeforeA

(fJ

1 , q) for an example hypoth-esis.Example: VerbBeforeA

 in a
tionConsider Figure 3-1, whi
h is the same as Figure 1-1 with part of spee
h and 
aseannotations. Japanese 
hunks are separated by spa
es.
Figure 3-1: Annotated preamp dependen
y parse.Now for illustration we will 
ompute the value of VerbBeforeA

 for Hypoth-esis #318530 �rst shown in Se
tion 3.5 and repeated here with 
hunks marked.Preamp Hypothesis #318530Expands #149442Covers 〈プリアンプ〉 〈3 は〉 〈≪入力 さ れ た〉 〈再生 信号≫ を〉 〈増幅 し. . . 〉 〈. . . . . . . . . . . . . . . 〉 〈. . . . . . 〉 . . .Phrase pair ≪入力 さ れ た 再生 信号, reprodu
ed signal , whi
h is≫Features < VerbBeforeA

 =?, . . . >S
ore −102.947 + future 
ost− 102.049 = −204.995Noti
e that q.source 
overs two 
hunks on the Japanese side. Its �rst four words,`入力 さ れ た', 
ompletely 
over the se
ond 
hunk, and its last two words, `再生 信

号', 
over the �rst two words of the 
hunk 〈再生 信号 を〉.50



To 
ompute χVerbBeforeA

(fJ
1 , q), we sum up the 
ontributions of ea
h of the two
overed 
hunks.

• Chunk 〈入力 さ れ た〉 has part of spee
h `Verb' and no 
ase, whi
h does notmat
h the kind of 
hild we are looking for (a nounal 
hunk with a

usative
ase), so makes zero 
ontribution.
• Chunk 〈再生 信号 を〉 mat
hes the kind of 
hild we are looking for, with partof spee
h `Noun' and 
ase `A

'. The phrase translated in q, ≪入力 さ れ た
再生 信号≫, 
overs 2/3 of 〈再生 信号 を〉 (�再生 信号� is 
overed while �を�is un
overed), so frac_translated(〈再生 信号 を〉, q) = 2/3.Its parent in the dependen
y tree, 〈増幅して〉, has part of spee
h `Verb' whi
hmat
hes the kind of parent we're looking for. In the hypothesis, `増幅 し'has already been 
overed, whi
h is 2/3 of the whole 
hunk 〈増幅 し て〉, so
frac_already_covered(〈増幅 し て〉, q) = 2/3.Hen
e χVerbBeforeA

(fJ

1 , q) = (2/3)(2/3) = 0.444.To 
ompute the value of VerbBeforeA

 for Hypothesis #318530, we add
0.444 to the value of VerbBeforeA

 of the ba
k-linked Hypothesis #149442,whi
h was 0. Therefore the feature ve
tor 
ontains VerbBeforeA

 = 0.444.The positive value indi
ates that this hypothesis 
ontains a verb 
oming before itsa

usative dependen
y.General de�nitionWe would like to build a template for features like VerbBeforeA

 so that we
an model the dependen
y orders of other parts of spee
h and 
ase 
ombinations. Ingeneral, we parameterize our pairwise dependen
y order features on a parameter s51



with four �elds:
s.parent_pos : part of spee
h of parent 
hunk, or `Any'
s.parent_case : 
ase of parent 
hunk, or `Any'

s.child_pos : part of spee
h of 
hild 
hunk, or `Any'
s.child_case : 
ase of 
hild 
hunk, or `Any'

For a given s, we 
an de�ne two features. The �rst 
ounts how many times aparent 
hunk with part of spee
h s.parent_pos and 
ase s.parent_case is translatedbefore its 
hild with part of spee
h s.child_pos and 
ase s.child_case. The se
ond
ounts the opposite: how many times a relevant 
hild 
hunk is translated before itsparent 
hunk. These two formulations seem redundant, but we found both to beuseful when integrated in the de
oder.We begin with two indi
ator fun
tions in the same vein as is_accusative and
is_verb (Equations 3.17 and 3.18) that identify 
hunks that mat
h the parent or
hild settings of parameter s.
matches_parent(x, s) =











1, if x.pos = s.parent_pos and x.case = s.parent_case;
0, otherwise. (3.22)

matches_child(x, s) =











1, if x.pos = s.child_pos and x.case = s.child_case;
0, otherwise. (3.23)We also reuse the de�nitions of frac_already_covered and frac_translated in Equa-tions 3.19 and 3.20.We design χParentBeforeChildTemplate(fJ

1 , q, s) in Equation 3.24 to return the sumof the fra
tion of 
hunks translated before their 
hildren during the translation of52



phrase q.source. That is abstruse, but when the de
oder sums the 
ontribution fromea
h phrase, it gets the 
ount of 
hunks (or partial 
hunks) translated before their
hildren (or partial 
hildren).Again letX = set of 
hunks that overlap [q.start, q.end] a

ording to dependen
y parse of fJ
1 .

χParentBeforeChildTemplate(fJ
1 , q, s)

=
∑

x∈X























matches_child(x, s) ·matches_parent(x.parent, s)

· frac_already_covered(x.parent, q)

· frac_translated(x, q)























(3.24)
To getVerbBeforeA

, for example, we would instantiateParentBeforeChildTem-plate and set parameters s.parent_pos = `Verb', s.parent_case = `Any', s.child_pos =`Any', and s.child_case `A

'.The se
ond feature ChildBeforeParentTemplate, given in Equation 3.25, issimilar to ParentBeforeChildTemplate but 
ounts the opposite ordering: howmany 
hunks are translated before their parents.

χChildBeforeParentTemplate(fJ
1 , q)

=
∑

x∈X























matches_parent(x, s) ·
∑

y∈x.children























matches_child(y, s)

· frac_already_covered(y, q)

· frac_translated(x, q)











































(3.25)ImplementationWe take several measures to implement these features e�
iently in Moses. Let ussay we are translating a senten
e with M 
hunks. First, before translation beginswe pre
ompute a map that maps ea
h word position to its 
hunk index between
0 and M − 1. Se
ond, we maintain a ve
tor chunk_coverageJ

1 in ea
h hypothesiswhere and ea
h chunk_coveragem holds the number of words in the mth 
hunk53



that have been translated. These data stru
tures 
an be updated from the previoushypothesis in time linear in the length of the input senten
e, and a�ord 
omputing
χParentBeforeChildTemplate(fJ

1 , q, s) and χChildBeforeParentTemplate(fJ
1 , q) also in timelinear in the length of the senten
e.To integrate these features into Moses, we �rst need a way to mark up the in-put senten
es with dependen
y information. We de�ned a set of tags that 
an beappended to any word to indi
ate whether it is a head, what 
hunk it belongs to,its dependen
ies, its part of spee
h, and its 
ase. Then we de�ned a new inputtype for Moses 
alled Dependen
yTree, whi
h is a sub
lass of the default input typeSenten
e. Before translating, Dependen
yTree strips away the dependen
y annota-tions and builds an internal representation of the 
hunks de�ned in the senten
e andtheir dependen
y stru
ture. These internal representations 
an qui
kly be a

essedto 
ompute our feature fun
tions.Below is the preamp example annotated with its dependen
ies in Dependen
yTreeinput format.

プリアンプ__head__(0,0)__pos__(n) 3__head__(1,2,0)__pos__(n)__
ase__(top)
は 入力 さ__head__(3,6)__pos__(v) れ た 再生 信号__head__(7,9,4)__pos__(n)__
ase__(a

)
を 増幅 し__head__(10,12,8)__pos__(v) て Ａ ＧＣ アンプ4__head__(13,17)__pos__(n)__
ase__(lat) へ 出力 する__head__(18,19,1,11,16)__pos__(v) 。Notation 信号__head__(7,9,4)__pos__(n)__
ase__(a

) indi
ates that `信号' ishead of a 
hunk that spans the (zero-indexed) 7th to 9th words (`再生信号を'), andis modi�ed by the 
hunk that is headed by the 4th word (`さ').3.6.2 Chunk 
ohesionThe motivation for this feature is that a 
hunk should be translated 
ompletely beforewords from other phrases are interspersed. This feature ChunkCohesion 
ountsup how many 
hunks have un
overed words remaining when a di�erent 
hunk istranslated. With a negative weight (whi
h we denote λChunkCohesion), it en
ourages
hunks to be translated 
ohesively without interruption from other 
hunks. This is54



similar to the 
ohesion feature developed by Cherry [2008℄, whi
h 
ounted how manytimes any subtree of the dependen
y tree was interrupted. Cherry's 
ohesion featureis 
omplimentary to ours.De�nitionWe de�ne a partially 
overed 
hunk to be one with at least one un
overed word. Welet previous_partially_covered be the number of partially 
overed 
hunks a

ordingto q.coverageJ
1 before q.source was translated and current_partially_covered be thenumber of partially 
overed 
hunks after q.source was translated.

χChunkCohesion(fJ
1 , q) = max(current_partially_covered

− previous_partially_covered, 0) (3.26)ImplementationSimilar to the pairwise dependen
y features, the 
hunk 
ohesion feature is easily
omputed if we maintain a bit ve
tor in ea
h hypothesis that holds whether or notea
h 
hunk has any un
overed words.ExampleHere is an example that translates the next phrase in an in
ohesive way.Preamp Hypothesis #318478Expands #149442Covers 〈プリアンプ〉 〈3 は〉 〈≪入力 さ≫ . . . . . . 〉 〈. . . . . . を〉 〈増幅 し. . . 〉 〈. . . . . . . . . . . . . . . 〉 〈. . . . . . 〉 . . .Phrase pair ≪入力 さ, input to a≫Features < ChunkCohesion =?, . . . >S
ore −103.086 + future 
ost− 102.990 = −206.077The ba
k-linked Hypothesis #149442 has two partially 
overed 
hunks: 〈. . . . . .
を〉 and 〈増幅 し . . . 〉. For an expanded hypothesis to in
ur no 
ohesion penalty,55



it would have to translate some of one of those two 
hunks. Hypothesis #318478,however, translates≪入力さ≫ next and thus adds a third partially un
overed 
hunk
〈入力 さ . . . . . . 〉.Hen
e χChunkCohesion(fJ

1 , q) = 3 − 2 = 1, and the ChunkCohesion feature ofHypothesis #318478 has value 1 as this is the �rst 
ohesion violation seen in the pathleading to this hypothesis.3.6.3 Reordering a
ross pun
tuationIt is often in
orre
t to translate a word a
ross a pun
tuation mark, like a 
omma orquotation mark. This feature Pun
t 
ounts up how many times a phrase is reordereda
ross a pun
tuation mark. If its weight λPun
t is negative, it dis
ourages reorderinga
ross pun
tuation.De�nitionTo 
al
ulate this feature, �rst we let first_gap be the position of the leftmost un-
overed word in q.coverageJ
1 before q.source was translated and next_punct be theleftmost pun
tuation after first_gap. Hen
e, in order to not 
ross pun
tuation, thenext translated phrase must either 
ome 
ompletely before next_punct, or in
lude

next_punct and in
lude all un
overed words left of it. The �rst two regimes ofEquation 3.27 express the inverse of these 
ases.
χPun
t(fJ

1 , q) =



























1, if next_punct < q.start;
1, if q.start ≤ next_punct ≤ q.end and q.start 6= first_gap;
0, otherwise. (3.27)ImplementationBefore beginning beam sear
h in the Moses de
oder, we pre
ompute a bit ve
tor pJ

1where pj is 1 if the jth word of the input senten
e is a pun
tuation mark, and 056



otherwise. Then first_gap and next_punct 
an be 
omputed in time linear to thelength of the senten
e.
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Chapter 4
Reordering before translating
We saw in Chapter 3 that one weakness of phrase-based translation systems is per-forming the long-distan
e reordering required when translating from Japanese to En-glish. One way to improve word order in translation output is to reorder Japanesesenten
es into a more English-like word order in a prepro
essing step before translat-ing. Wang et al. [2007℄ re
ently presented good results performing similar preorderingfor Chinese�English translation, and others have su

eeded with di�erent languagepairs [Li et al., 2007; Collins et al., 2005; Kanthak et al., 2005℄.We start out by motivating why pre-translation reordering, whi
h we 
all pre-ordering, is a good idea. Then we present two ways to reorder Japanese into anEnglish-like word order. In the �rst, we split the Japanese at pun
tuation and thetopi
 marker `は', then simply reverse the word order of every segment in between. Inthe se
ond, we use a Japanese dependen
y parser and several linguisti
ally motivatedrules to transform 
ertain Japanese grammati
al stru
tures so their surfa
e form hasan English word order. Both preorders improved translation quality, as will be shownin Chapter 5.4.1 Motivation for preorderingIf we reorder the Japanese training senten
es (and unseen Japanese senten
es beforetranslation) into a more English-like word order, we expe
t a phrase-based system59



trained on this new parallel training data to outperform a baseline system trained onthe original Japanese senten
es. This is be
ause the features used in phrase-basedsystems (des
ribed in Se
tion 3.4) are most e�e
tive when not mu
h reordering isrequired during translation. The preordering step alleviates the need for long-distan
ereordering during the translation pro
ess.For instan
e, we noted previously that our Japanese�English word alignmentstend to be poor in our baseline Moses system. One plausible advantage of reorderingJapanese senten
es into a more English-like word order before training the systemmight be improved word alignment quality. This is be
ause Japanese and Englishphrases that are translations of ea
h other will be in similar positions, and the wordalignment algorithm 
an safely prefer alignments between words whose position issimilar. We expe
t better word alignment to result in a more a

urate phrase tableand better word 
hoi
e in translations.We implement the following preordering methods in a way that maintains depen-den
y relationships during the reordering. Hen
e we 
an output a pseudo-Japanesepreorder with dependen
y annotations that are 
onsistent with the dependen
ies ofthe original Japanese senten
e.4.2 Reverse preorderingEnglish is head-initial. Japanese is head-�nal. So reversing the word order of aJapanese senten
e 
ould be a good start towards an English-like order. We fa
torout the 
ommonality that the topi
 of English and Japanese senten
es both 
ome atthe beginning by reversing words before and after the topi
 marker `は' separately.Pun
tuation is kept in the same pla
e.We begin by tokenizing the senten
e with the Me
ab [Kudo, 2007℄ morphologi
alanalyser, then follow these steps:1. Split the Japanese senten
e at pun
tuation into a list of �segments�.2. Further split ea
h segment at `は', the topi
 marker, to get a pre-topi
 segment60



(whi
h ends with `は') and post-topi
 segment. The motivation is that the topi

omes at the beginning of both Japanese and English senten
es, and should notmove to the end.3. Reverse the order of the words in ea
h segment, so ea
h segment reads ba
k-wards.4. Con
atenate the segments and pun
tuation ba
k together in their original orderin the senten
e.We 
all this reordering theRev preorder. Let us follow these steps to reorder thepreamp example, reshown in Gloss 4.1 with words separated by spa
es and segmentboundaries marked by ‖.(4.1) プリアンプ 3 は ‖ 入力 さ れ た 再生 信号 を 増幅 し てPreamp 3-TOP ‖ input-Passive repr. signal-A

 amplify and
Ａ ＧＣ アンプ 4 へ 出力 する ‖ 。AGC amp 4-to output ‖ .�The preamp 3 ampli�es an input reprodu
tion signal, and sends out to an AGCampli�er 4.�The topi
 segment is `プリアンプ 3は', whi
h is reversed into `は 3プリアンプ'. Themiddle segment is also reversed, and these two segments are 
on
atenated togetherwith the �nal period to get Gloss 4.2, the �nal Rev preorder.(4.2) は 3 プリアンプ する 出力 へ 4 アンプ ＧＣ Ａ て し 増幅 を 信号 再生 た れ さ 入力 。TOP -3 preamp output to 4 amp GCA and amplify A

-repr. signal Passive-input .As noted in Chapter 1.5, this Rev preordering 
ould be su

essfully translated intoEnglish monotoni
ally by adding only a few auxiliary words: �The 3 preamp outputsto 4 amp ACG and ampli�es the reprodu
tion signal that has been input.�We 
an analyze this reverse ordering as performing both lo
al and long-distan
emovement. Long-distan
e movement 
an be seen in the verb `出力 する' (output)moving from the end of the senten
e to the beginning of the senten
e. This long-distan
e reversal is e�e
tive in transforming head-�nal verb and noun phrases to be61



head-initial as they are in English. Lo
al movement 
an be seen in the verb `出力 さ
れ た' (whose tokens are literally, output do [passive℄ [past tense℄) reordering to `た
れ さ 入力' ([past tense℄ [passive℄ do output). This lo
al reordering is e�e
tive forverbs be
ause most English auxiliaries pre
ede the verb they assist, while Japaneseauxiliaries and in�e
tions follow the verb their verb.This naive Rev does have two signi�
ant problems. First, subje
ts marked by`が', the Japanese subje
t marker, are reordered to follow their verb. An exampleof this problem is shown later in Se
tion 4.4.1. We 
ould have 
hosen to also splitsegments at `が', but this would break the word order if the senten
e 
ontained arelative 
lause with `が' in it. The se
ond problem is that 
ompound nouns arereversed, and English and Japanese 
ompounds already have the same stru
ture. Inreversed Gloss 4.2, `再生 信号' (reprodu
tion signal) has been reordered into `信号
再生' (signal reprodu
tion), whi
h is 
learly a worse order than the original.4.3 Dependen
y tree preorderingIn this se
tion we present a more sophisti
ated way to reorder Japanese into English by�attening a dependen
y tree parse of the Japanese. We start by running the senten
ethrough Me
ab, whi
h tokenizes and tags ea
h word with part of spee
h. We splitthe senten
e into segments at pun
tuation marks1, apply our reordering te
hniqueto ea
h segment separately, and in the end 
on
atenate the reordered segments andpun
tuation (in the same order they appeared in the original senten
e) together. We
all this reordering the Cabo
ha preorder.To reorder a segment, we �rst parse it with the Cabo
ha Japanese Dependen
yStru
ture Analyzer [Kudo and Matsumoto, 2002℄. The output of Cabo
ha is a list of
hunks. These 
hunks 
orrespond to the notion of 
hunk we de�ned in Se
tion 3.6.1:a 
ontent word (usually the head) and a�xed fun
tion words like 
ase markers orverbal morphology. Ea
h 
hunk 
ontains the following information:1We 
onsider as pun
tuation marks: 、，,。.？?！：:；;＜＞<>（）『』【】〈〉《》「」
｛｝〜［］{}() 62



• ID number
• Start and end position in senten
e
• Chunk that this 
hunk modi�es (in other words, parent 
hunk)
• Position of head
• Position of the last non-pun
tuational wordFrom this list of 
hunks, we 
an 
onstru
t a dependen
y tree with a node forea
h 
hunk and an edge for ea
h dependen
y. Be
ause of how Cabo
ha 
onstrains itsdependen
y model, all of a node's 
hildren pre
ede it in the senten
e. As a result, theroot node is always the �nal 
hunk of the senten
e. Figure 4-1 shows the dependen
ytree 
onstru
ted from the preamp example (on
e the period at the end has beensplit away), with ea
h 
hunk's head underlined and its part of spee
h listed. Thedependen
y relations are analogous to those previously shown in Figure 3-1.

出力 するoutputverb
�

�
�

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

H
H

H3 は3-TOPnumber noun
プリアンプpreampnoun

増幅 し てamplifyverb
再生 信号 をrepr. signal-A

noun
入力 さ れ たinput-Passiveverb

Ａ ＧＣ アンプ 4 へAGC amp 4-tonoun
Figure 4-1: Dependen
y tree for preamp example.We reorder a Japanese segment in two steps:1. Flatten the dependen
y tree a

ording to four rules.63



2. Reverse the word order within ea
h 
hunk.To �atten the tree we de
ide for ea
h node into whi
h position among its 
hildrento �atten. Algorithm 1 shows the re
ursive fun
tion flatten(chunk) that returns anordered list of 
hunks 
ontaining chunk and all of its des
endants. The 
rux of thealgorithm is determining where chunk should be pla
ed among its 
hildren. All non-verbs are pla
ed before their 
hildren, whi
h indu
es a head-initial word order. Thepla
ement of verbs is determined by going down the following list:1. Immediately after rightmost topi
 or subje
t, if it exists.2. Otherwise, immediately before leftmost obje
t, if it exists.3. Otherwise, immediately after rightmost verb, if it exists. This is to preventverbs from leapfrogging verbs that pre
eded them that share only a 
oordinativedependen
y.4. Otherwise, before all 
hildren.We reorder a segment by 
alling flatten on the root node of its dependen
y tree,and �nally reversing the word order within ea
h 
hunk. The resulting Cabo
hapreorder for our preamp example is shown in Gloss 4.3.(4.3) は 3 プリアンプ する 出力 て し 増幅 を 信号 再生 た れ さ 入力 へ 4 アンプ ＧＣ Ａ 。TOP -3 preamp output and amplify A

-repr. signal Passive-input to 4 amp GCA .As with the Rev preorder, we 
an add auxiliaries to the gloss of the Cabo
ha pre-order to form a 
orre
t translation: �The 3 preamp outputs the ampli�ed reprodu
tionsignals that has been input to 4 amp ACG.� The pla
ement of the main verb �output�is questionable; it should probably 
ome after �amplify�, with whi
h it 
oordinates,but our rules put it immediately after its subje
t, �preamp 3�. One �x would be tonever pla
e verbs farther left than their leftmost 
hild verb. The verb �amplify� hasbeen pla
ed 
orre
tly before its obje
t �reprodu
tion signal�. The head-�nal nounphrase `入力 さ れ た 再生 信号' (input-Passive reprodu
tion signal) su

essfullyreordered to be head-initial `信号 再生 た れ さ 入力' (signal reprodu
tion Passiveinput). 64



Algorithm 1 Cal
ulate flatten(chunk) to �atten a Japanese dependen
y tree intoEnglish-like word orderEnsure: ordered_words is an ordered list 
ontaining chunk and all des
endants.{First, 
hoose where to pla
e chunk into its 
hildren.}
pos⇐ part of spee
h of head of chunk
ordered_children⇐ list of 
hildren of chunk, ordered as they were in original senten
eif pos = `Verb' and a 
hild has a subje
t marker `が' or topi
 marker `は' theninsert chunk into ordered_children after rightmost 
hild subje
t or topi
else if pos = `Verb' and a 
hild has an obje
t marker `を' theninsert chunk into ordered_children before leftmost 
hild obje
telse if pos = `Verb' and a 
hild has head with part of spee
h `Verb' theninsert chunk into ordered_children after rightmost 
hild verbelseinsert chunk into beginning of ordered_children.end if{Se
ond, re
ursively �atten ea
h 
hild.}
ordered_words⇐ [ ]for all child in ordered_children doif child = chunk thenappend child to ordered_wordselseappend flatten(child) to ordered_wordsend ifend for
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Thanks to its systemati
 head-�nal to head-initial inversion, we found that theCabo
ha preorder tended to 
losely mat
h English word order. We demonstrate inSe
tion 5.5 that Cabo
ha dominates Rev and Baseline (no reordering) preordersin translation quality when translating monotoni
ally (that is, not allowing reorderingother than what has already been reordered in the preorder). We will now take alook at examples of Cabo
ha and Rev preorders and what it looks like to translatethem monotoni
ally.4.4 Preorder examplesOn the next two pages, we present a pair of example senten
es reordered intoRev andCabo
ha preorder. Ea
h example shows a gloss of Baseline, Rev, and Cabo
hapreorders. Under ea
h gloss is the monotoni
 translation of the preorder (using Mosestrained on equivalently preordered data with its baseline set of feature fun
tions). The�rst example 4.4.1 
auses hi

oughs for both Rev and Cabo
ha, and the se
ondexample 4.4.2 is reordered 
orre
tly to the same word order with both preorderingmethods.
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4.4.1 Example: Thwarted by lo
k release pinsReferen
e: The lo
k release pin is set to a longitudinal length so that it does not abutagainst the front wall inner surfa
e of opening 26.Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.4) ロック 解除 ピン が 開口 26 の 前端 壁 内面 に 当 接Lo
k release pin Nom opening 26 Gen front end wall inner surfa
e to abut
し ない よう な 前後 方向 の 長 さ に 設定 さ れ て いる 。do not way of longitudinal dire
tion Gen long -ness to set Passive Present.�The lo
k is released until when the lo
k release pin opening 26 of the front wall abutagainst the inner surfa
e su
h that in a front-to-rear dire
tion.�The monotoni
 translation has no 
han
e to preserve the meaning of the originalsenten
e be
ause the word order is unsalvageable.Rev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.5) いる て れ さ 設定 に さ 長 の 方向 前後Present Passive set to -ness long Gen dire
tion longitudinal
な よう ない し 接 当 に 内面 壁 前端 のof way not do abut to inner surfa
e wall front end Gen26 開口 が ピン 解除 ロック 。26 opening Nom pin release lo
k .�Is set at a length of the longitudinal dire
tion so as not to abut against the innersurfa
e of the front end wall of the opening 26 and a pin is unlo
ked.�The subje
t of the senten
e, �release lo
k�, is reordered to the end of the senten
e, asis a forementioned systemati
 problem with the Rev method.Cabo
ha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.6) いる て れ さ 設定 に さ 長 の 方向 前後Present Passive set to -ness long Gen dire
tion longitudinal
が ピン 解除 ロック な よう ない し 接 当 に 内面Nom pin release lo
k of way not do abut to inner surfa
e
壁 前端 の 開口 26 。wall front end Gen opening 26 .�Is set to a length of the longitudinal dire
tion of the release pin lo
ked so as not toabut against the inner surfa
e of the front end wall of the opening 26.�Ex
ellent, ex
ept that �release lo
k� should appear at the beginning of the senten
e.The problem is that �release lo
k� needs to be both the subje
t of �abut� and theobje
t of the passive �set�, but appears only on
e in the Japanese senten
e. TheCabo
ha preorder algorithm, based on the dependen
y tree, 
hooses to put �releaselo
k� in the subje
t position of �abut� instead of �set�, whi
h would work better here.67



4.4.2 Example: Smooth 
lo
kingsReferen
e: Register 35 has a fun
tion of delaying the signal Not Taken for 1 
lo
k
y
le.Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.7) レジスタ 35 は 、 信号 NotTaken を 1 クロック 遅延 さ せる 機能 を 備える 。Register 35 TOP , signal Not Taken A

 1 
lo
k delay Causative fun
tion A

 provide .Register 35 
omprises a signal NotTaken a delay of one 
lo
k period .Rev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.8) は 35 レジスタ 、 備える を 機能 せる さ 遅延 クロック 1 を NotTakenTOP 35 register , provide A

 fun
tion Causative delay 
lo
k 1 A

 Not Taken
信号 。signal .�Register 35 has a fun
tion of delaying one 
lo
k predi
ts NotTaken signal.�The monotoni
 translation is good, with ex
eption that �predi
ts� has been strangelyinserted.Cabo
ha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(The preorder is identi
al to Rev.)(4.9) は 35 レジスタ 、 備える を 機能 せる さ 遅延 クロック 1 を NotTakenTOP 35 register , provide A

 fun
tion Causative delay 
lo
k 1 A

 Not Taken
信号 。signal .�Register 35 is provided with a fun
tion for delaying one 
lo
k predi
ts NotTakensignal.�Even though the preorder has 
orre
t word order, the monotoni
 translation is poorbe
ause �provide� is needlessly made passive.
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Chapter 5
Experiments
This 
hapter des
ribes the setup of our Japanese�English Moses system and theexperiments we performed with it to measure the e�e
tiveness of the new featurefun
tions presented in Chapter 3 and the reordering prepro
essors of Chapter 4.Overall, our best system 
ombined a tuned sele
tion of feature fun
tions with ourreverse prepro
essor to in
rease BLEU s
ore 27.96�28.74.5.1 Training dataPhrase-based translation systems require a large 
orpus of parallel text to build theirtranslation model, and the larger the 
orpus, the higher translation quality. Fortu-nately, Masao Utiyama has spearheaded 
reation of two very large parallel Japanese�English 
orpora in the patent and news domains. Our system is trained on 58.6million words (measured on the English side) of parallel text, 53.5 million of whi
hare patent data. The training 
orpus in
ludes:
• Japanese-English Patent Parallel Corpus [Utiyama et al., 2007℄ training setprovided for the NTCIR-7 Patent Translation Task [Fujii et al., 2007℄, 53.5million words of Japanese�English patent data.
• Japanese-English News Arti
le Alignment Data [Utiyama and Isahara, 2003℄,3.6 million words from the Yomiuri Shimbun and Daily Yomiuri newspapers.69



• Tanaka Corpus [Tanaka, 2001℄, 1.2 million words of senten
es 
olle
ted by Ya-suhito Tanaka's students.
• EDICT Japanese-English Di
tionary [Breen, 1995℄, 0.45 million words from ageneral-use di
tionary.We trained a 5-gram language model on only the English side of the Patent ParallelCorpus training set. We use the 915-senten
e development (dev) and 899-senten
etest (test) sets, both single-referen
e, supplied for the NTCIR-7 Patent TranslationTask [Utiyama et al., 2007℄. These 1814 senten
es were held out from the PatentParallel Corpus training set but 
ome from the same 
olle
tion of patents.5.2 Prepro
essingJapanese is written without spa
es, so we use the Me
ab [Kudo, 2007℄ morphologi
alanalyser to tokenize the Japanese data (add spa
es between words). We furthertokenize pun
tuation using the Moses s
ript tokenizer.perl. We normalize wide-
hara
ter numbers to their ASCII (the patent data 
ontain many wide-
hara
ternumbers) and dis
ard senten
es longer than 100 words. As is the re
ommended setupfor Moses systems, we lower
ase all English words during prepro
essing, and re
asewords as a postpro
essing step using a re
aser provided with Moses [WMT Baseline,2007℄.When prepro
essing development or test data for translation by Moses, the �nalstep is to annotate ea
h senten
e in our Dependen
yTree input format des
ribed inSe
tion 3.6.1 so that the de
oder 
an read it as input.1 The 
hunking, dependen
y1Moses already supports annotation of the input in two forms that we did not use in theseexperiments. The �rst is its �agship �fa
tored translation� 
apability, where one 
an translate notjust surfa
e form but also build phrases with part-of-spee
h, stemmed form, or other fa
tors. Inpreliminary experimentation, we found that using Me
ab part of spee
h as an fa
tor did not lead toa signi�
ant BLEU in
rease.The se
ond advan
ed Moses feature is �
onfusion net� de
oding, where one 
an pass multiple
andidates for ea
h sour
e word as input, 
ould be more useful. Dyer [2007℄ translates 
onfusionnets wherein ea
h word has its surfa
e form and various stemmed forms as 
andidates, and foundthat this improved quality when translating from morphologi
ally 
omplex languages. This te
hnique
ould improve translation of rarely-seen 
onjugations of Japanese verbs.70



parse, and part of spee
h tags are the result of the pro
ess des
ribed in Se
tion 4.3.Ea
h 
hunk's grammati
al 
ase is determined by looking up the last word in the 
hunkand its part of spee
h in Table 5.1. An explanation of ea
h 
ase will be given belowin Se
tion 5.6 Last word and POS Case Abbreviation
が 助詞-格助詞 Nominative `Nom'
は 助詞-格助詞 Topi
 `TOP'
を 助詞-格助詞 A

usative `A

'
の 助詞-連体化 Genitive `Gen'
へ 助詞-格助詞 Lative `Lat'
に 助詞-格助詞 Dative `Dat'Anything else `None'Table 5.1: Sele
t Japanese postpositions and the 
ase they mark.

5.3 Automati
 evaluation metri
sWe use BLEU s
ore on our test 
orpus to evaluate translation quality of ourbaseline and modi�ed Moses systems. Designed by Papineni et al. [2001℄, BLEU isubiquitously used to 
ompare ma
hine translation output a
ross systems and is theo�
ial evaluation metri
 for the NIST and NTCIR ma
hine translation evaluations.BLEU 
ompares ma
hine translation output to referen
e translations. The moresimilar they are, the higher the s
ore, whi
h ranges from 0 to 100. Similarity ismeasured by n-gram pre
ision; the more words, bigrams, trigrams, and 4-gramsfrom a translation that appear in the referen
e, the better. Be
ause n-gram pre
isiondoes not dire
tly model long-distan
e word order, it is un
lear whether or not BLEU
an a

ount for di�eren
es in word order between translations [Callison-Bur
h et al.,2006℄.Lavie and Agarwal [2007℄ introdu
ed another automati
 evaluation metri
 
alledMETEOR, whi
h, unlike BLEU, expli
itly a

ounts for the alignment between mat
h-ing words of the referen
e and the translation. One 
omponent of METEOR is thefragmentation s
ore, whi
h is a measure of how dissimilar the order of the words71



that mat
h in both the translation and the referen
e are. The lower the METEORfragmentation s
ore, the better the word order.We in
lude plots of both BLEU and METEOR fragmentation s
ores when dis-
ussing our results. We defer an in-depth dis
ussion of BLEU and METEOR toSe
tion 5.13, where we analyze whether these metri
s are 
apable of 
apturing di�er-en
es in word order between our system.5.4 Experiments with de
oder parametersThe most important Moses de
oder parameter is maximum distortion limit, whi
h wedenoted MaxDistortion and des
ribed in Se
tion 3.5.1. The larger the MaxDistortion,the higher the freedom for phrases to move around during transltion. Table 5.2 showsBLEU s
ore de
oding with a range of MaxDistortion settings, di�erent preorders,and the baseline Moses feature fun
tions listed in Se
tion 3.4 with weights tunedfor MaxDistortion = 6.2 (Setting MaxDistortion = −1 
orresponds to unlimitedreordering.)Table 5.2 veri�es that when the language pair has very di�erent word order,long-distan
e reordering is 
ru
ial for high translation quality. When translatingpreorder Rev, whi
h has a roughly English word order, quality peaks at about
MaxDistortion = 9, and drops o� for higher values. In 
ontrast, when translatingthe Baseline (no reordering) preorder, the higher the setting of MaxDistortion, thehigher the translation quality. We 
an interpret this result as follows: Translatingbetween Rev and English, most words need to move fewer than 6 pla
es, so allowingthem to move farther results in in
orre
t reordering; translating between Baselineand English, some words need to move farther than 9 pla
es, so disallowing su
h longmovement rules out many 
orre
t translations.Based on these results, in later experiments we set MaxDistortion = 9 unlessotherwise noted.Table 5.3 shows BLEU s
ore for a MaxDistortion = 9 Rev system de
oding with2This system used a non-patent re
aser, so s
ores are not dire
tly 
omparable with other systems.72



MaxDistortion Baseline Rev Cabo
ha Se
onds per senten
e30 20.86 20.32 21.61 2.26 23.76 25.44 24.79 5.09 25.24 25.49 25.12 7.8-1 26.07 25.08 24.58 37.2Table 5.2: How MaxDistortion a�e
ts BLEU s
ore and translation time for di�erentpreorders.various sta
k size settings, whi
h 
ontrols the beam width in the the de
oder's beamsear
h.4 A larger beam width means fewer sear
h errors are made. The Moses defaultis 100, and these results show that in
reasing it does not signi�
antly improve quality.Be
ause translation is mu
h slower with a large sta
k size, we use the default 100 inour experiments. Sta
k size BLEU Se
onds per senten
e100 28.46 4.5200 28.63 8.4400 28.51 16.1Table 5.3: How sta
k size a�e
ts BLEU s
ore and translation time.
5.5 Evaluating preorder e�
a
yTable 5.2 also illustrates the impa
t of preordering on translation quality. When noreordering is allowed during de
oding, Cabo
ha a
hieves the highest BLEU s
ore,validating our observation that its word order is 
losest to English. However, with alimited amount of reordering, Rev is the leader. This is a very surprizing result, butone that was 
onsistent a
ross test 
orpora or feature fun
tion 
hoi
e.Equally surprizing is that when unlimited reordering is allowed, the Baselinepreorder, whi
h is the original Japanese word order, performs best. This is sho
k-ing, and we 
an o�er no explanation. With unlimited reordering and employing the4This system was trained only on the patent 
orpus, so s
ores are not dire
tly 
omparable withother systems. It is notable that our systems trained on only on the patent data tended to outperformequivalent systems trained on our full training data (
onsisting of patent data, news data, anddi
tionaries) in experiments on our patent-domain test 
orus.73



default Moses feature fun
tions, only the language model 
an evaluate long-distan
ereorderings. Be
ause language model s
ores are in no way 
onditioned on the sour
esenten
e, the language model 
annote advise the de
oder on how to reorder words.Without the feature fun
tions we developed in Se
tion 3.6, the de
oder is �drivingblind� when positioning words far away from their original spot, but has maximumfreedom to assemble them a

ording to the language model into �uent English, whi
hleads to a high BLEU s
ore. Still, we would expe
t one of the preordered systemsto outperform the baseline. It may be the 
ase that the phrase table of the base-line system is unexpe
tedly of higher quality than that of the preordered systems, orthat the lo
al inversion in the preordered systems degrades BLEU s
ore with unlim-ited reordering. We 
ontinue to 
ompare Rev versus Baseline as the preorder forup
oming experiments.5.6 Long-distan
e reordering featuresNow we turn our attention to the experiments with the long-distan
e reorderingfeature fun
tions we in
orporated into Moses in Se
tion 3.6.1.First we 
onsider two general features instantiated fromParentBeforeChildTem-plate and ChildBeforeParentTemplate with parameter s set to `Any' for all�elds, so that it tra
ks the order of every pairwise dependen
y. We get feature Par-entBeforeChild, whi
h 
ounts how often a parent is translated before its 
hild, andfeature ChildBeforeParent, whi
h 
ounts how often a 
hild is translated for itsparent. Feature ParentBeforeChild should en
ourage more translations with par-ents ordered before their 
hildren when we set its weight, denoted λParentBeforeChild,to be positive. When given a negative weight, feature ChildBeforeParent shoulden
ourage similar behavior.To test our features, we trained `Baseline' and `Rev' preordered systems, tunedtheir weights using MaxDistortion = 6, and normalized all weights so their absolutevalues sum to 1. We use these systems as the baseline. For ea
h feature, we rede
odedthe dev and test 
orpora with its weight set to a range of values spa
ed every 0.0574



over the interval where the feature appeared useful. We report the weight that ledto maximum s
ore on the dev 
orpus, this maximum dev s
ore, and the test 
orpuss
ore using that weight. In Table 5.4, we show the results for ParentBeforeChildand ChildBeforeParent. Both give small improvements. Plots of test s
oresusing these general features are given in Figures 5-1 and 5-2.Feature Weight dev BLEU test BLEUParentBeforeChild 0.25 +0.13 +0.39ChildBeforeParent -0.30 +0.09 +0.08Table 5.4: Best s
ores for general pairwise features.

-0.1 0.0 0.1 0.2 0.3 0.4

ParentBeforeChild weight

27.7

27.8

27.9

28.0

28.1

28.2

28.3

28.4

28.5

B
L
E
U
 
s
c
o
r
e

-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

ParentBeforeChild weight

0.576

0.577

0.578

0.579

0.580

0.581

0.582

0.583

M
E
T
E
O
R
 
f
r
a
g
.
 
s
c
o
r
e

Figure 5-1: λParentBeforeChild against BLEU and METEOR fragmentation s
oreswith Baseline preorder.The di�eren
e between these two general pairwise dependen
y order features isthat ParentBeforeChild should upgrade the s
ore of translations with betterword order, and ChildBeforeParent should downgrade the s
ore of translationswith worse word order. Evaluating whi
h of these approa
hes will be more e�e
tive inthe de
oder is very di�
ult, so we experimented with both. Table 5.4 suggests that75
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Figure 5-2: λChildBeforeParent against BLEU and METEOR fragmentation s
oreswith Baseline preorder.ParentBeforeChild is more e�e
tive, and that promoting 
orre
t translations ismore useful than demoting in
orre
t ones.Next we will analyze more spe
i�
 features. While ParentBeforeChild andChildBeforeParent tra
k every dependen
y, we now de�ne features that tra
konly how dependen
ies between words with 
ertain parts of spee
h and 
ase areordered. We start o� with these three features that 
apture the biggest di�eren
es inJapanese and English word order:VerbBeforeA

 
ounts when verbs 
ome before their obje
t. (ParentBeforeChildTemplatewith s.parent_pos = `Verb', s.child_case = `A

')NounBeforeGenTemplate 
ounts when nouns 
ome before a genitive noun thatmodi�es them. (ParentBeforeChildwith s.parent_pos = `Noun', s.child_case =`Gen')NounBeforeVerbTemplate 
ounts when nouns 
ome before the verb of a rela-tive 
lause that modi�es them. (ParentBeforeChild with s.parent_pos =76



`Noun', s.child_pos = `Verb')The performan
e of these features are summarized in Table 5.5. All three fea-tures improved translation quality, and NounBeforeGen led the pa
k with a +0.38BLEU improvement. Plots of test s
ores using these spe
i�
 features are given inFigures 5-3�5-5. Feature Weight dev BLEU test BLEUVerbBeforeA

 0.30 +0.06 +0.05NounBeforeGen 0.25 +0.25 +0.38NounBeforeVerb 0.25 +0.05 +0.12Table 5.5: Best s
ores for spe
i�
 pairwise features.Now we will show examples of ea
h feature at work.5.6.1 Verb before a

usative argument featureFeature VerbBeforeA

 su

essfully ful�lled its goal of en
ouraging translationswith 
orre
t English Subje
t�Verb�Obje
t order. Although the BLEU s
ore in
reaseis a minis
ule, many translations improve to a better word order. See Figure 5-3 Inthe following example, �serve� moves to before its obje
t (in the Japanese senten
e)�guide for the moving holder 3�.Japanese ７はシル材であり、後述の加工ガス９のシルと移動

ホルダ３のガイドを兼ねたものである。Referen
e A sealant 7, whi
h serves as a seal for 
utting gas 9,also serves as a guide for the moving holder 3.
λVerbBeforeA

 = 0 7 is a seal material of the working gas 9 seal and themoving holder 3 also serves as a guide.

λVerbBeforeA

 = 0.40 7 is a seal member for sealing the ma
hining gas 9 andalso serves as a guide for moving holder 3.The Moses baseline system translates many senten
es into English senten
es withpassive main verbs, be
ause this is the most natural way to 
onstru
t a verb-�nalEnglish senten
e if the verb is not motivated to reorder to earlier in the senten
e.The VerbBeforeA

 feature 
orre
tly a
tivizes some of these passive senten
es:77
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Figure 5-3: λVerbBeforeA

 against BLEU and METEOR fragmentation s
ores withBaseline preorder.Japanese そして、ビットマップデータ生成部３９は、各色毎

の濃度に応じて、これら各色毎のビットマップデー

タを生成する。Referen
e Then, the bit map data generating se
tion 39 generatesbit map data for ea
h 
olor a

ording to ea
h 
olordensity.
λVerbBeforeA

 = 0 Then, the bit map data generator 39 a

ording to thedensity of ea
h 
olor, the bit map data of ea
h 
olor isgenerated.

λVerbBeforeA

 = 0.40 Then, the bit map data generator 39 a

ording to thedensity of ea
h 
olor, and generates bit map data forea
h of the 
olors.Naturally, even if the verb su

essfully moves before its obje
t, the translationmight not improve. Here, �generated� moves before its obje
t �braking torque�, butthe senten
e remains passive and in
omprehensible.78



Japanese そして、ロータ１６とステータ１５との間に充填し

た液体の運動エネルギーが熱エネルギーに変換され

て制動トルクを発生する。Referen
e And, the kineti
 energy of the liquid �lled between therotor 16 and stator 15 is 
onverted into thermal energyto thereby produ
e a brake torque.
λVerbBeforeA

 = 0 Then, the rotor 16 and between the stator 15 of theliquid to be �lled in the kineti
 energy is 
onverted tothermal energy braking torque is generated.

λVerbBeforeA

 = 0.40 Then, the rotor 16 and between the stator 15 of theliquid to be �lled in the kineti
 energy is 
onverted tothermal energy generated by the braking torque.Overall, we think VerbBeforeA

 improves translation quality more than thesmall BLEU s
ore improvement indi
ates. It 
auses translations to better preservethe meaning of the original senten
e, and has no observable systemati
 negative e�e
t.5.6.2 Noun before genitive modi�er featureFeature VerbBeforeA

 earned the largest BLEU in
rease of our features, asshown in the BLEU Figure 5-4. It aims to translate the Japanese pattern `A の B'into �B of A� by en
ouraging noun B to move before the genitive-
ase noun A.5 Ex-amples in
lude `アメリカの大統領' (literally, Ameri
a-Gen president) to �Presidentof the United States�, `田中のお父さん' (`Tanaka-Gen father') to �father of Tanaka�,and `世界の窓' (world-Gen window) to �window to the world�. However, just as of-ten, `Aの B' 
an be translated without swapping A and B; examples in
lude `私の論
文' (I-Gen thesis) to �my thesis�, `茶色の本' (brown-Gen book) to �brown book�, ortranslating the �rst two examples as �United States President� and �Tanaka's father�.Although NounBeforeGen a
hieved a signi�
ant BLEU s
ore in
rease, it is5`の' is not usually 
onsidered a 
ase marker, but instead a 
onjun
tive parti
le indi
ating adnom-inal relation [Suzuki and Toutanova, 2006℄. For our purposes, however, it is bene�
ial to think of `の'as marking the pre
eding noun phrase with genitive 
ase, whi
h means that it modi�es the followingnoun phrase. `の' is pronoun
ed like the Japanese dramati
 style noh, and fun
tions similarly toChinese 的 (`de' in pinyin). 79
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Figure 5-4: λNounBeforeGen against BLEU and METEOR fragmentation s
ores withBaseline preorder.
harder to �nd instan
es where it subje
tively improved translation quality 
omparedto experiments with VerbBeforeA

. Many senten
es are randomly a�e
ted andare often reordered into �sound bites� that in
rease BLEU s
ore without in
reasingtranslation quality.

Nevertheless there are some examples of 
lear improvements in noun phrase re-ordering. In the following example, `命令キュー１３の状態' (instru
tion queue13-Gen state) 
orre
tly be
omes �state of the instru
tion queue�, whereas before �in-stru
tion� was dropped. 80



Japanese 図１４は分岐命令が実行されたサイクルにおける命

令キュー１３の状態を示す。Referen
e FIG. 14 shows one example of the state of queue 13 inthe 
y
le in whi
h a bran
h instru
tion is exe
uted.
λNounBeforeGen = 0 FIG. 14 is a bran
h instru
tion is exe
uted in a 
y
leof the instru
tion queue 13.

λNounBeforeGen = 0.40 FIG. 14 is a bran
h instru
tion is exe
uted in a 
y
leshows the state of the instru
tion queue 13.Similarly, this example 
orre
tly forms �implantation of impurity ions�.Japanese この工程においては、ソース／ドレイン領域を形成

するための条件で不純物イオンの注入を行う。Referen
e In this step, impurity ions were implanted for formingthe sour
e and drain regions.
λNounBeforeGen = 0 In this pro
ess, sin
e the sour
e / drain region isformed under the 
onditions of the impurity ions areimplanted.

λNounBeforeGen = 0.40 In this pro
ess, sin
e the sour
e / drain region isformed under the 
onditions of implantation of im-purity ions.This next example is translated 
orre
tly with or without reordering the arguments�bu�er 
ounter� and �initial value� of `の'.Japanese バッファカウンタの初期値はＮに設定される。Referen
e The initial value of the bu�er 
ounter is set to N.
λNounBeforeGen = 0 The bu�er 
ounter is set to the initial value N.

λNounBeforeGen = 0.40 The initial value of the bu�er 
ounter is set to N.Finally, here is an example of a noisily a�e
ted translation. Here `の' is used as partof �xed grammati
al 
onstru
t (`Aの方が優れている', �A is better�), so reorderingits arguments is not desirable. With the NounBeforeGen-indu
ed reordering, themeaning of the se
ond 
lause is lost, but the word 
hoi
e is �ukily better (it in
ludes�better�, whi
h also appears in the referen
e), so mistranslating this example mightboost BLEU s
ore. 81



Japanese ここで、図１０と図１２とを比較すれば、図１０の

特性の方が優れている。Referen
e Comparing FIGS. 10 and 12 indi
ates that the 
har-a
teristi
s shown in FIG. 10 are better than those inFIG. 12.
λNounBeforeGen = 0 In this 
ase, the 
omparison between FIGS. 10 to 12,the 
hara
teristi
 is more ex
ellent in FIG. 10.

λNounBeforeGen = 0.40 In this 
ase, the 
omparison between FIGS. 10 to 12,it is better 
hara
teristi
s of FIG. 10.5.6.3 Noun before verbal modi�erIn Japanese, relative 
lauses pre
ede the noun they modify. For instan
e, `叫んでい
る男' (is yelling man) means �man who is yelling�. The NounBeforeVerb featuregives high marks to translations that reorder relative 
lauses to follow the nounsthat they modify. The impa
t on BLEU s
ore, shown in Figure 5-5, was small, butwe believe that the positive slope when 0 ≤ λVerbBeforeA

 ≤ 0.30 indi
ates that
λVerbBeforeA

 does have a signi�
ant positive e�e
t on translation quality.In the following improved example, NounBeforeVerb 
auses `参照光が伝播す
る光路長' (referen
e light-Nom propagate opti
al path length) to 
orre
tly reorderinto �opti
al path length of the light propagating on a referen
e�, whi
h is very 
loseto the referen
e translation �opti
al path length through whi
h the referen
e light ispropagated�. Japanese このことにより、参照光が伝播する光路長を変化

させることができる。Referen
e As a 
onsequen
e, the opti
al path length throughwhi
h the referen
e light is propagated may be varied.
λNounBeforeVerb = 0 As a result, the referen
e light is propagated throughthe opti
al path length 
an be 
hanged.

λNounBeforeVerb = 0.30 As a result, the opti
al path length of the light prop-agating on a referen
e 
an be 
hanged.82



-0.1 0.0 0.1 0.2 0.3 0.4

NounBeforeVerb child weight

27.94

27.96

27.98

28.00

28.02

28.04

28.06

28.08

28.10

28.12

B
L
E
U
 
s
c
o
r
e

-0.1 0.0 0.1 0.2 0.3 0.4

NounBeforeVerb child weight

0.579

0.579

0.579

0.580

0.580

0.580

0.580

0.580

0.581

M
E
T
E
O
R
 
f
r
a
g
.
 
s
c
o
r
e

Figure 5-5: λNounBeforeVerb against BLEU and METEOR fragmentation s
ores withBaseline preorder.Relative 
lauses are espe
ially pervasive in Japanese grammar. Here, �after� fol-lows relative 
lause �relief valve 140 operates�, whi
h NounBeforeVerb su

essfullyreorders to the beginning of the senten
e to form �After the relief valve 140 is oper-ated. . . � Japanese リリーフ弁１４０が作動した後の操舵力は、マニ

アル操舵特性に平行な直線となる。Referen
e Upon the operation of the pilot relief valve 140, thesteering for
e is de�ned by lines whi
h are in parallelindi
ating the manual steering 
hara
teristi
.6
λNounBeforeVerb = 0 The relief valve 140 is operated to the steering for
eafter the straight line in parallel with the manualsteering 
hara
teristi
.

λNounBeforeVerb = 0.30 After the relief valve 140 is operated to steering for
eis a straight line parallel to the manual steering 
har-a
teristi
.6The given referen
e translation is a stand-in to make this example easier to understand. The83



Naturally, there are plenty of senten
es that unexplainably 
hanged for the worse.Here is one, where the baseline's 
orre
t �number of bits� turns into �bit number�.Japanese 加算により得られるデータ、すなわちシリアルア

ドレスは、最終的に決定される総ビット数よりも

小さな値に選ばれなければならない。Referen
e Data obtained by addition, that is, the serial address,must be 
hosen to be a value smaller than the �nallydetermined total number of bits.
λNounBeforeVerb = 0 The data obtained by the addition, that is, the serialaddress is determined to be a value smaller than thetotal number of bits must be sele
ted.

λNounBeforeVerb = 0.30 The data obtained by the addition, that is, the serialaddress is determined to be a value smaller than thetotal bit number must be sele
ted.5.7 Feature performan
e with unlimited reorderingWe hypothesized that our long-distan
e reordering features might o�er more im-provement if the de
oder allowed unlimited reordering. To test this, we de
odedthe test 
orpus setting MaxDistortion = −1 with a range of values for featuresVerbBeforeA

, NounBeforeGen, and NounBeforeVerb. Table 5.6 showsthe maximum BLEU s
ore a
hievable with the perfe
t weight for the test 
orpus.The features are bene�
ial with either limited and unlimited reordering.Figures 5-6�5-8 plot the performan
e of these three features de
oding test withdi�erent weights and no distortion limit. NounBeforeGen gives markedly lesspossible bene�t over the baseline with MaxDistortion = −1 
ompared to with
MaxDistortion = 9 (whi
h was shown in Figure 5-4). NounBeforeVerb in 
on-trast o�ers a larger improvement with more reordering allowed.original referen
e in
luded many things not mentioned in the Japanese senten
e: �Upon the operationof the pilot relief valve 140, the steering for
e is de�ned by one of four thin lines whi
h are in parallelwith the thi
k line indi
ating the mus
ular-energy steering 
hara
teristi
.� The problem of 
reativereferen
e translations is an issue with any test 
orpus.84



Feature MaxDistortion = 9 MaxDistortion = −1VerbBeforeA

 +0.14 +0.15NounBeforeGen +0.48 +0.26NounBeforeVerb +0.16 +0.30Table 5.6: Maximum BLEU improvements on test 
orpus for limited and unlimitedreordering.

-0.1 0.0 0.1 0.2 0.3 0.4

VerbBeforeAcc weight

28.70

28.75

28.80

28.85

28.90

B
L
E
U
 
s
c
o
r
e

-0.1 0.0 0.1 0.2 0.3 0.4

VerbBeforeAcc weight

0.593

0.593

0.594

0.594

0.595

0.595

0.596

0.596

M
E
T
E
O
R
 
f
r
a
g
.
 
s
c
o
r
e

Figure 5-6: λVerbBeforeA

 against BLEU and METEOR fragmentation s
ores withBaseline preorder and unlimited reordering.
85



-0.1 0.0 0.1 0.2 0.3 0.4 0.5

NounBeforeGen weight

28.4

28.5

28.6

28.7

28.8

28.9

29.0

29.1

B
L
E
U
 
s
c
o
r
e

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

NounBeforeGen weight

0.588

0.590

0.592

0.594

0.596

M
E
T
E
O
R
 
f
r
a
g
.
 
s
c
o
r
e

Figure 5-7: λNounBeforeGen against BLEU and METEOR fragmentation s
ores withBaseline preorder and unlimited reordering.
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Figure 5-8: λNounBeforeVerb against BLEU and METEOR fragmentation s
ores withBaseline preorder and unlimited reordering.86



5.8 Feature performan
e on Rev preorderBe
ause our long-distan
e reordering features fo
us on target-side word order, wewould expe
t the same features to be useful regardless of preorder. On the 
ontrary,we found that our long-distan
e reordering features were largely useless when de-
oding preordered senten
es. Table 5.7 shows the performan
e a
ross features. We
an infer that when translating with the Rev preorder, the de
oder does not needour feature fun
tions to guide word order, be
ause long-distan
e is unne
essary totranslate preordered senten
es.Feature Weight dev BLEU test BLEUParentBeforeChild 0.05 +0.02 -0.13ChildBeforeParent -0.50 +0.09 +0.14VerbBeforeA

 0.15 +0.08 +0.07NounBeforeGen 0.15 +0.01 -0.04NounBeforeVerb 0.15 +0.04 -0.05Table 5.7: Best s
ores with Rev preorder.The mystery in Table 5.7 is why ChildBeforeParent is more useful than Par-entBeforeChild when de
oding preordered senten
es, while we saw the oppositepattern when de
oding Baseline preorder. This result may be attributable to noise.Figures 5-9 and 5-10 show BLEU s
ore when de
oding test 
orpus in Rev preorder.De
oding the Rev preorder with λChildBeforeParent = −0.50 (the weight thatgave the highest BLEU s
ore on the dev 
orpus) gave us our highest absolute testBLEU s
ore, 28.74, among experiments 
ondu
ted with MaxDistortion = 9. Thisrepresents a +0.78 in
rease over the 
omparable baseline, whi
h is the Baselinepreorder de
oded with MaxDistortion = 9 and only our Pun
t feature fun
tion.5.9 Combining featuresOur long-distan
e reordering features individually improved BLEU s
ore. If we em-ploy more than one at the same time, does the BLEU in
rease by the sum of thein
rease we saw for ea
h feature on its own?87
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Figure 5-9: λParentBeforeChild against BLEU and METEOR fragmentation s
oreswith Rev preorder.
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Figure 5-10: λChildBeforeParent against BLEU and METEOR fragmentation s
oreswith Rev preorder. 88



First we look at the simple example of using ChildBeforeParent and Par-entBeforeChild together. We found that dev BLEU s
ore using both features didnot improve over using just one of them, as eviden
ed by Table 5.8.
λParentBeforeChild0 0.25

λChildBeforeParent 0 26.99 27.12-0.30 27.08 27.09Table 5.8: BLEU s
ore on dev 
orpus when using ChildBeforeParent and Par-entBeforeChild simultaneously.To gauge performan
e of unisonal employment of VerbBeforeA

, NounBe-foreGen, and NounBeforeVerb, we found the weights of these features that gavehighest s
ores individually on the test test 
orpus. Then we de
oded the test 
orpususing all three features at the same time with those perfe
t weights.7 The results areshown in Table 5.9. We see a total +0.58 in
rease using all three features. The max-imum in
rease, if ea
h feature 
ontributed an in
rease equivalent to its standaloneimprovement, is +0.75. We 
an 
on
lude ton the hat the features provide additiveimprovements in translation quality, but the improvement is less than the sum of theparts.
λVerbBeforeA

 λNounBeforeGen λNounBeforeVerb test BLEU0 0 0 27.960.10 0 0 28.060 0.40 0 28.450 0 0.30 28.120.10 0.40 0.30 28.54Table 5.9: Performan
e of pairwise dependen
y features when 
ombined.

5.10 Chunk 
ohesionWe introdu
ed the ChunkCohesion feature in Se
tion 3.6.2 to en
ourage 
hunksto be translated 
ompletely before moving on to translate other 
hunks. Figures 5-7It would be proper experimental te
hnique to report results based on weights tuned on the dev,here our aim is only to 
ompare how e�e
tive features are alone versus 
ombined.89



11 and 5-12 show their e�e
t on BLEU and METEOR fragmentation s
ore whende
oding preorder Baseline and Rev using a range of λChunkCohesion.The ChunkCohesion feature improved translation on the Baseline preordersomewhat, but o�ered no improvement when translating the Rev preorder. Oneplausible explanation is that the 
ohesion helps 
hunks move as a unit over longdistan
es but is inutile for short movements.Feature Weight dev BLEU test BLEUChunkCohesion -0.35 +0.21 +0.20Table 5.10: Best s
ores for 
hunk 
ohesion feature.
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Figure 5-11: λChunkCohesion against BLEU and METEOR fragmentation s
ores withBaseline preorder.Unfortunately, when used with our other long-distan
e reordering features, ChunkCo-hesion does not in
rease translation quality. It o�ered maximum 0.02 BLEU s
ore in-
rease when used with feature weights λVerbBeforeA

 = 0.15, λNounBeforeGen = 0.45,and λNounBeforeVerb = 0.35. 90
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Figure 5-12: λChunkCohesion against BLEU and METEOR fragmentation s
ores withRev preorder.
5.11 Pun
tuation
The Pun
t feature, introdu
ed in Se
tion 3.6.3 to dis
ourage phrase movement overpun
tuation marks, did not prove espe
ially helpful for BLEU s
ore or subje
tivequality. With the Baseline preorder, MaxDistortion = 9, and weight λPun
t =

−0.45, this feature improved dev BLEU s
ore by 0.20 and test by 0.10.Subje
tively, there was little systemati
 improvement to translations around pun
-tuation. For the most part, we found that even without the Pun
t feature, phrasesdid not reorder over pun
tuation. Still, we found a few examples where this fea-ture helped 
lausal 
ohesion around pun
tuation. Setting λPun
t to a highly negativeweight ensured that �for example� stayed inside the parentheti
al in the followingexample. 91



Japanese 即ち、電気信号に変換され信号（例えば再生信号）として

取り出される。Referen
e Spe
i�
ally, the returned light L.sub.R is 
onverted into anele
tri
al signal (e.g., reprodu
ed signal) and then output.
λPun
t = 0.05 That is, the signal is 
onverted into an ele
tri
al signal (areprodu
ing signal), for example.

λPun
t = −10.0 In other words, the ele
tri
 signal is 
onverted to a signal (forexample, a reprodu
ed signal) is output.Most of the time, however, word 
hoi
e was randomly juggled in the vi
inity ofpun
tuation and not ne
essarily for the better. Here is one example where a morenegative weight (λPun
t) for Pun
t improved translation quality. The sequen
e �notlimited to GaAs� is su

essfully translated.
Japanese また、キャップ層６は、ＧａＡｓに限らず、オーミック接

触のとりやすい物質、例えばＩｎＧａＡｓ等を用いてもよ

い。Referen
e Not only GaAs but also a material whi
h makes the ohmi

onta
t readily attainable, that is, InGaAs or the like, forexample, may be used for the 
ap layer 6.
λPun
t = −0.05 Further, the GaAs 
ap layer 6 is not limited to the materialof the ohmi
 
onta
t to tend to, for example, InGaAs or thelike may be used.
λPun
t = −10.0 Further, the 
ap layer 6 are not limited to GaAs, ohmi
 
on-ta
t to tend to substan
e su
h as, for example, InGaAs or thelike may be used.Just as often, however, the translation jugglery is for the worse. A more stronglynegative λPun
t weight but
hers this translation.92



Japanese この２分割デテクタは、２つのフォトダイオードＰＡ、Ｐ

Ｂからなり、照射された反射レーザ光をそれぞれのフォト

ダイオードＰＡ、ＰＢにより検出する。Referen
e The two-segment dete
tor 23 is made up of two photodi-odes PA, PB for dete
ting the re�e
ted laser light illuminatedthereon.
λPun
t = −0.05 The two-division dete
tor in
ludes two photodiode Pa, PB,and the irradiation of the re�e
ted laser light are dete
ted bythe photodiode Pa and Pb.
λPun
t = −10.0 The two-division dete
tor in
ludes two photodiode Pa, PB,and the re�e
ted laser beam is irradiated onto the photo diodePa, PB, the dete
ted.5.12 Minimum error rate trainingMoses 
omes with a s
ript to perform Minimum Error Rate Training (MERT) to tunefeature weights to maximize BLEU s
ore on a development 
orpus [O
h and Ney, 2001;Koehn et al., 2007℄. However, preliminary experiments showed that running MERTtraining, adding a new feature, then rerunning MERT training often resulted in lowerdev s
ores. Some s
ore randomness is expe
ted be
ause the Moses MERT algorithmis not deterministi
, but we de
ided that for evaluating the e�e
t of new features ons
ores, it was best to tune parameters by hand. One reason for the poor results usingthe Moses MERT s
ript may be that it was designed and tested with the small numberof default Moses features, whi
h number 10 to 20 depending on 
on�guration. Lianget al. [2006℄ su

essfully developed a dis
riminatively trained system with millions offeatures. Using their parameter tuning method would be e�e
tive to tune weights forour features, and would open the door to adding features to model many more partof spee
h and 
ase dependen
y relations.The weights learned from using the Moses MERT s
ript, presented in Table 5.11,hint at the promise of the MERT te
hnique.8 Ea
h feature is automati
ally given a8The weights in Table 5.11 
annot be 
ompared with weights in other tables, be
ause they havebeen normalized alongside the baseline Moses weights.93



weight that pushes translations toward 
orre
t English word order; that is, the MERTtuning 
orre
tly identi�es whether to s
ale ea
h feature positively or negatively toimprove dev translations. Feature WeightPun
t -0.015772ChunkCohesion -0.004921ParentBeforeChild 0.017132ChildBeforeParent -0.219797VerbBeforeA

 0.126323NounBeforeGen 0.102700NounBeforeVerb 0.098392Table 5.11: Feature weights after minimum error rate training.The baseline Moses distortion penalty weight (whi
h penalizes non-monotoni
translations, see Se
tion 3.4.4) was also noteworthy at −0.000135. The negativevalue indi
ates that, when using our new feature fun
tions, the de
oder 
ould a
hievebetter translations by preferring non-monotoni
 translations. In 
ontrast, MERTset the distortion penalty weight to a value greater than 0.01 every time we tunedparameters on a system that did not in
lude our long-distan
e reordering features.5.13 BLEU versus METEOR for evaluating word or-der qualityWhen s
oring a hypothesis translation against a referen
e, BLEU fo
uses only on howmany n-grams in the hypothesis mat
h the referen
e, and otherwise ignores word order
ompletely. Be
ause BLEU typi
ally 
ounts up to 4-grams, it does not expli
itly fa
torlong-distan
e word order into the s
ore at all. Callison-Bur
h et al. [2006℄ note thatif b is the number of bigram mismat
hes (pairs of words that appear together in thehypothesis translation but not the referen
e), then there are (k− b)! possible ways, togenerate identi
ally s
ored translations using only the words in the hypothesis. Hen
etheoreti
ally BLEU seems unable to distinguish di�eren
es in word order betweentranslation systems. METEOR in 
ontrast expli
itly in
orporates a fragmentation94



s
ore, whi
h measures how dissimilar the word order is among words that appear inboth. The METEOR metri
 makes the assumption that the lower the fragmentations
ore, the better the word order.In the plots in this 
hapter, we 
ompare BLEU s
ore and METEOR fragmentations
ore on our experiments where we range the weight of one long-distan
e reorderingfun
tion while keeping all other system parameters the same. For a feature that
learly should have a positive e�e
t on English word order, like NounBeforeGen,we expe
ted the METEOR fragmentation s
ore to have a positive slope around zerountil a peak in translation quality. We expe
ted BLEU s
ore to in
rease, but not assystemati
ally.If anything, the plots show the opposite phenomenon: BLEU s
ore had a system-ati
 positive slope as the bene�
ial feature weight in
reased, while METEOR fragmen-tation s
ore tended to boun
e around. The plots for λVerbBeforeA

, λNounBeforeGen,and λNounBeforeVerb in Figures 5-3�5-5 are an interesting sample to look at. For
λVerbBeforeA

, BLEU s
ore is better than the baseline for all λVerbBeforeA

 ≤ 0.45,whi
h indi
ates that translation quality is in
reasing. Meanwhile METEOR fragmen-tation s
ore is higher than the baseline for all values of λVerbBeforeA

 ex
ept 0.15,whi
h indi
ates that translate quality is de
reasing, at least word order wise. Lookingsubje
tively at the translations, it more senten
es are improved word-order wise thanare harmed.For λNounBeforeVerb (Figure 5-5), another subje
tively bene�
ial feature, BLEUmonotoni
ally in
reases from weight 0 to 0.3, while METEOR s
ore is s
atteredand rea
hes its highest value (indi
ating worst quality) at weight 0.3. Either BLEUor METEOR fragmentation s
ore is making a mistake, and the eviden
e that ourfeatures do improve on word order leads us to 
on
lude that BLEU is 
apturingword order di�eren
es in translations better than METEOR fragmentation s
ore.This is not to say that METEOR is a bad metri
; this is merely eviden
e that itsfragmentation 
omponent is likely not a great indi
ator of word order quality. It isalso 
lear that BLEU is not a fantasti
 metri
 for evaluating 
hanges in system wordorder; we interpret the plots and our subje
tive judgments merely as eviden
e that95



BLEU is not totally useless for evaluating word order 
hoi
es in translation. This islikely be
ause translations with words in proper order simply generate more n-grammat
hes with the referen
e.
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Chapter 6
Con
lusion
This thesis developed two te
hniques to improve long-distan
e reordering de
isions inthe phrase-based translation model and demonstrated their utility in a state-of-the-art Japanese�English system. Chapter 3 introdu
ed our major 
ontribution, a set oflong-distan
e reordering feature fun
tions that use a dependen
y analysis of the sour
esenten
e to en
ourage translations that reorder phrases in a way that preserves theiroriginal meaning. Chapter 4 presented algorithms for reordering Japanese into an En-glish word order before translation, with the surprising result that a naive prepro
essorthat basi
ally �ips the Japanese to read ba
kwards outperforms a dependen
y-tree�attening method we developed. Experiments in Chapter 5 demonstrated signi�
antimprovement in BLEU s
ore and subje
tive quality in experiments with both methodsand further gains when we 
ombined them.
6.1 Future workCurrent statisti
al translation systems have a long way to go to a
hieve perfe
t wordorder for languages requiring long-distan
e reordering. Our pairwise dependen
y or-der features are only the beginning of what is possible when in
orporating dependen
yanalysis into phrase-based models. 97



6.1.1 Smarter reordering limitTranslation quality in
reses when we allow unlimited reordering of phrass, but trans-lation speed be
omes prohibitively slow. Current phrase-based systems o�er littlere
ourse if we wish to limit reordering but still 
onsider linguisti
ally-motivated long-distan
e reordering. The ubiquitous MaxDistortion limit is a vestige of systemsthat favor monotone translation and 
auses quality hemorrhage in language pairsthat require long-distan
e reordering.A dis
riminatively trained model for limiting reordering based on a dependen
ytree distan
e metri
 
ould help the de
oder to speedily try all of the important long-distan
e reorderings. For instan
e, after the de
oder 
ompletely translates the subje
tof a senten
e into English, the distortion limit should for
e the de
oder to next trans-late a phrase that is within a 
ertain distan
e from the verb that the subje
t modi�es.The 
hallenge is training a dis
riminative order model that is part of the de
oder'sinternal ma
hinery.
6.1.2 More e�e
tive featuresIt is 
riti
al to identify translation hypotheses with promising word order as earlyas possible to avoid the de
oder pruning them. For example, it is undesirable thatthe pairwise dependen
y order features of Se
tion 3.6.1 have value zero until boththe 
hild and parent have been translated. We should experiment with featuresthat have nonzero 
ontribution as soon as either the 
hild or the parent is trans-lated, be
ause at that point we 
an infer that the other member of the dependen
yrelationship will be translated after it, based on the assumption that the de
oderalways builds its translation left�to�right. This would allow earlier dete
tion, andless pruning, of 
orre
t word orders. To 
on
retize this idea, an improved version of
χParentBeforeChildTemplate(fJ

2 , q, s) is given in Equation 6.1. This version 
ontributesa nonzero value to a hypothesis as soon as the parent 
hunk is translated.98



χImprovedParentBeforeChildTemplate(fJ
1 , q, s)
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(6.1)If our dependen
y-based features were integrated into a dis
rminative trainingsystem with support for millions of features, we 
ould introdu
e features that are areparameterized on head and modi�er words themselves in addition to their parts ofspee
h. Features that measure how far modi�ers move away from their head or theorder of dependen
y tree siblings may also improve translation quality.6.1.3 Other language pairsBe
ause our long-distan
e reordering features make no assumptions about sour
eor target language word order, they should be easily appliable to any phrase-basedsystem. Experimenting on other language pairs is an extremely ex
iting prospe
t.In parti
ular, features promoting verbal head movement should be very useful forEnglish�Japanese translation to help verbs to reorder to the right of all of theirmodi�ers.6.2 ContributionsTo translate between Japanese and English, or any language pair with very di�erentword order, we need a translation system that 
an perform long-distan
e reorderingwhile preserving the meaning of the original input. Towards this goal, this thesis:
• Designed a 
lass of feature fun
tions for phrase-based translation that 
an iden-tify translations with 
orre
t long-distan
e reordering for any language pair.99



• Implemented these features in a state-of-the-art phrase-based de
oder to a
hievesigni�
ant improvements in Japanese�English BLEU s
ore and subje
tive trans-lation quality.
• Remedied to a signi�
ant extent the problem of leaving Japanese verbs senten
e-�nal and genitive 
onstru
tions inverted when translating into English, whi
hplagues most statisti
al phrase-based translation systems.
• Demonstrated a naive, trivially 
omputable sour
e-side preordering algorithmthat dramati
ally in
reases Japanese�English translation quality when de
od-ing with limited allowed reordering.
• Provided eviden
e that BLEU is useful for evaluating quality of translationsthat di�er mostly in word order.
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