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Dependeny Reordering Features for Japanese-EnglishPhrase-Based TranslationbyJason Edward Katz-BrownSubmitted to the Department of Eletrial Engineering and Computer Sieneon August 22, 2008, in partial ful�llment of therequirements for the degree ofMaster of Engineering in Computer Siene and EngineeringAbstratTranslating Japanese into English is very hallenging beause of the vast di�erene inword order between the two languages. For example, the main verb is always at thevery end of a Japanese sentene, whereas it omes near the beginning of an Englishsentene. In this thesis, we develop a Japanese-to-English translation system apableof performing the long-distane reordering neessary to �uently translate Japaneseinto English. Our system uses novel feature funtions, based on a dependeny parseof the input Japanese sentene, whih identify andidate translations that put de-pendeny relationships into orret English order. For example, one feature identi�estranslations that put verbs before their objets. The weights for these feature fun-tions are disriminatively trained, and so an be used for any language pair. In ourJapanese-to-English system, they improve the BLEU sore from 27.96 to 28.54, andwe show lear improvements in subjetive quality.We also experiment with a well-known tehnique of training the translation systemon a Japanese training orpus that has been reordered into an English-like word order.Impressive results an be ahieved by naively reordering eah Japanese sentene intoreverse order. Translating these reversed sentenes with the dependeny-parse-basedfeature funtions gives further improvement.Finally, we evaluate our translation systems with human judgment, BLEU sore,and METEOR sore. We ompare these metris on orpus and sentene level andexamine how well they apture improvements in translation word order.Thesis Supervisor: Mihael CollinsTitle: Assoiate Professor of Computer Siene
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Chapter 1
Introdution
Japanese sentenes have vastly di�erent anatomy ompared to English sentenes.For example, the main verb of a Japanese sentene always omes at the end of thesentene, whereas it omes near the beginning of an English sentene. It follows thatto translate a Japanese sentene into English, one must proli�ally and auratelyreorder the Japanese words to get a �uent English translation. In this thesis, we builta mahine translation system that an learn to do this reordering between Japaneseand English sentenes aurately, using a novel tehnique that an be applied totranslation between any language pair.Our tehnique is to translate a dependeny graph of the Japanese sentene witha phrase-based translation system. This dependeny graph tells us how the Japanesewords relate to eah other. Our translator uses this dependeny analysis to reorderthe Japanese words during translation and produe English translations that havekey dependeny relations in the orret order. For example, it is ritial that ativeEnglish verbs ome before their objet. The system automatially learns to performthe long-distane reordering of a sentene-�nal Japanese verb to before its objet.Many Japanese�English mahine translation systems, suh as Yahoo Babel Fish [Ya-hoo, 2008℄, rely on hand-built grammars and reordering rules, whih are ostly toassemble and update. Reent systems take a wholly statistial approah, requiringonly a large orpus of parallel text for training. However, these systems perform long-distane word reordering neither e�iently nor aurately. This thesis ontributes a15



powerful long-distane reordering model to today's best statistial mahine transla-tion systems. In Chapter 2, we review where our work �ts into the landsape ofprevious work on statistial reordering models.We introdue two methods of inorporating Japanese dependeny analysis into astate-of-the-art Japanese�English mahine translation system to improve translationquality. The �rst method is to reorder the Japanese training orpus into an English-like word order before training, as Wang et al. [Wang et al., 2007℄ showed to bee�etual for Chinese translation. The seond method is to add feature funtionsthat identify translations in whih ertain dependeny relations are translated in theorret order. Used together, these methods improved BLEU sore 27.96�28.74 onthe test orpus used in the NTCIR-7 Patent Translation Task [Fujii et al., 2007℄. Weexpliate these two methods in Chapters 3 and 4.Several automati metris like BLEU sore have been developed to automatiallyompare the quality of mahine translation systems, but their ability to apture dif-ferenes in word order is suspet [Callison-Burh et al., 2006℄. In Chapter 5, wepresent detailed analysis of the results of our orhestra of experiments. We omparethree measures of translation quality: human evaluation, BLEU sore [Papineni etal., 2001℄, and METEOR fragmentation sore [Lavie and Agarwal, 2007℄. We showthat despite its lak of an expliit reordering metri, in pratie BLEU sore is usefulfor evaluating systemati di�erenes in word order.In Chapter 6, we outline future work and reframe the ontributions of this thesis.Let us start by brie�y looking at the hallenges of translating Japanese intoEnglish and previewing for how this thesis will takle them. Setion 1.1 intro-dues Japanese grammar, and Setion 1.2 gives bakground on urrent approahes toJapanese�English mahine translation. Setion 1.3 looks at problems with existingsystems, and we �nish up with an overview of how this thesis improves the state ofthe art: Setion 1.4 introdues novel features that integrate dependeny analysis intoa phrase-based translation system and Setion 1.5 shows how reordering Japanesesentenes into English word order before translating an also improve translationquality. 16



1.1 Japanese grammatial hallengesThe word order of Japanese is very di�erent from that of English. Two features ofJapanese grammar aount for many of the di�erenes that make Japanese mahinetranslation hallenging. First, the verb omes at the end of the sentene, as in thisexample.(1.1) 先生が お茶を 飲みました 。Teaher-Nom tea-A drank .�The teaher drank tea.�The verb `飲みました', �to drink�, omes at the end of the sentene, and its subjetand objet preede it. In an English translation of this sentene, the word orderwould be Subjet�Verb�Objet; in Japanese, the most natural word order is Subjet�Objet�Verb.1 If we were to translate this sentene from Japanese to English withoutreordering the words, we might get �By the teaher tea was drunk�. Suh unnaturalpassivization is ommon in some statistial Japanese�English translation systems,and is a problem that our thesis aims to quash.The seond notable feature of Japanese grammar is that most words have ex-pliit ase markers. A word's ase represents the funtion it plays in the sentene:subjet, objet, nounal modi�er, et. Japanese puts one syllable after most wordsto expliitly mark the word's ase. In the above example, `が' (the subjet marker)marks `先生' (�teaher�) as the subjet of the sentene. Similarly `を' (the objetmarker) marks `お茶' (�tea�) as the objet of the sentene. These short ase markersare sometimes alled �partiles� or �postpositions� beause in Japanese they alwaysimmediately follow the word they attah to.Beause eah word has its role in the sentene demarked in its surfae form, thewords in this sentene an be srambled with the meaning and grammatiality ofthe sentene preserved, as long as the verb stays at the end.(1.2) お茶を 先生が 飲みました 。tea-A Teaher-Nom drank .1Approximately 75% of world's languages are Subjet�Objet�Verb [Crystal, 1997℄, so long-distane verbal reordering is a ritial issue not only for Japanese�English translation.17



�The teaher drank tea.�This srambling also presents a hallenge to existing translation systems and is ad-dressed in our work.The previous examples showed that in Japanese, the main verb always omes atthe end of the sentene. Many patterns in Japanese are similar; verb phrases havethe verb at the end, noun phrases have the noun at the end, and so on. To statethis phenomenon with more formal linguisti terminology, the head of a phrase isthe word in the phrase that determines its syntati type; for example, the head ofthe English noun phrase �the girl who was sitting and drinking tea� is the noun �girl�.Similarly, in Japanese:(1.3) 正座して お茶を 飲んでいた 女の子sitting and tea-A was drinking girl�the girl who was sitting and drinking tea�Notie that the nounal head �girl� is at the end of the lause, while in English it isat the beginning of the lause. In general, we an say that Japanese is head-�nalwhile English is more head-initial. Swapping head orientation is a di�ult aspet ofJapanese�English translation. We next take a look at how this is handled in urrenttranslation systems.1.2 State-of-the-art Japanese�English translation ap-proahesCurrent mahine translations systems fall into three ategories:Rule-based sytems rely on hand-built syntati parsers and many manually-editedtransfer rules. Rule-based Japanese�English systems have been around formore than 30 years and are of high quality. Example: Yahoo! Japan Translationat http://honyaku.yahoo.o.jp.Phrase-based systems are trained only on a large orpus of parallel text, fromwhih they learn a set of multi-word phrases and a language model, without18



using syntati knowledge [Koehn et al., 2003℄. A well-known example is GoogleTranslate at http://translate.google.om.Hybrid systems ombine a statistial (sometimes phrase-based) model with syn-tati knowledge. One suessful example is the dependeny treelet system ofQuirk et al. [2005℄.In a nutshell, the translation system developed in this thesis lassi�es as a hybridsystem. We started with the open-soure Moses statistial phrase-based transla-tor [Koehn et al., 2007℄, and modi�ed it to inorporate a syntati parse analysis toimprove reordering deisions.The largest available olletion of Japanese�English parallel text is Utiyama'sPatent Parallel Corpus [Utiyama et al., 2007℄, so in this thesis we fous on examplesfrom the domain of patent translation. Gloss 1.4 shows an example from our testorpus. Translations from the best available Japanese�English translation systemsare given in Table 1.2.(1.4) プリアンプ 3は 入力された 再生信号を 増幅して ＡＧＣアンプ4へ 出力する 。Preamp 3-TOP input-Passive reprodution signal-A amplify and AGC amp 4-to output .�The preamp 3 ampli�es an input reprodution signal, and sends out to an AGCampli�er 4.�Table 1.1: Comparison of translations of Gloss 1.4.MosesImproved MosesBaseline Google YahooThe preampli�er3 ampli�es the re-produed signal,whih is outputto the AGC am-pli�er 4.
The preampli�er 3,the input playbaksignal is ampli�edand output to theAGC ampli�er 4. 3 preamp input sig-nal is ampli�ed byplaying the AGCampli�er, the out-put 4. Pre-amp 3 ampli�esan input reprodu-tion signal and out-puts it to AGC am-pli�er 4.Translations from Yahoo and MosesImproved are very good, while o�eringsfrom MosesBaseline and Google are unnatural or inorret. In the next setion,we will disuss the shortomings of these systems.19



1.3 State-of-the-art foiblesIn Table 1.2, Yahoo is the translation from Yahoo Japan Translation, a rule-basedsystem under development sine 1987 [Cross Language, 2008℄.2 The other three sys-tems are phrase-based. Systems Google and MosesBaseline translate ontentwords and idioms aurately, but for the most part eshew syntati analysis. A lakof syntati sensibility leads to several systemati errors.Most notieably, word order is inorret. In both the Google and Moses-Baseline translations, the verb �ampli�ed� follows its objet �reprodution signal�.Phrase-based systems employ several soring funtions for ranking hypothesis trans-lations. One suh feature funtion penalizes eah reordered phrase. This featurefuntion is helpful for translating from, for example, Frenh→English, where wordorder is largely preserved, but is not useful for Japanese�English translation, andenourages verbs to stay at the end of their lause. The Google translation blithelyleaves �output� as the last word in the sentene.The omponent most responsible for reordering in phrase-based systems is the lan-guage model, whih gives a higher sore to translations omposed of n-grams thatappeared often in a large orpus of English training text. The language model helps toenourage phrases to reorder into a grammatial a translation, but the grammatialword order hosen by the language model often does not maintain the meaning of theoriginal Japanese sentene. For example, onsider the Moses baseline: �The pream-pli�er 3, the input playbak signal is ampli�ed. . . � The main verb is made passive,keeping the original verb-objet Japanese word order while remaining grammatial.In the proess, the subjet (what is performing the ampli�ation) is separated fromthe verb. The meaning of the sentene is lost.In ontrast, rule-based systems, like Yahoo's, perform well translating patent data,for two reasons. First, highly regular legalese an be parsed by handwrit grammars,whih are omposed of thousands of speial-ase rules that oasionally break down2Yahoo Japan Translation uses software from Cross Language, a ompany speializing inJapanese-Chinese-Korean translation servies. Its translation quality is muh better than Systran,another eponymous system translation servies ompany's produt, whih is what Yahoo Babel Fishuses for its bakend [Yahoo, 2008℄. 20



on more olloquial text. More olloquial text, in ontrast, omits many ase markersand understood pronouns so is muh harder to parse. Seond, literal translations areaeptable beause idiomati patterns are rare in patent text. Rule-based systemsmust have speial rules for any expression whih it translates idiomatially.In this thesis, we improve the phrase-based deoder Moses to perform syntatially-motivated reordering, and thus aim to ahieve the best of both worlds. The transla-tion from MosesImproved uses a syntati dependeny analysis to improve on theMoses baseline. This method is introdued nextly.1.4 Dependeny analysis in a phrase-based transla-torThe major ontribution of this thesis is a method to integrate syntati dependenyinformation into the Moses phrase-based translator. The idea is to translate a depen-deny tree, instead of a �at sentene. For example, the dependeny parse identi�esa sentene's main verb and objet. During translation, we an give higher sores totranslation hypotheses that put the main verb before its objet.Let's look at how this works for Gloss 1.4. Figure 1-1 shows its dependeny parse.Arrows indiate dependenies. For instane, the arrow between them indiates that
Figure 1-1: Preamp dependeny parse example.�amplify� depends on �reprodution signal-A�. Further observing that �reprodutionsignal-A� has ausative ase, and knowing that the target language English hasSubjet�Verb�Objet order, the translator an prefer to translate the verb �amplify�before it translates its objet �reprodution-signal�. We will odify this prefereneby introduing a feature funtion in Moses that ounts ourrenes of a verb beingtranslated before its objet. 21



In addition, we will introdue feature funtions for a range of grammatial on-struts: a feature that ounts when relative lauses are translated after the nounthey modify, one that ounts when genitive modi�ers are translated after the nounthey modify, and so on. We ould have a feature for every part-of-speeh and asepairwise ombination. Furthermore, we introdue a ohesion onstraint in the samevein as [Cherry, 2008℄We disriminatively train the weights of these features to identify the most usefulfeatures and maximize translation quality. This disriminative training step is impor-tant to tune the system for the grammatial features of the target language. Whilethe verb-before-its-objet feature funtion identi�es good English translations, if wewere translating into Japanese, we would give a negative weight to the verb-before-its-objet feature. This setup would orretly prefer to translate Japanese verbs aftertheir objets.1.5 Syntati reordering in the preproessorWe experimented with one more tehnique to reorder the Japanese training data intoan English-like word order before running Moses training (following [Wang et al.,2007℄). When translating an unseen Japanese sentene, we �rst preorder it intothis English-like word order, then translate preordered Japanese sentene with thespeially-trained Moses setup. With this approah, the burden of reordering phrasesis pushed to a syntati preproessing step, and the Moses translator itself an performa largely monotoni (no reordering) translation, at whih it exels.The hallenge is to build an algorithm that reorders a Japanese sentene into apseudo-Japanese sentene that has the same words but in English-like word order.In this thesis I desribe two suh algorithms. The �rst is fast and naive, and simplyreverses the order of all tokens after splitting the sentene at puntuation and `は',the topi marker. The seond algorithm uses three linguistially-motivated heuristisfor �attening a tree formed from a dependeny parse.For illustration, Gloss 1.5 shows the preamp sentene reordered with the naive22



reverse preproessor, whih will be desribed in detail in Setion 4.2.(1.5) は 3 プリアンプ する 出力 へ 4 アンプ ＧＣ Ａ て し 増幅 を 信号 再生 た れ さ 入力 。TOP -3 preamp output to 4 amp GCA and amplify A-repr. signal input-Passive .To omplete the example, we ould insert several funtion words into the English glossgiven above to omplete a �uent sentene: �The 3 preamp outputs to 4 amp ACG andampli�es the reprodution signal that has been input.� This shows that we ould translatethe preproessor-reordered Japanese sentene into English with a monotoni translation.In our experiments, we found an improvement in translation quality using the naivereverse preproessor. Surprisingly, we saw a smaller improvement using the linguistially-motived smarter preproessor, whih usually produed more aurately English-like pseudo-Japanese.We ahieved the best translation quality when ombining approahes: use the reversepreproessor and an assortment of dependeny-motivated feature funtions at optimal weights.Altogether, we ahieved a BLEU sore improvement of 27.96�28.74
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Chapter 2
Related Work
This hapter outlines reent work on statistial reordering models in mahine trans-lation. Methods span a wide gamut: preproessing tehniques, reranking tehniques,linguistially-informed reordering onstraints, loal distortion models, tree-to-tree andtree-to-string translators, and dependeny treelet systems.2.1 Reordering during preproessingCollins et al. [2005℄ introdued a very e�etive tehnique for building a phrase-basedsystem with long-distane reordering ability. Working on German�English, theywrote rules to transform a deep parse of the German sentene so that its words readin English word order. They parse the German training data, apply these rules totransform it into English word order in a preproessing step, then train a phrase-based system on the reordered data. Before translation, they perform the samereordering on the input sentene. This led to a signi�ant improvement in Englishoutput word order. Wang et al. [2007℄ followed up with analogous experiments forChinese�English.In Chapter 4, we apply the same tehnique to Japanese�English translation, withtwo twists. First, we introdue a trivially omputable reordering algorithm for puttingJapanese into English word order, in addition to a reordering algorithm that �attensa Japanese dependeny tree into English word order. Seond, our algorithms keep25



the dependeny information from the tree imbedded in the reordered sentenes sothat the dependeny analysis an be used by the deoder to make smart reorderingdeisions at deoding time.Kanthak et al. [2005℄ further developed the preordering tehnique. Their systemautomatially learns how to reorder soure sentenes into target language word orderfrom monotonization of training data word alignments. However the weakness of theirbaseline deoder, whih failed to translate 37% of their Japanese test orpus, makesit di�ult to tell how e�etive their automatially-trained soure-side reorderer is.Li et al. [2007℄ takes the idea of Kanthak et al. one step further. First theytrained a statistial soure-side reordering model, whih predits whether a node ofa tree should keep its hildren in order or invert them, by using word alignments anddeep parses of the soure sentenes of the training data. To translate a sentene,they generate the 10 best preorders with their reordering model, then translates allof the preorders with a phrase-based deoder (using a maximum distortion limit of 4)and out of the 10 pik the translation with highest ombined soure-side reorderingmodel sore and deoder sore. They worked with Chinese�English and ahieved animprovement over their no-preordering baseline of the same magnitude as Wang etal. [2007℄. The advantage of Li et al.'s work is that there is no need for handwrit treereordering rules.2.2 Reranking phrase-based system outputOh et al. [2004℄ tested a range of global syntati features on 1000-best outputof a phrase-based system. They found no signi�ant improvements from statistialfeatures, inluding target-side parse tree probability, tree-to-string model probabil-ity, tree-to-tree model probability, and word alignment sores from a Tree AdjoiningGrammar. One interesting �nding was that a state-of-the art statistial parser tendedto assign higher probability to ungrammatial mahine translation output than tohuman-translated referenes. This is one reason that we hose to inorporate only asoure-side dependeny analysis. 26



Nihols et al. [2007℄ developed a Japanese�English Moses system and a separaterule-based translator based on three man months of handrafted transfer rules. Theparser, also based on handwrit rules, an parse 65% of sentenes, and the transferrules sueed 33% of the time. When available, their system piks the rule-basedtranslation (about 13% of the time) and otherwise falls bak on the Moses translation.They found that the rule-based system makes poor word hoies, while the Mosessystem has trouble preserving the struture of the sentene.2.3 Reordering models for phrase-based systemsZens et al. [2004℄ implemented several reordering onstraints in a phrase-based Japanese�Englishdeoder.1 The �rst onstraint is the same as the maximum distortion limit in Moses(see Setion 3.5.1) and the seond is the �ITG onstraint�, where only reorderings thatould have been made by either straight or inverted ombo of ontiguous �bloks� areallowed. Eah blok is a ombination of phrase pairs ontinguous on both the soureand target side. These onstraints aid in ruling out ertain reorderings that are moreprobable to be bad, but do not aid in identifying reorderings that preserve meaningof the original sentene.Kanthak et al. [2005℄ subsequently built a deoder that takes as input a weighted�nite-state reordering automaton with onstraints based on the work of Zens etal. [2004℄. They added additional reordering onstraints under whih words at theend of a sentene are translated �rst, in a speial ase for Japanese. Otherwise trans-duer paths are weighted to prefer monotoni translation. It is hard to tell how welltheir reordering automaton works, beause they ompare it to a baseline that allowsno reordering.Tillmann [2004℄ introdued a loal, lexialized, phrase orientation model. Thismodel, now implemented in Moses and desribed in detail in Setion 3.4.5, preditswhether a phrase swaps position with the previous or next phrase based on phrase1The �deoder� is the program that searhes for the best translation of a sentene; we examineits anatomy in Setion 3.2. 27



alignment of the training data. In a later work, Tillmann and Zhang [2005℄ built amaximum-likelihood trained log-linear model to predit the same thing. Al-Onaizanand Papineni [2006℄ developed a similar model that assigns a probability distributionover possible relative jumps onditioned on soure words. In another alike tehnique,Kuhn et al. [2006℄ wrote a deoder that hooses the next phrase to translate based ona lexialized deision tree trained on phrase alignment of the training data. As partof their disriminatively trained system with millions of features, Liang et al. [2006℄added thousands of phrase-orientation features for eah part of speeh pair, but it isdi�ult to gauge their utility beause their deoder allowed very limited reordering.Xiong et al. [2006℄ developed a similar reordering model that estimates the proba-bility of two given �bloks� ombining in straight or inverted order, where a blok is apair of soure and target ontiguous sequenes of words. (A blok ould be one phrasepair, or a ombination of multiple ontiguous phrase pairs.) They employ the �rstand last word of eah blok as features, and use phrase alignments from the trainingdata as reordering examples in a maximum-entropy framework. Zhang et al. [2007℄improved on Xiong et al.'s model by inorporating part of speeh and dependenyfeatures onditioned on blok boundary words. It is unlear how well these blokreordering models an handle long-distane reordering with a series of independentdeisions based only on blok boundary features. After translating a Japanese sen-tene, the best-soring translation may never have ompared the position of the mainverb relative to its objet.Cherry [2008℄ inorporated dependeny information into Moses and added a fea-ture funtion that ounts how often a dependeny subtree's translation is interruptedby translating a di�erent part of the tree. Cherry found that sentenes translatedohesively tend to reeive higher BLEU sore and human judgment than unohesivetranslations. In Setion 3.6.2, we desribe a omparable ohesion feature that weinorporated in our experiments. 28



2.4 Hierarhial phrasesChiang [2007℄ introdued a model akin to a phrase-based system but with hierarhialphrases. Eah phrase an inlude nonterminals where other phrases an nest. Long-distane reordering patterns an be learned automatially with this mehanism. Forexample, the Chinese�English phrase pair ≪[1℄ 的 [2℄, the [2℄ of [1℄≫ swaps theposition of its two arguments, whih ould be arbitrarily long.2 The major ideais that the hierarhial phrase model is formally syntax-based in that it uses theSynhronous Context-Free Grammar formalism, but not linguistially syntax-based,beause it indues a grammar from a parallel text without relying on any linguistiassumptions or annotations (like the Penn Treebank). Beause to our knowledgeChiang's model has only been applied to Chinese�English translation, it is unknownhow well hierarhial phrases an do as the only motivators of long-distane reorderingin a language pair like Japanese�English that requies a lot of it.2.5 Tree-to-string translationSystems that deode by translating a parse tree bottom-up have reently ome intovogue. The deoder of Riezler and Maxwell III [2006℄ feeds dependeny parse snippetsinto a grammar generation omponent and sores with feature funtions similar toa phrase-based deoder, using dependeny snippet transfer rules instead of phrasepairs. Huang et al. [2006℄ o�er a similar setup using parse-tree-to-string transduers,and Liu et al. [2006℄ ontribute a system using tree-to-string alignment templates.In general, tree-based deoders must takle di�ult hallenges in e�ieny andhow to integrate varied information soures like a language model. This thesis avoidssuh issues by inorporating a soure-side dependeny analysis in an existing phrase-based deoder, whih translates in an e�ient left�to�right manner with an easilyextendable log-linear soring model. Still, by deoding in a �at string-to-string man-ner, we make at least theoretial onessions in preserving sentene meaning and2In a Japanese�English, we might see a very similar phrase pair ≪[1℄ の [2℄, the [1℄ that [2℄≫.We introdue a feature to handle this inversion in Setion 5.6.2.29



target-language grammatiality.2.6 Tree-to-tree translationDing and Palmer [2005℄ fous on dependeny-tree to dependeny-tree translationusing a synhronous dependeny insertion grammar indued from the training data,but do not build a head-reordering model for �attening the resulting dependeny tree,so they systematially generate translations suh as �foreign �nanial institutions thepresident of�. Correspondingly, their system ould not model the head-initial tohead-�nal inversion ruial for Japanese�English translation. Lin [2004℄ developeda similar tree-to-tree system based on assembling linear paths through a soure-sidedependeny tree, but like Ding and Palmer they inorporated no language model ordisriminative reordering model, whih led to disappointing BLEU sores.Cowan et al. [2006℄ stepped it up with a system based on Aligned Extended Pro-jetions, whih onsist of a pair of orresponding lausal tree strutures extratedfrom the training data using deep parsers for both soure and target languages. Thissystem exels at lausal translation, but does not yet model how to reorder lauses.Clausal reordering is not ritial for their language pair, German�English, but isimportant when translating Japanese sentenes, whih often have deeply nested de-pendenies ordered oppositely ompared to English.2.7 Dependeny treelet translationIn their �dependeny treelet� system, Quirk et al. [2005℄ parse the soure side ofthe training data, projet these dependeny trees onto the target side using wordalignments, then extrat dependeny treelet pairs. A treelet is de�ned to be anarbitrary onneted subgraph of the dependeny tree. The deoder overs the souredependeny tree with treelet pairs bottom-up and sores hypotheses with a log-linearmodel inorporating typial features, suh as language model and word alignmentprobabilities, and a novel order model. 30



Their order model assigns a probability to the word order of a target tree given asoure tree. This order model makes the assumption that the position of eah hildan be modeled independently in terms of its position relative to its head (parentin the dependeny graph). Their features model whether a modi�er is ordered tothe left or right of its head, and how far away, with features parameterized on wordand part of speeh of the head and modi�er. Quirk et al. [2005℄ train the ordermodel as a deision tree. Menezes et al. [2006℄ later upgraded it to a log-linear modelwith features hosen to maximize performane on a development set. Chang andToutanova [2007℄ introdued a global order model that ranks n-best dependeny treeoutput of the treelet system using loal features that apture head-relative movementand global features that apture the surfae movement of words in a sentene.In Setion 3.6.1, we introdue a similar set of features that model head-relativemovement using a soure-side dependeny parse. We additionally ondition our fea-tures on the ase of the modi�er and head, and simplify the model so it predits onlyif a modi�er should be on the left or right side of the head. We eshew lexializedfeatures in our model, but they ould easily be added by further parameterizing ourfeatures, whih we leave as future work.Menezes and Quirk [2007℄ improved on their initial treelet approah with the�dependeny order template� system that avoids the ombinatorial explosion of re-ordering treelets that they enountered in their 2005 e�ort, whih neessitated stritpruning of the searh spae. They introdue order templates, whih are unlexial-ized transdution rules mapping dependeny trees ontaining only parts of speehto unlexialized target language trees. These order templates are extrated fromsoure-side dependeny trees and word alignments of the training data.At translation time, order templates are ombined with relevant treelet transla-tion pairs to onstrut lexialized transdution rules. Menezes and Quirk ite twoadvantages of this approah: the deoder needs only to onsider reorderings that areaptured in some order template, and reordering knowledge an generalize to un-ommon words beause the order templates speify only part of speeh. Our featurefuntions play a role similar to order templates and share the positives: they aim the31



deoder's beam so that orret reorderings are not pruned, and they an pik up thefully-lexialized phrase table and language model beause our features ondition onlyon part of speeh and ase.Xiong et al. [2007℄ also inrementally improved the treelet system of Quirk etal. [2005℄ to support disontinuous output phrases and generalized treelets withimbedded variables, in a manner reminisient of Chiang's hierarhial phrases.
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Chapter 3
Syntati Feature Funtions forPhrasal Reordering
This hapter introdues the major ontribution of this thesis: syntati feature fun-tions for a state-of-the art phrase-based mahine Japanese�English translation sys-tem that signi�antly improve reordering deisions. These features sore Englishtranslation hypotheses using a dependeny parse of the soure Japanese sentene. Weadd many suh feature funtions, one per dependeny relationship we wish to model,and disriminatively train their weights. The most useful single feature inreasedBLEU sore 27.97�28.35. Combining the three most useful additional features, weahieved a 27.96�28.54 BLEU inrease.We give a whirlwind piture of the Moses phrase-based translation system andshow where these new feature funtions �t in the translation proess. Then we detailthe feature funtions themselves.3.1 Moses phrase-based translation systemPhrase-based systems represent the state of the art in mahine translation; phrase-based systems, like Google's, have dominated the NIST Mahine Translation Evalu-ation, held yearly sine 2001 [NIST, 2006℄.Moses is another high-quality phrase-based translation system [Koehn et al., 2007℄.33



Moses is free software and atively developed by many researhers around the world(most notably at the University of Edinburgh) and has been used as a baseline systemfor several major translation workshops [WMT Baseline, 2007; Fujii et al., 2007℄. Itinludes open-soure implementations of everything needed to build a translationsystem between any language pair. The most important of these omponents is thedeoder, whih performs the atual searh for the best Japanese translation of aninput English sentene.3.2 Framing the searh problemThe job of the deoder is to searh for the best English translation e (of length I) ofa given Japanese sentene f (of length J). The deoder hooses the English sentenewith highest probability:
ê = argmaxeI
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model that diretly models the posterior probability, and leads to the following dei-sion rule:
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) based on hidden phrasal alignments (overed in the next setion) and o-ourrene ounts of aligned phrases in the training data. We an furthermore add asmany feature funtions as we wish, if we think they may be aidant in distinguishinggood translations from bad. Before we introdue more feature funtions in Setion 3.4,we must develop the phrase-based translation model that Moses is built on.3.3 Phrase-based translationTo translate an input Japanese sentene, we will segment it into phrases, translateeah phrase into English, then reorder those phrases to produe the output Englishtranslation. In the ontext of this disussion, a phrase means simply a ontiguoussequene of words in either language; it is not used in any linguisti sense. The build-ing blok of phrase-based systems is the phrase pair, whih omprizes a Japanesephrase and its English translation. Training our translation model onsists of auto-matially learning a phrase table from the parallel training orpus. For more detailon this training proess, see [Koehn, 2007℄.To odify the notion of phrases into our translation model, we follow [Oh and35



Ney, 2004℄ and introdue a hidden phrasal deomposition by segmenting the Japanesesentene fJ
1 and English sentene eI

1 eah into a sequene of K phrases (k = 1, . . . , K):
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(3.5)
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1 , ẽk = eik−1+1, . . . , eik (3.6)We further introdue a hidden phrasal alignment πK
1 between the Japanese phrases

f̃K
1 and the English phrases ẽK

1 . This alignment is a permutation of the English phrasepositions 1, . . . , K, so that ẽk and f̃πk
are translations of eah other. We �nally de�ne

zk as the phrase pair (a pair of strings) that is used to translate the kth Japanesephrase:
ẽk
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(3.7)Hene, in the deoding proess, we simultaneously searh for 1) the optimal seg-mentation of the Japanese sentene into phrases; 2) the optimal English translationfor eah phrase; and 3) the optimal way to order these phrases into an English sen-tene. We use hidden variables zk

1 , a vetor of the phrase pairs used, and πK
1 , theirpermutation from Japanese to English order, to help us sore hypotheses. With thismodel, our feature funtions take the funtional form
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1 ). (3.8)3.4 Baseline feature funtionsOur baseline Moses setup uses the following feature funtions.3.4.1 Language modelIn our experiments, we used a 5-gram language model:
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The language model piks translations whih look like grammatial English, with-out regard to whether or not they are an adequate translation of the original Japanesesentene.Al-Onaizan and Papineni [2006℄ illustrated the inability of the language modelto disriminate orret reorderings by itself. They rearranged a orpus of Englishsentenes into Arabi word order, then tried to translate them into English with aphrase-based deoder and no distortion model exept an English language model.As they inreased the maximum reordering limit so that words ould freely reorder,English word order reovery rapidly deteriorated. While the language model is veryimportant in produing grammatial English, we must rely on omplementary re-ordering models to preserve the meaning of the original sentene.
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), whih are otherwise analogous to the above, and the�lexial weighting� of eah phrase, whih is desribed on p. 5 of [Koehn et al., 2003℄.These translation model features together pik translations whih have all of theright ontent words, but not neessarily in the right plae (target language phrasesmay be in the wrong order) or with agreeable dependenies (two phrase translationsmight make sense independently, but be laughable together beause of word senseambiguity). 37



3.4.3 Word and phrase penaltiesThese are simple features to ount how many words long the hypothesis is:
hWordPenalty(eI
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1 ) = I (3.11)And how many phrases long it is:
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1 ) = K (3.12)These features provide a straightforward method to tune output translation length.One reason this is important is that our Japanese preproessor splits sentenes intomany more tokens than there are English words in an optimal translation.3.4.4 Distortion penaltyThis feature is roughly a measure of how far phrases have been reordered omparedto a monotoni translation. This is omputed by the negative sum over the distane(in the soure language) of phrases that are onseutive in the target language:
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is de�ned to equal 0 and jπK+1−1 is de�ned to equal J .In a Japanese�English system, this feature is of little help to distinguish qualitytranslations. Beause of the vast di�erene in English and Japanese word order,non-monotoni translation is the norm rather than the exeption. For most of oursystems, this feature got a very low or negative weight (λDistortion) after parametertuning. With a negative weight, this feature enourages non-monotoni translations.If we onsider language pairs with similar word order like Frenh�English, forwhih the �rst phrase-based translation systems were developed, this distortion penaltyis extremely bene�ial. In the words of Oh and Ney [2004℄, it �simply takes into a-ount that very often a monotone alignment is a orret alignment.�38



3.4.5 Loal lexial reorderingFinally, Moses inludes a set of features that improve loal reordering deisions. Theymodel how often a phrase is translated monotonially relative to the phrase beforeit, how often a phrase swaps plae with the phrase before it, and how often a phraseis translated disontinuously relative to the phrase before it. Additionally, analogousfeatures are inluded for modeling how a phrase is ordered relative to the phrase afterit. Knowing whether a phrase prefers monotoni translation or to swap with a neigh-bor is very useful for a language like Spanish, where these loal lexial reorderingfeatures give a signi�ant gain in BLEU sore, as shown in Appendix C of [Koehn etal., 2007℄. For example, in Spanish, adjetives follow the noun they modify; �greensalsa� is, deliiously, `salsa verde' [Knight, 1999℄. In a Spanish�English translationsystem, Moses's loal lexial reordering features an give a higher sore to translationhypotheses that orretly swap adjetives to ome before the noun they modify.However, these features are not su�ient for Japanese�English translation. First,a loal reordering model o�ers little help to reorder verbs from the end of a Japanesesentene. Often the Japanese verb must leapfrog many phrases to get to its Englishproper spot between its subjet and objet. In this ase, the Moses loal reorderingfeatures an only tell the deoder to reorder the verb, not to where.Seond, the srambling property of Japanese means that ontiguous phrases donot neessarily have a relation to eah other. Therefore statistis ounting how aphrase is ordered relative to the previous and next phrase are not very meaningful.Furthermore, these ounts are learned from phrase alignments indued from the train-ing orpus. Based on our personal observations of our Japanese�English data, phrasealignments in the training data are very noisy and not reliable for learning reorderingpatterns.Still, these loal reordering feature funtions have some utility for Japanese�Englishtranslation. One merit is that they an handle the agglutinative morphology ofJapanese verbs. To in�et a Japanese verb (to make it negative, past tense, polite, orotherwise) one appends morphemes to the end of the verb. This is demonstrated by39



segmented output from our Japanese preproessor in Gloss 3.1. In this example, theverb �gaze� has an ending that makes it negative together with a politeness marker,and an ending that puts it into past tense together with another politeness marker.(3.1) 私 は 星 を 眺め ませ ん でし た 。I TOP stars A gaze at [polite℄ not [polite℄ [past tense℄ .�I did not gaze at the stars.�It is natural to translate this sentene with phrase pairs: ≪私 は, I≫ ≪星 を, thestars≫≪眺め, gaze at≫≪ませんでした, did not≫. The loal reordering featureshould identify that the in�etion �did not� should swap with the verb stem �gazeat�, and that this verb stem should in turn swap with its objet �stars�. These tworeorderings lead to the orret permutation of the English phrases.Notie that one word is often split over more than one phrase during translationbeause of abundant Japanese morphology. Here, the verb `眺めませんでした' (�didnot gaze at�) is translated as part of two distint phrases: `星を眺め' and `ませんで
した'.3.5 Beam searhIt is lear that Moses needs long-distane reordering features to e�etively translateJapanese to English, but we must be areful that our features are e�iently om-putable during the deoding proess. This setion introdues the deoding mahineryand the onstraints it imposes on the struture of our features.Moses, like most phrase-based deoders, performs the searh in Equation 3.4 withan iterative beam searh [Koehn et al., 2007℄. It is alled a beam searh beausethe deoder explores the spae of possible translations breadth-�rst, translating onephrase at a time, but quikly disards very low-soring translations. This leads to thepossibility of searh errors, where the highest-soring translation under our model isnot found. Pratially, these errors are not a prohibitive problem; still, it is useful iffeatures an identify promising translations as early on as possible to prevent themfrom being disarded. 40



The deoder keeps a stak of hypotheses. It expands eah hypothesis in the stakby translating one unovered Japanese phrase, appending this translation to the endof its work-in-progress English translation, and adding the new resulting hypothesisto the stak. The Japanese phrase that was translated beomes overed in thisnew hypothesis. In this way the deoder assembles English hypothesis translationsfrom left to right, translating one Japanese phrase at a time. The order in whih itpiks Japanese phrases to translate determines the word order of the English outputsentene.These are the ritial data that eah hypothesis ontains:
• phrase pair translated by this hypothesis
• bak link to the previous hypothesis that this one expands, whih allows us toreover the English translation
• bit vetor representing whih Japanese words have been translated
• vetor of feature funtion sores
• sore, omputed by taking the dot produt of the feature sores vetor with thefeature weight vetorLet us take a look at examples of translation hypotheses for the preamp exampleintrodued in Chapter 1, reprodued here with spaes between words.(3.2) プリアンプ 3 は 入力 さ れ た 再生 信号を 増幅 し て Ａ ＧＣ アンプ 4 へ 出力 する 。Preamp 3-TOP input-Passive repr. signal-A amplify and AGC amp 4-to output .�The preamp 3 ampli�es an input reprodution signal, and sends out to an AGCampli�er 4.�After translating several phrases of the preamp example, this is a promising hy-pothesis: 41



Preamp Hypothesis #149442Expands #84738Covers プリアンプ 3は . . . . . . . . . . . . . . . . . . ≪を増幅し≫ . . . . . . . . .. . . . . . . . . . . . . . . . . .Phrase pair ≪を 増幅 し, ampli�es the≫Features < Distortion = −12,WordPenalty = 5,LM =

−25.821, . . . >Sore −101.988 + future ost− 103.270 = −205.258(Ellipses represent unovered words in the overage vetor.)Hypothesis #149442 is expanded into many hypotheses, and among the best isHypothesis #318530: Preamp Hypothesis #318530Expands #149442Covers プリアンプ 3 は ≪入力 さ れ た 再生 信号≫ を 増幅 し . . . . . .. . . . . . . . . . . . . . . . . . . . .Phrase pair ≪入力 さ れ た 再生 信号, reprodued signal , whih is≫Features < Distortion = −21,WordPenalty = 10,LM =

−40.422, . . . >Sore −102.947 + future ost− 102.049 = −204.995To omplete this example, Table 3.1 lists a very small subset of the phrase tablethat ould next be used to expand Hypothesis #149442.3.5.1 Searh e�ienyBeause the searh spae of all possible English sentenes is so huge, the Moses de-oder takes a number of measures to keep the searh proess e�ient. The �rstis a hard limit on how far phrases an reorder. With a maximum distortion limit
MaxDistortion, the next phrase the deoder piks to translate must start within
MaxDistortion words from the leftmost unovered word. For many language pairs,this limit is important for high quality translations, and setting MaxDistortion > 6begins to hurt translation quality [Koehn et al., 2005℄. For Japanese�English we42



て with the
て through
て based on
ａ ｇｃ アンプ the ag ampli�er
ａ ｇｃ アンプ ag ( automati gain ontrol ) ampli�er
ａ ｇｃ アンプ inluding the ag ampli�er
へ into
へ on
へ to a
へ 出力 is output to the
へ 出力 output
へ 出力 to output
へ 出力 する outputs to the
へ 出力 する to output the
へ 出力 する and outputs the result to the
する with
する , the
する beTable 3.1: Phrase table exerpt.found that having no distortion limit gave highest translation quality. However, de-oding our test set with no distortion limit (de�ned as MaxDistortion = 0) takes onaverage 37 seonds per sentene, whih is 5 times longer than with MaxDistortion =

9. Thus there is an important tradeo� between quality and speed. (See Setion 5.4for distortion limit experiments.)Eah hypothesis is sored before it is added to the stak, and at eah step, thedeoder prunes the stak to keep only the highest-soring hypotheses. There is an-other quality-speed tradeo� in setting the maximum size of the hypothesis stak. Thedefault stak size is 100; inreasing this to 200 improves quality slightly (28.46�28.63BLEU) but also auses translation to take almost twie as long. One more optimiza-tion Moses implements is to reombine idential hypotheses (as measured by whihJapanese words have been translated and end of the English translation), and keeponly the higher-soring hypothesis. We now must formulize how to sore a hypothesiswhih may have a set of unovered Japanese words yet to be translated.We �rst deompose eah feature funtion into a sum of the ontributions from eahEnglish phrase used in the translation. This allows us to alulate a feature's value43



for a hypothesis by adding together 1) the ontribution of the last translated Englishphrase and 2) the previous value of the feature in the hypothesis this one was expandedfrom. As a simple example, onsider the word penalty feature, WordPenalty, ofEquation 3.11, whih equals the number of words in the sentene. Let's say that ahypothesis A is expanded into hypothesis B by adding English phrase C of length
C.length to the end. The value of B's WordPenalty feature is equal to the valueof A's WordPenalty feature plus the ontribution of C, whih is C.length.A hypothesis's sore is then the dot produt of the feature sores vetor with thefeature weight vetor. In addition, beause the pruning ompares translations thatmay have translated di�ering subsets of Japanese words, we also add a heuristi tothe sore that estimates the future ost of translating the unovered Japanese words.1Unfortunately, many useful feature funtions do not deompose niely into ontri-butions from eah used phrase pair, and we are unable to inorporate them into ourbeam searh. One approah to inorporate suh global features, used for example byOh et al. [2004℄, is to use them in an n-best reranking step. With this method, thee�ay of the features is limited by the quality of the translations in the n-best list; ifthe n-best list does not ontain translations with the needed long-distane reordering,there is no hope for the reranker to pik a good translation. As a result, Oh et al.ould not ahieve a signi�ant improvement in Chinese�English translation qualitywith their global syntati feature funtions reranking a 1000-best list. Hene we willfous our attention on designing only features that an be integrated diretly into abeam searh.Let us reap the onstraints that the deoder imposes on the spae of possiblefeature funtions:
• Must deompose into a sum of ontributions from eah phrase pair used trans-lation.
• Eah suh ontribution must be a funtion of only1See [Oh and Ney, 2004℄ for the derivation of suh a heuristi, and [Koehn, 2007℄ for an expla-nation of how it is implemented in Moses. 44



� The input Japanese sentene.� Whih Japanese phrase was last translated to expand this hypothesis, andthe English phrase used for their translation.� A bit vetor representing whih Japanese words have been translated.3.6 Long-distane reordering feature funtionsWith the previous disussion in mind, we aim to build long-distane reordering fea-tures with multipronged merits:1. Model reordering over an arbitrarily long distane2. Consistently perform head-�nal to head-initial reordering3. E�etive even in the wake of Japanese srambling4. Resistant to noisy word alignments in training data5. Appliable to any language pair6. Computable e�iently in a phrase-based deoderOur features will use a dependeny parse and ount the number of times a ertaindependeny pattern ours. One example is a feature that ounts how many timesin a sentene a verb is translated before its objet. If we give this feature highpositive weight, it will ause the deoder to prefer sentenes with verbs preeedingtheir objets, as is orret English. If instead we give this feature negative weight,the deoder will prefer sentenes with verbs oming after their objets, as would bepreferred for translating into other languages, like Korean, Hindi, or another Subjet�Objet�Verb language.Disriminative training an automatially assign optimal weights to optimize trans-lation quality on a development orpus [Oh and Ney, 2001℄. In this way, our transla-tion system does not need to know that English is a Subjet�Verb�Objet language,or any grammatial property of English; these properties are learned automatially45



during disriminative training. To emphasize the appliability of these features toany language pair, we use soure and target language to refer to the languages weare translating to and from.We also introdue two more types of features in addition to these pairwise depen-deny pattern ounters. One enourages ohesively translating all words of ertainlinguisti phrases before moving on to another phrase, and one disourages reorderingphrases aross puntuation marks.We now introdue notation that will allow us to formally de�ne these features. Weview eah hypothesis as a state transition, wherein one new phrase is translated. As ittranslates left�to�right one phrase at a time, the deoder assembles a sequene of statetransitions. When all soure phrases have been translated, the deoder's sequene ofstate transitions maps to (eI
1, f

J
1 , πK

1 , zK
1 ), whih feature funtions sore. In line withthe disussion in Setion 3.5.1, feature funtions that an be e�ieny implementedin the deoder must deompose into ontributions from eah state transition.We use the variable q to denote a hypothesis. We de�ne qk as the kth hypothesisin the deoder's state transition sequene underlying (eI

1, f
J
1 , πK

1 , zK
1 ). Then we ande�ne e�iently-omputable feature funtions in the form

h(eI
1, f

J
1 , πK

1 , zK
1 ) =

K
∑

k=1

χ(fJ
1 , qk). (3.14)

χ(fJ
1 , qk) is a real-valued deomposed feature funtion that alulates thefeature we wish to model of the state transition qk in the ontext of the originalJapanese sentene fJ

1 .Variable k of Equation 3.14 has no meaning in the ontext of the deoder's beamsearh, so we write our new features in terms of some general hypothesis q:
χ(fJ

1 , q) (3.15)46



We de�ne a hypothesis (or state transition, if you prefer) q to ontain these �elds:
q.source : soure language phrase
q.target : target language phrase
q.start : index of the �rst word of the phrase in the soure sentene
q.end : index of the last word of the phrase in the soure sentene

q.coverageJ
1 : q.coveragej = 1 if the jth soure word has been translated, 0 otherwise.(Range [q.start, q.end] is overed in q.coverage.)To give a simple onrete example of this notation, Equation 3.16 gives the de�nitionof the deomposed feature funtion for the WordPenalty feature (Setion 3.4.3),whih ounts how many words are in the target side of the phrase pair.

χWordPenalty(f
J
1 , q) = q.target.length (3.16)3.6.1 Pairwise dependeny orderThese features require the input sentene to have the following annotations:

• words grouped into hunks, where a hunk roughly orresponds to a shortlinguisti phrase.
• part of speeh of eah hunk
• grammatial ase of eah hunk
• dependeny of eah hunkChunks are loosely de�ned; they ould be any non-overlapping grouping of on-tiguous words. In the same way, when we translate Japanese, �words� are looselyde�ned. As we will see in examples, our Japanese preproessor (Setion 5.2) splitssentenes with high granularity into small tokens, often splitting at morpheme bound-aries. Still we use �word� to desribe eah token of Japanese input, even though many47



of them ould not be onsidered proper words. If we were to translate from English,it might work well to onsider eah English word as its own hunk.We de�ne a hunk x to ontain these �elds:
x.parent : hunk that this hunk modi�es or NULL

x.children : list of hunks that modify this hunk
x.pos : part of speeh
x.case : ase
x.start : index of the �rst word of the hunk in the soure sentene
x.end : index of the last word of the hunk in the soure sentene

Chunks are important beause they allow our features to onsider reorderinggroups of words together. To illustrate, Gloss 3.3 shows our previous stargazingexample (Gloss 3.1) divided into hunks.(3.3) 〈私 は〉 〈星 を〉 〈眺め ませ ん でし た〉 。

〈I TOP〉 〈stars A〉 〈gaze at [polite℄ not [polite℄ [past tense℄〉 .�I did not gaze at the stars.�All of the tokens that belong to the verb are grouped in one hunk. The topimarker and ausative ase marker (whih marks the objet) are also grouped togetherin hunks with their noun. Resulting hunks like 〈星を〉 (stars-A) are alled bunsetsu(文節) in Japanese grammar. A bunsetsu onsists of a ontent word and a�xedfuntion words like ase markers or verbal morphology [Suzuki and Toutanova, 2006℄.One peuliarity to note in Gloss 3.3 is that the period is not in any hunk. Ourfeatures graefully ignore any words that are not in hunks. Furthermore, the depen-deny struture an onsist of multiple subtrees that are not onneted. The onlyrestrition that we impose on the dependeny graph is that eah hunk have at mostone parent; that is, eah hunk modi�es at most one other hunk.48



We an now formulate our objetive in reordering Gloss 3.3 thusly: irregardlessof how the deoder segments the sentene into phrases, we would like as muh ofthe verbal hunk `眺めませんでした' to be translated before the ausative hunk`星を' as possible. To this end, we will de�ne a feature funtion VerbBeforeAthat ounts up what fration of the verbal hunk is translated before its ausativemodi�er.Example: De�ning the VerbBeforeA featureWe begin with two indiator funtions that identify hunks relevant to the VerbBe-foreA feature:
is_accusative(x) =











1, if x.pos = `Noun' and x.case = `A';
0, otherwise. (3.17)

is_verb(x) =











1, if x.pos = `Verb';
0, otherwise. (3.18)Then we de�ne two helper funtions that ompute what fration of some hunk wasalready translated before q (Equation 3.19), and what fration was translated by q(Equation 3.20).

frac_already_covered(x, q)

=
num. words in x overed in q.coverageJ

1 and not in range [q.start, q.end]num. words in x (3.19)
frac_translated(x, q) =

num. words in x in range [q.start, q.end]num. words in x
(3.20)Finally, we de�ne χVerbBeforeA(fJ

1 , q), the deomposed feature funtion forVerbBe-foreA. For every dependeny between a verb and its ausative objet in thesentene, Equation 3.21 ounts up the fration of the verbal hunk that has alreadybeen translated times the fration of the ausative hunk is translated by q.49



We letX = set of hunks that overlap [q.start, q.end] aording to dependeny parse of fJ
1 .

χVerbBeforeA(fJ
1 , q) =

∑

x∈X























is_accusative(x) · is_verb(x.parent)

· frac_already_covered(x.parent, q)

· frac_translated(x, q)























(3.21)
Next we look at a how to ompute χVerbBeforeA(fJ

1 , q) for an example hypoth-esis.Example: VerbBeforeA in ationConsider Figure 3-1, whih is the same as Figure 1-1 with part of speeh and aseannotations. Japanese hunks are separated by spaes.
Figure 3-1: Annotated preamp dependeny parse.Now for illustration we will ompute the value of VerbBeforeA for Hypoth-esis #318530 �rst shown in Setion 3.5 and repeated here with hunks marked.Preamp Hypothesis #318530Expands #149442Covers 〈プリアンプ〉 〈3 は〉 〈≪入力 さ れ た〉 〈再生 信号≫ を〉 〈増幅 し. . . 〉 〈. . . . . . . . . . . . . . . 〉 〈. . . . . . 〉 . . .Phrase pair ≪入力 さ れ た 再生 信号, reprodued signal , whih is≫Features < VerbBeforeA =?, . . . >Sore −102.947 + future ost− 102.049 = −204.995Notie that q.source overs two hunks on the Japanese side. Its �rst four words,`入力 さ れ た', ompletely over the seond hunk, and its last two words, `再生 信

号', over the �rst two words of the hunk 〈再生 信号 を〉.50



To ompute χVerbBeforeA(fJ
1 , q), we sum up the ontributions of eah of the twoovered hunks.

• Chunk 〈入力 さ れ た〉 has part of speeh `Verb' and no ase, whih does notmath the kind of hild we are looking for (a nounal hunk with ausativease), so makes zero ontribution.
• Chunk 〈再生 信号 を〉 mathes the kind of hild we are looking for, with partof speeh `Noun' and ase `A'. The phrase translated in q, ≪入力 さ れ た
再生 信号≫, overs 2/3 of 〈再生 信号 を〉 (�再生 信号� is overed while �を�is unovered), so frac_translated(〈再生 信号 を〉, q) = 2/3.Its parent in the dependeny tree, 〈増幅して〉, has part of speeh `Verb' whihmathes the kind of parent we're looking for. In the hypothesis, `増幅 し'has already been overed, whih is 2/3 of the whole hunk 〈増幅 し て〉, so
frac_already_covered(〈増幅 し て〉, q) = 2/3.Hene χVerbBeforeA(fJ

1 , q) = (2/3)(2/3) = 0.444.To ompute the value of VerbBeforeA for Hypothesis #318530, we add
0.444 to the value of VerbBeforeA of the bak-linked Hypothesis #149442,whih was 0. Therefore the feature vetor ontains VerbBeforeA = 0.444.The positive value indiates that this hypothesis ontains a verb oming before itsausative dependeny.General de�nitionWe would like to build a template for features like VerbBeforeA so that wean model the dependeny orders of other parts of speeh and ase ombinations. Ingeneral, we parameterize our pairwise dependeny order features on a parameter s51



with four �elds:
s.parent_pos : part of speeh of parent hunk, or `Any'
s.parent_case : ase of parent hunk, or `Any'

s.child_pos : part of speeh of hild hunk, or `Any'
s.child_case : ase of hild hunk, or `Any'

For a given s, we an de�ne two features. The �rst ounts how many times aparent hunk with part of speeh s.parent_pos and ase s.parent_case is translatedbefore its hild with part of speeh s.child_pos and ase s.child_case. The seondounts the opposite: how many times a relevant hild hunk is translated before itsparent hunk. These two formulations seem redundant, but we found both to beuseful when integrated in the deoder.We begin with two indiator funtions in the same vein as is_accusative and
is_verb (Equations 3.17 and 3.18) that identify hunks that math the parent orhild settings of parameter s.
matches_parent(x, s) =











1, if x.pos = s.parent_pos and x.case = s.parent_case;
0, otherwise. (3.22)

matches_child(x, s) =











1, if x.pos = s.child_pos and x.case = s.child_case;
0, otherwise. (3.23)We also reuse the de�nitions of frac_already_covered and frac_translated in Equa-tions 3.19 and 3.20.We design χParentBeforeChildTemplate(fJ

1 , q, s) in Equation 3.24 to return the sumof the fration of hunks translated before their hildren during the translation of52



phrase q.source. That is abstruse, but when the deoder sums the ontribution fromeah phrase, it gets the ount of hunks (or partial hunks) translated before theirhildren (or partial hildren).Again letX = set of hunks that overlap [q.start, q.end] aording to dependeny parse of fJ
1 .

χParentBeforeChildTemplate(fJ
1 , q, s)

=
∑

x∈X























matches_child(x, s) ·matches_parent(x.parent, s)

· frac_already_covered(x.parent, q)

· frac_translated(x, q)























(3.24)
To getVerbBeforeA, for example, we would instantiateParentBeforeChildTem-plate and set parameters s.parent_pos = `Verb', s.parent_case = `Any', s.child_pos =`Any', and s.child_case `A'.The seond feature ChildBeforeParentTemplate, given in Equation 3.25, issimilar to ParentBeforeChildTemplate but ounts the opposite ordering: howmany hunks are translated before their parents.

χChildBeforeParentTemplate(fJ
1 , q)

=
∑

x∈X























matches_parent(x, s) ·
∑

y∈x.children























matches_child(y, s)

· frac_already_covered(y, q)

· frac_translated(x, q)











































(3.25)ImplementationWe take several measures to implement these features e�iently in Moses. Let ussay we are translating a sentene with M hunks. First, before translation beginswe preompute a map that maps eah word position to its hunk index between
0 and M − 1. Seond, we maintain a vetor chunk_coverageJ

1 in eah hypothesiswhere and eah chunk_coveragem holds the number of words in the mth hunk53



that have been translated. These data strutures an be updated from the previoushypothesis in time linear in the length of the input sentene, and a�ord omputing
χParentBeforeChildTemplate(fJ

1 , q, s) and χChildBeforeParentTemplate(fJ
1 , q) also in timelinear in the length of the sentene.To integrate these features into Moses, we �rst need a way to mark up the in-put sentenes with dependeny information. We de�ned a set of tags that an beappended to any word to indiate whether it is a head, what hunk it belongs to,its dependenies, its part of speeh, and its ase. Then we de�ned a new inputtype for Moses alled DependenyTree, whih is a sublass of the default input typeSentene. Before translating, DependenyTree strips away the dependeny annota-tions and builds an internal representation of the hunks de�ned in the sentene andtheir dependeny struture. These internal representations an quikly be aessedto ompute our feature funtions.Below is the preamp example annotated with its dependenies in DependenyTreeinput format.

プリアンプ__head__(0,0)__pos__(n) 3__head__(1,2,0)__pos__(n)__ase__(top)
は 入力 さ__head__(3,6)__pos__(v) れ た 再生 信号__head__(7,9,4)__pos__(n)__ase__(a)
を 増幅 し__head__(10,12,8)__pos__(v) て Ａ ＧＣ アンプ4__head__(13,17)__pos__(n)__ase__(lat) へ 出力 する__head__(18,19,1,11,16)__pos__(v) 。Notation 信号__head__(7,9,4)__pos__(n)__ase__(a) indiates that `信号' ishead of a hunk that spans the (zero-indexed) 7th to 9th words (`再生信号を'), andis modi�ed by the hunk that is headed by the 4th word (`さ').3.6.2 Chunk ohesionThe motivation for this feature is that a hunk should be translated ompletely beforewords from other phrases are interspersed. This feature ChunkCohesion ountsup how many hunks have unovered words remaining when a di�erent hunk istranslated. With a negative weight (whih we denote λChunkCohesion), it enourageshunks to be translated ohesively without interruption from other hunks. This is54



similar to the ohesion feature developed by Cherry [2008℄, whih ounted how manytimes any subtree of the dependeny tree was interrupted. Cherry's ohesion featureis omplimentary to ours.De�nitionWe de�ne a partially overed hunk to be one with at least one unovered word. Welet previous_partially_covered be the number of partially overed hunks aordingto q.coverageJ
1 before q.source was translated and current_partially_covered be thenumber of partially overed hunks after q.source was translated.

χChunkCohesion(fJ
1 , q) = max(current_partially_covered

− previous_partially_covered, 0) (3.26)ImplementationSimilar to the pairwise dependeny features, the hunk ohesion feature is easilyomputed if we maintain a bit vetor in eah hypothesis that holds whether or noteah hunk has any unovered words.ExampleHere is an example that translates the next phrase in an inohesive way.Preamp Hypothesis #318478Expands #149442Covers 〈プリアンプ〉 〈3 は〉 〈≪入力 さ≫ . . . . . . 〉 〈. . . . . . を〉 〈増幅 し. . . 〉 〈. . . . . . . . . . . . . . . 〉 〈. . . . . . 〉 . . .Phrase pair ≪入力 さ, input to a≫Features < ChunkCohesion =?, . . . >Sore −103.086 + future ost− 102.990 = −206.077The bak-linked Hypothesis #149442 has two partially overed hunks: 〈. . . . . .
を〉 and 〈増幅 し . . . 〉. For an expanded hypothesis to inur no ohesion penalty,55



it would have to translate some of one of those two hunks. Hypothesis #318478,however, translates≪入力さ≫ next and thus adds a third partially unovered hunk
〈入力 さ . . . . . . 〉.Hene χChunkCohesion(fJ

1 , q) = 3 − 2 = 1, and the ChunkCohesion feature ofHypothesis #318478 has value 1 as this is the �rst ohesion violation seen in the pathleading to this hypothesis.3.6.3 Reordering aross puntuationIt is often inorret to translate a word aross a puntuation mark, like a omma orquotation mark. This feature Punt ounts up how many times a phrase is reorderedaross a puntuation mark. If its weight λPunt is negative, it disourages reorderingaross puntuation.De�nitionTo alulate this feature, �rst we let first_gap be the position of the leftmost un-overed word in q.coverageJ
1 before q.source was translated and next_punct be theleftmost puntuation after first_gap. Hene, in order to not ross puntuation, thenext translated phrase must either ome ompletely before next_punct, or inlude

next_punct and inlude all unovered words left of it. The �rst two regimes ofEquation 3.27 express the inverse of these ases.
χPunt(fJ

1 , q) =



























1, if next_punct < q.start;
1, if q.start ≤ next_punct ≤ q.end and q.start 6= first_gap;
0, otherwise. (3.27)ImplementationBefore beginning beam searh in the Moses deoder, we preompute a bit vetor pJ

1where pj is 1 if the jth word of the input sentene is a puntuation mark, and 056



otherwise. Then first_gap and next_punct an be omputed in time linear to thelength of the sentene.
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Chapter 4
Reordering before translating
We saw in Chapter 3 that one weakness of phrase-based translation systems is per-forming the long-distane reordering required when translating from Japanese to En-glish. One way to improve word order in translation output is to reorder Japanesesentenes into a more English-like word order in a preproessing step before translat-ing. Wang et al. [2007℄ reently presented good results performing similar preorderingfor Chinese�English translation, and others have sueeded with di�erent languagepairs [Li et al., 2007; Collins et al., 2005; Kanthak et al., 2005℄.We start out by motivating why pre-translation reordering, whih we all pre-ordering, is a good idea. Then we present two ways to reorder Japanese into anEnglish-like word order. In the �rst, we split the Japanese at puntuation and thetopi marker `は', then simply reverse the word order of every segment in between. Inthe seond, we use a Japanese dependeny parser and several linguistially motivatedrules to transform ertain Japanese grammatial strutures so their surfae form hasan English word order. Both preorders improved translation quality, as will be shownin Chapter 5.4.1 Motivation for preorderingIf we reorder the Japanese training sentenes (and unseen Japanese sentenes beforetranslation) into a more English-like word order, we expet a phrase-based system59



trained on this new parallel training data to outperform a baseline system trained onthe original Japanese sentenes. This is beause the features used in phrase-basedsystems (desribed in Setion 3.4) are most e�etive when not muh reordering isrequired during translation. The preordering step alleviates the need for long-distanereordering during the translation proess.For instane, we noted previously that our Japanese�English word alignmentstend to be poor in our baseline Moses system. One plausible advantage of reorderingJapanese sentenes into a more English-like word order before training the systemmight be improved word alignment quality. This is beause Japanese and Englishphrases that are translations of eah other will be in similar positions, and the wordalignment algorithm an safely prefer alignments between words whose position issimilar. We expet better word alignment to result in a more aurate phrase tableand better word hoie in translations.We implement the following preordering methods in a way that maintains depen-deny relationships during the reordering. Hene we an output a pseudo-Japanesepreorder with dependeny annotations that are onsistent with the dependenies ofthe original Japanese sentene.4.2 Reverse preorderingEnglish is head-initial. Japanese is head-�nal. So reversing the word order of aJapanese sentene ould be a good start towards an English-like order. We fatorout the ommonality that the topi of English and Japanese sentenes both ome atthe beginning by reversing words before and after the topi marker `は' separately.Puntuation is kept in the same plae.We begin by tokenizing the sentene with the Meab [Kudo, 2007℄ morphologialanalyser, then follow these steps:1. Split the Japanese sentene at puntuation into a list of �segments�.2. Further split eah segment at `は', the topi marker, to get a pre-topi segment60



(whih ends with `は') and post-topi segment. The motivation is that the topiomes at the beginning of both Japanese and English sentenes, and should notmove to the end.3. Reverse the order of the words in eah segment, so eah segment reads bak-wards.4. Conatenate the segments and puntuation bak together in their original orderin the sentene.We all this reordering theRev preorder. Let us follow these steps to reorder thepreamp example, reshown in Gloss 4.1 with words separated by spaes and segmentboundaries marked by ‖.(4.1) プリアンプ 3 は ‖ 入力 さ れ た 再生 信号 を 増幅 し てPreamp 3-TOP ‖ input-Passive repr. signal-A amplify and
Ａ ＧＣ アンプ 4 へ 出力 する ‖ 。AGC amp 4-to output ‖ .�The preamp 3 ampli�es an input reprodution signal, and sends out to an AGCampli�er 4.�The topi segment is `プリアンプ 3は', whih is reversed into `は 3プリアンプ'. Themiddle segment is also reversed, and these two segments are onatenated togetherwith the �nal period to get Gloss 4.2, the �nal Rev preorder.(4.2) は 3 プリアンプ する 出力 へ 4 アンプ ＧＣ Ａ て し 増幅 を 信号 再生 た れ さ 入力 。TOP -3 preamp output to 4 amp GCA and amplify A-repr. signal Passive-input .As noted in Chapter 1.5, this Rev preordering ould be suessfully translated intoEnglish monotonially by adding only a few auxiliary words: �The 3 preamp outputsto 4 amp ACG and ampli�es the reprodution signal that has been input.�We an analyze this reverse ordering as performing both loal and long-distanemovement. Long-distane movement an be seen in the verb `出力 する' (output)moving from the end of the sentene to the beginning of the sentene. This long-distane reversal is e�etive in transforming head-�nal verb and noun phrases to be61



head-initial as they are in English. Loal movement an be seen in the verb `出力 さ
れ た' (whose tokens are literally, output do [passive℄ [past tense℄) reordering to `た
れ さ 入力' ([past tense℄ [passive℄ do output). This loal reordering is e�etive forverbs beause most English auxiliaries preede the verb they assist, while Japaneseauxiliaries and in�etions follow the verb their verb.This naive Rev does have two signi�ant problems. First, subjets marked by`が', the Japanese subjet marker, are reordered to follow their verb. An exampleof this problem is shown later in Setion 4.4.1. We ould have hosen to also splitsegments at `が', but this would break the word order if the sentene ontained arelative lause with `が' in it. The seond problem is that ompound nouns arereversed, and English and Japanese ompounds already have the same struture. Inreversed Gloss 4.2, `再生 信号' (reprodution signal) has been reordered into `信号
再生' (signal reprodution), whih is learly a worse order than the original.4.3 Dependeny tree preorderingIn this setion we present a more sophistiated way to reorder Japanese into English by�attening a dependeny tree parse of the Japanese. We start by running the sentenethrough Meab, whih tokenizes and tags eah word with part of speeh. We splitthe sentene into segments at puntuation marks1, apply our reordering tehniqueto eah segment separately, and in the end onatenate the reordered segments andpuntuation (in the same order they appeared in the original sentene) together. Weall this reordering the Caboha preorder.To reorder a segment, we �rst parse it with the Caboha Japanese DependenyStruture Analyzer [Kudo and Matsumoto, 2002℄. The output of Caboha is a list ofhunks. These hunks orrespond to the notion of hunk we de�ned in Setion 3.6.1:a ontent word (usually the head) and a�xed funtion words like ase markers orverbal morphology. Eah hunk ontains the following information:1We onsider as puntuation marks: 、，,。.？?！：:；;＜＞<>（）『』【】〈〉《》「」
｛｝〜［］{}() 62



• ID number
• Start and end position in sentene
• Chunk that this hunk modi�es (in other words, parent hunk)
• Position of head
• Position of the last non-puntuational wordFrom this list of hunks, we an onstrut a dependeny tree with a node foreah hunk and an edge for eah dependeny. Beause of how Caboha onstrains itsdependeny model, all of a node's hildren preede it in the sentene. As a result, theroot node is always the �nal hunk of the sentene. Figure 4-1 shows the dependenytree onstruted from the preamp example (one the period at the end has beensplit away), with eah hunk's head underlined and its part of speeh listed. Thedependeny relations are analogous to those previously shown in Figure 3-1.
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Figure 4-1: Dependeny tree for preamp example.We reorder a Japanese segment in two steps:1. Flatten the dependeny tree aording to four rules.63



2. Reverse the word order within eah hunk.To �atten the tree we deide for eah node into whih position among its hildrento �atten. Algorithm 1 shows the reursive funtion flatten(chunk) that returns anordered list of hunks ontaining chunk and all of its desendants. The rux of thealgorithm is determining where chunk should be plaed among its hildren. All non-verbs are plaed before their hildren, whih indues a head-initial word order. Theplaement of verbs is determined by going down the following list:1. Immediately after rightmost topi or subjet, if it exists.2. Otherwise, immediately before leftmost objet, if it exists.3. Otherwise, immediately after rightmost verb, if it exists. This is to preventverbs from leapfrogging verbs that preeded them that share only a oordinativedependeny.4. Otherwise, before all hildren.We reorder a segment by alling flatten on the root node of its dependeny tree,and �nally reversing the word order within eah hunk. The resulting Cabohapreorder for our preamp example is shown in Gloss 4.3.(4.3) は 3 プリアンプ する 出力 て し 増幅 を 信号 再生 た れ さ 入力 へ 4 アンプ ＧＣ Ａ 。TOP -3 preamp output and amplify A-repr. signal Passive-input to 4 amp GCA .As with the Rev preorder, we an add auxiliaries to the gloss of the Caboha pre-order to form a orret translation: �The 3 preamp outputs the ampli�ed reprodutionsignals that has been input to 4 amp ACG.� The plaement of the main verb �output�is questionable; it should probably ome after �amplify�, with whih it oordinates,but our rules put it immediately after its subjet, �preamp 3�. One �x would be tonever plae verbs farther left than their leftmost hild verb. The verb �amplify� hasbeen plaed orretly before its objet �reprodution signal�. The head-�nal nounphrase `入力 さ れ た 再生 信号' (input-Passive reprodution signal) suessfullyreordered to be head-initial `信号 再生 た れ さ 入力' (signal reprodution Passiveinput). 64



Algorithm 1 Calulate flatten(chunk) to �atten a Japanese dependeny tree intoEnglish-like word orderEnsure: ordered_words is an ordered list ontaining chunk and all desendants.{First, hoose where to plae chunk into its hildren.}
pos⇐ part of speeh of head of chunk
ordered_children⇐ list of hildren of chunk, ordered as they were in original senteneif pos = `Verb' and a hild has a subjet marker `が' or topi marker `は' theninsert chunk into ordered_children after rightmost hild subjet or topielse if pos = `Verb' and a hild has an objet marker `を' theninsert chunk into ordered_children before leftmost hild objetelse if pos = `Verb' and a hild has head with part of speeh `Verb' theninsert chunk into ordered_children after rightmost hild verbelseinsert chunk into beginning of ordered_children.end if{Seond, reursively �atten eah hild.}
ordered_words⇐ [ ]for all child in ordered_children doif child = chunk thenappend child to ordered_wordselseappend flatten(child) to ordered_wordsend ifend for
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Thanks to its systemati head-�nal to head-initial inversion, we found that theCaboha preorder tended to losely math English word order. We demonstrate inSetion 5.5 that Caboha dominates Rev and Baseline (no reordering) preordersin translation quality when translating monotonially (that is, not allowing reorderingother than what has already been reordered in the preorder). We will now take alook at examples of Caboha and Rev preorders and what it looks like to translatethem monotonially.4.4 Preorder examplesOn the next two pages, we present a pair of example sentenes reordered intoRev andCaboha preorder. Eah example shows a gloss of Baseline, Rev, and Cabohapreorders. Under eah gloss is the monotoni translation of the preorder (using Mosestrained on equivalently preordered data with its baseline set of feature funtions). The�rst example 4.4.1 auses hioughs for both Rev and Caboha, and the seondexample 4.4.2 is reordered orretly to the same word order with both preorderingmethods.
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4.4.1 Example: Thwarted by lok release pinsReferene: The lok release pin is set to a longitudinal length so that it does not abutagainst the front wall inner surfae of opening 26.Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.4) ロック 解除 ピン が 開口 26 の 前端 壁 内面 に 当 接Lok release pin Nom opening 26 Gen front end wall inner surfae to abut
し ない よう な 前後 方向 の 長 さ に 設定 さ れ て いる 。do not way of longitudinal diretion Gen long -ness to set Passive Present.�The lok is released until when the lok release pin opening 26 of the front wall abutagainst the inner surfae suh that in a front-to-rear diretion.�The monotoni translation has no hane to preserve the meaning of the originalsentene beause the word order is unsalvageable.Rev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.5) いる て れ さ 設定 に さ 長 の 方向 前後Present Passive set to -ness long Gen diretion longitudinal
な よう ない し 接 当 に 内面 壁 前端 のof way not do abut to inner surfae wall front end Gen26 開口 が ピン 解除 ロック 。26 opening Nom pin release lok .�Is set at a length of the longitudinal diretion so as not to abut against the innersurfae of the front end wall of the opening 26 and a pin is unloked.�The subjet of the sentene, �release lok�, is reordered to the end of the sentene, asis a forementioned systemati problem with the Rev method.Caboha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.6) いる て れ さ 設定 に さ 長 の 方向 前後Present Passive set to -ness long Gen diretion longitudinal
が ピン 解除 ロック な よう ない し 接 当 に 内面Nom pin release lok of way not do abut to inner surfae
壁 前端 の 開口 26 。wall front end Gen opening 26 .�Is set to a length of the longitudinal diretion of the release pin loked so as not toabut against the inner surfae of the front end wall of the opening 26.�Exellent, exept that �release lok� should appear at the beginning of the sentene.The problem is that �release lok� needs to be both the subjet of �abut� and theobjet of the passive �set�, but appears only one in the Japanese sentene. TheCaboha preorder algorithm, based on the dependeny tree, hooses to put �releaselok� in the subjet position of �abut� instead of �set�, whih would work better here.67



4.4.2 Example: Smooth lokingsReferene: Register 35 has a funtion of delaying the signal Not Taken for 1 lokyle.Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.7) レジスタ 35 は 、 信号 NotTaken を 1 クロック 遅延 さ せる 機能 を 備える 。Register 35 TOP , signal Not Taken A 1 lok delay Causative funtion A provide .Register 35 omprises a signal NotTaken a delay of one lok period .Rev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4.8) は 35 レジスタ 、 備える を 機能 せる さ 遅延 クロック 1 を NotTakenTOP 35 register , provide A funtion Causative delay lok 1 A Not Taken
信号 。signal .�Register 35 has a funtion of delaying one lok predits NotTaken signal.�The monotoni translation is good, with exeption that �predits� has been strangelyinserted.Caboha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(The preorder is idential to Rev.)(4.9) は 35 レジスタ 、 備える を 機能 せる さ 遅延 クロック 1 を NotTakenTOP 35 register , provide A funtion Causative delay lok 1 A Not Taken
信号 。signal .�Register 35 is provided with a funtion for delaying one lok predits NotTakensignal.�Even though the preorder has orret word order, the monotoni translation is poorbeause �provide� is needlessly made passive.
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Chapter 5
Experiments
This hapter desribes the setup of our Japanese�English Moses system and theexperiments we performed with it to measure the e�etiveness of the new featurefuntions presented in Chapter 3 and the reordering preproessors of Chapter 4.Overall, our best system ombined a tuned seletion of feature funtions with ourreverse preproessor to inrease BLEU sore 27.96�28.74.5.1 Training dataPhrase-based translation systems require a large orpus of parallel text to build theirtranslation model, and the larger the orpus, the higher translation quality. Fortu-nately, Masao Utiyama has spearheaded reation of two very large parallel Japanese�English orpora in the patent and news domains. Our system is trained on 58.6million words (measured on the English side) of parallel text, 53.5 million of whihare patent data. The training orpus inludes:
• Japanese-English Patent Parallel Corpus [Utiyama et al., 2007℄ training setprovided for the NTCIR-7 Patent Translation Task [Fujii et al., 2007℄, 53.5million words of Japanese�English patent data.
• Japanese-English News Artile Alignment Data [Utiyama and Isahara, 2003℄,3.6 million words from the Yomiuri Shimbun and Daily Yomiuri newspapers.69



• Tanaka Corpus [Tanaka, 2001℄, 1.2 million words of sentenes olleted by Ya-suhito Tanaka's students.
• EDICT Japanese-English Ditionary [Breen, 1995℄, 0.45 million words from ageneral-use ditionary.We trained a 5-gram language model on only the English side of the Patent ParallelCorpus training set. We use the 915-sentene development (dev) and 899-sentenetest (test) sets, both single-referene, supplied for the NTCIR-7 Patent TranslationTask [Utiyama et al., 2007℄. These 1814 sentenes were held out from the PatentParallel Corpus training set but ome from the same olletion of patents.5.2 PreproessingJapanese is written without spaes, so we use the Meab [Kudo, 2007℄ morphologialanalyser to tokenize the Japanese data (add spaes between words). We furthertokenize puntuation using the Moses sript tokenizer.perl. We normalize wide-harater numbers to their ASCII (the patent data ontain many wide-haraternumbers) and disard sentenes longer than 100 words. As is the reommended setupfor Moses systems, we lowerase all English words during preproessing, and reasewords as a postproessing step using a reaser provided with Moses [WMT Baseline,2007℄.When preproessing development or test data for translation by Moses, the �nalstep is to annotate eah sentene in our DependenyTree input format desribed inSetion 3.6.1 so that the deoder an read it as input.1 The hunking, dependeny1Moses already supports annotation of the input in two forms that we did not use in theseexperiments. The �rst is its �agship �fatored translation� apability, where one an translate notjust surfae form but also build phrases with part-of-speeh, stemmed form, or other fators. Inpreliminary experimentation, we found that using Meab part of speeh as an fator did not lead toa signi�ant BLEU inrease.The seond advaned Moses feature is �onfusion net� deoding, where one an pass multipleandidates for eah soure word as input, ould be more useful. Dyer [2007℄ translates onfusionnets wherein eah word has its surfae form and various stemmed forms as andidates, and foundthat this improved quality when translating from morphologially omplex languages. This tehniqueould improve translation of rarely-seen onjugations of Japanese verbs.70



parse, and part of speeh tags are the result of the proess desribed in Setion 4.3.Eah hunk's grammatial ase is determined by looking up the last word in the hunkand its part of speeh in Table 5.1. An explanation of eah ase will be given belowin Setion 5.6 Last word and POS Case Abbreviation
が 助詞-格助詞 Nominative `Nom'
は 助詞-格助詞 Topi `TOP'
を 助詞-格助詞 Ausative `A'
の 助詞-連体化 Genitive `Gen'
へ 助詞-格助詞 Lative `Lat'
に 助詞-格助詞 Dative `Dat'Anything else `None'Table 5.1: Selet Japanese postpositions and the ase they mark.

5.3 Automati evaluation metrisWe use BLEU sore on our test orpus to evaluate translation quality of ourbaseline and modi�ed Moses systems. Designed by Papineni et al. [2001℄, BLEU isubiquitously used to ompare mahine translation output aross systems and is theo�ial evaluation metri for the NIST and NTCIR mahine translation evaluations.BLEU ompares mahine translation output to referene translations. The moresimilar they are, the higher the sore, whih ranges from 0 to 100. Similarity ismeasured by n-gram preision; the more words, bigrams, trigrams, and 4-gramsfrom a translation that appear in the referene, the better. Beause n-gram preisiondoes not diretly model long-distane word order, it is unlear whether or not BLEUan aount for di�erenes in word order between translations [Callison-Burh et al.,2006℄.Lavie and Agarwal [2007℄ introdued another automati evaluation metri alledMETEOR, whih, unlike BLEU, expliitly aounts for the alignment between math-ing words of the referene and the translation. One omponent of METEOR is thefragmentation sore, whih is a measure of how dissimilar the order of the words71



that math in both the translation and the referene are. The lower the METEORfragmentation sore, the better the word order.We inlude plots of both BLEU and METEOR fragmentation sores when dis-ussing our results. We defer an in-depth disussion of BLEU and METEOR toSetion 5.13, where we analyze whether these metris are apable of apturing di�er-enes in word order between our system.5.4 Experiments with deoder parametersThe most important Moses deoder parameter is maximum distortion limit, whih wedenoted MaxDistortion and desribed in Setion 3.5.1. The larger the MaxDistortion,the higher the freedom for phrases to move around during transltion. Table 5.2 showsBLEU sore deoding with a range of MaxDistortion settings, di�erent preorders,and the baseline Moses feature funtions listed in Setion 3.4 with weights tunedfor MaxDistortion = 6.2 (Setting MaxDistortion = −1 orresponds to unlimitedreordering.)Table 5.2 veri�es that when the language pair has very di�erent word order,long-distane reordering is ruial for high translation quality. When translatingpreorder Rev, whih has a roughly English word order, quality peaks at about
MaxDistortion = 9, and drops o� for higher values. In ontrast, when translatingthe Baseline (no reordering) preorder, the higher the setting of MaxDistortion, thehigher the translation quality. We an interpret this result as follows: Translatingbetween Rev and English, most words need to move fewer than 6 plaes, so allowingthem to move farther results in inorret reordering; translating between Baselineand English, some words need to move farther than 9 plaes, so disallowing suh longmovement rules out many orret translations.Based on these results, in later experiments we set MaxDistortion = 9 unlessotherwise noted.Table 5.3 shows BLEU sore for a MaxDistortion = 9 Rev system deoding with2This system used a non-patent reaser, so sores are not diretly omparable with other systems.72



MaxDistortion Baseline Rev Caboha Seonds per sentene30 20.86 20.32 21.61 2.26 23.76 25.44 24.79 5.09 25.24 25.49 25.12 7.8-1 26.07 25.08 24.58 37.2Table 5.2: How MaxDistortion a�ets BLEU sore and translation time for di�erentpreorders.various stak size settings, whih ontrols the beam width in the the deoder's beamsearh.4 A larger beam width means fewer searh errors are made. The Moses defaultis 100, and these results show that inreasing it does not signi�antly improve quality.Beause translation is muh slower with a large stak size, we use the default 100 inour experiments. Stak size BLEU Seonds per sentene100 28.46 4.5200 28.63 8.4400 28.51 16.1Table 5.3: How stak size a�ets BLEU sore and translation time.
5.5 Evaluating preorder e�ayTable 5.2 also illustrates the impat of preordering on translation quality. When noreordering is allowed during deoding, Caboha ahieves the highest BLEU sore,validating our observation that its word order is losest to English. However, with alimited amount of reordering, Rev is the leader. This is a very surprizing result, butone that was onsistent aross test orpora or feature funtion hoie.Equally surprizing is that when unlimited reordering is allowed, the Baselinepreorder, whih is the original Japanese word order, performs best. This is shok-ing, and we an o�er no explanation. With unlimited reordering and employing the4This system was trained only on the patent orpus, so sores are not diretly omparable withother systems. It is notable that our systems trained on only on the patent data tended to outperformequivalent systems trained on our full training data (onsisting of patent data, news data, andditionaries) in experiments on our patent-domain test orus.73



default Moses feature funtions, only the language model an evaluate long-distanereorderings. Beause language model sores are in no way onditioned on the souresentene, the language model annote advise the deoder on how to reorder words.Without the feature funtions we developed in Setion 3.6, the deoder is �drivingblind� when positioning words far away from their original spot, but has maximumfreedom to assemble them aording to the language model into �uent English, whihleads to a high BLEU sore. Still, we would expet one of the preordered systemsto outperform the baseline. It may be the ase that the phrase table of the base-line system is unexpetedly of higher quality than that of the preordered systems, orthat the loal inversion in the preordered systems degrades BLEU sore with unlim-ited reordering. We ontinue to ompare Rev versus Baseline as the preorder forupoming experiments.5.6 Long-distane reordering featuresNow we turn our attention to the experiments with the long-distane reorderingfeature funtions we inorporated into Moses in Setion 3.6.1.First we onsider two general features instantiated fromParentBeforeChildTem-plate and ChildBeforeParentTemplate with parameter s set to `Any' for all�elds, so that it traks the order of every pairwise dependeny. We get feature Par-entBeforeChild, whih ounts how often a parent is translated before its hild, andfeature ChildBeforeParent, whih ounts how often a hild is translated for itsparent. Feature ParentBeforeChild should enourage more translations with par-ents ordered before their hildren when we set its weight, denoted λParentBeforeChild,to be positive. When given a negative weight, feature ChildBeforeParent shouldenourage similar behavior.To test our features, we trained `Baseline' and `Rev' preordered systems, tunedtheir weights using MaxDistortion = 6, and normalized all weights so their absolutevalues sum to 1. We use these systems as the baseline. For eah feature, we redeodedthe dev and test orpora with its weight set to a range of values spaed every 0.0574



over the interval where the feature appeared useful. We report the weight that ledto maximum sore on the dev orpus, this maximum dev sore, and the test orpussore using that weight. In Table 5.4, we show the results for ParentBeforeChildand ChildBeforeParent. Both give small improvements. Plots of test soresusing these general features are given in Figures 5-1 and 5-2.Feature Weight dev BLEU test BLEUParentBeforeChild 0.25 +0.13 +0.39ChildBeforeParent -0.30 +0.09 +0.08Table 5.4: Best sores for general pairwise features.
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Figure 5-1: λParentBeforeChild against BLEU and METEOR fragmentation soreswith Baseline preorder.The di�erene between these two general pairwise dependeny order features isthat ParentBeforeChild should upgrade the sore of translations with betterword order, and ChildBeforeParent should downgrade the sore of translationswith worse word order. Evaluating whih of these approahes will be more e�etive inthe deoder is very di�ult, so we experimented with both. Table 5.4 suggests that75
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Figure 5-2: λChildBeforeParent against BLEU and METEOR fragmentation soreswith Baseline preorder.ParentBeforeChild is more e�etive, and that promoting orret translations ismore useful than demoting inorret ones.Next we will analyze more spei� features. While ParentBeforeChild andChildBeforeParent trak every dependeny, we now de�ne features that trakonly how dependenies between words with ertain parts of speeh and ase areordered. We start o� with these three features that apture the biggest di�erenes inJapanese and English word order:VerbBeforeA ounts when verbs ome before their objet. (ParentBeforeChildTemplatewith s.parent_pos = `Verb', s.child_case = `A')NounBeforeGenTemplate ounts when nouns ome before a genitive noun thatmodi�es them. (ParentBeforeChildwith s.parent_pos = `Noun', s.child_case =`Gen')NounBeforeVerbTemplate ounts when nouns ome before the verb of a rela-tive lause that modi�es them. (ParentBeforeChild with s.parent_pos =76



`Noun', s.child_pos = `Verb')The performane of these features are summarized in Table 5.5. All three fea-tures improved translation quality, and NounBeforeGen led the pak with a +0.38BLEU improvement. Plots of test sores using these spei� features are given inFigures 5-3�5-5. Feature Weight dev BLEU test BLEUVerbBeforeA 0.30 +0.06 +0.05NounBeforeGen 0.25 +0.25 +0.38NounBeforeVerb 0.25 +0.05 +0.12Table 5.5: Best sores for spei� pairwise features.Now we will show examples of eah feature at work.5.6.1 Verb before ausative argument featureFeature VerbBeforeA suessfully ful�lled its goal of enouraging translationswith orret English Subjet�Verb�Objet order. Although the BLEU sore inreaseis a minisule, many translations improve to a better word order. See Figure 5-3 Inthe following example, �serve� moves to before its objet (in the Japanese sentene)�guide for the moving holder 3�.Japanese ７はシル材であり、後述の加工ガス９のシルと移動

ホルダ３のガイドを兼ねたものである。Referene A sealant 7, whih serves as a seal for utting gas 9,also serves as a guide for the moving holder 3.
λVerbBeforeA = 0 7 is a seal material of the working gas 9 seal and themoving holder 3 also serves as a guide.

λVerbBeforeA = 0.40 7 is a seal member for sealing the mahining gas 9 andalso serves as a guide for moving holder 3.The Moses baseline system translates many sentenes into English sentenes withpassive main verbs, beause this is the most natural way to onstrut a verb-�nalEnglish sentene if the verb is not motivated to reorder to earlier in the sentene.The VerbBeforeA feature orretly ativizes some of these passive sentenes:77
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Figure 5-3: λVerbBeforeA against BLEU and METEOR fragmentation sores withBaseline preorder.Japanese そして、ビットマップデータ生成部３９は、各色毎

の濃度に応じて、これら各色毎のビットマップデー

タを生成する。Referene Then, the bit map data generating setion 39 generatesbit map data for eah olor aording to eah olordensity.
λVerbBeforeA = 0 Then, the bit map data generator 39 aording to thedensity of eah olor, the bit map data of eah olor isgenerated.

λVerbBeforeA = 0.40 Then, the bit map data generator 39 aording to thedensity of eah olor, and generates bit map data foreah of the olors.Naturally, even if the verb suessfully moves before its objet, the translationmight not improve. Here, �generated� moves before its objet �braking torque�, butthe sentene remains passive and inomprehensible.78



Japanese そして、ロータ１６とステータ１５との間に充填し

た液体の運動エネルギーが熱エネルギーに変換され

て制動トルクを発生する。Referene And, the kineti energy of the liquid �lled between therotor 16 and stator 15 is onverted into thermal energyto thereby produe a brake torque.
λVerbBeforeA = 0 Then, the rotor 16 and between the stator 15 of theliquid to be �lled in the kineti energy is onverted tothermal energy braking torque is generated.

λVerbBeforeA = 0.40 Then, the rotor 16 and between the stator 15 of theliquid to be �lled in the kineti energy is onverted tothermal energy generated by the braking torque.Overall, we think VerbBeforeA improves translation quality more than thesmall BLEU sore improvement indiates. It auses translations to better preservethe meaning of the original sentene, and has no observable systemati negative e�et.5.6.2 Noun before genitive modi�er featureFeature VerbBeforeA earned the largest BLEU inrease of our features, asshown in the BLEU Figure 5-4. It aims to translate the Japanese pattern `A の B'into �B of A� by enouraging noun B to move before the genitive-ase noun A.5 Ex-amples inlude `アメリカの大統領' (literally, Ameria-Gen president) to �Presidentof the United States�, `田中のお父さん' (`Tanaka-Gen father') to �father of Tanaka�,and `世界の窓' (world-Gen window) to �window to the world�. However, just as of-ten, `Aの B' an be translated without swapping A and B; examples inlude `私の論
文' (I-Gen thesis) to �my thesis�, `茶色の本' (brown-Gen book) to �brown book�, ortranslating the �rst two examples as �United States President� and �Tanaka's father�.Although NounBeforeGen ahieved a signi�ant BLEU sore inrease, it is5`の' is not usually onsidered a ase marker, but instead a onjuntive partile indiating adnom-inal relation [Suzuki and Toutanova, 2006℄. For our purposes, however, it is bene�ial to think of `の'as marking the preeding noun phrase with genitive ase, whih means that it modi�es the followingnoun phrase. `の' is pronouned like the Japanese dramati style noh, and funtions similarly toChinese 的 (`de' in pinyin). 79
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Figure 5-4: λNounBeforeGen against BLEU and METEOR fragmentation sores withBaseline preorder.
harder to �nd instanes where it subjetively improved translation quality omparedto experiments with VerbBeforeA. Many sentenes are randomly a�eted andare often reordered into �sound bites� that inrease BLEU sore without inreasingtranslation quality.

Nevertheless there are some examples of lear improvements in noun phrase re-ordering. In the following example, `命令キュー１３の状態' (instrution queue13-Gen state) orretly beomes �state of the instrution queue�, whereas before �in-strution� was dropped. 80



Japanese 図１４は分岐命令が実行されたサイクルにおける命

令キュー１３の状態を示す。Referene FIG. 14 shows one example of the state of queue 13 inthe yle in whih a branh instrution is exeuted.
λNounBeforeGen = 0 FIG. 14 is a branh instrution is exeuted in a yleof the instrution queue 13.

λNounBeforeGen = 0.40 FIG. 14 is a branh instrution is exeuted in a yleshows the state of the instrution queue 13.Similarly, this example orretly forms �implantation of impurity ions�.Japanese この工程においては、ソース／ドレイン領域を形成

するための条件で不純物イオンの注入を行う。Referene In this step, impurity ions were implanted for formingthe soure and drain regions.
λNounBeforeGen = 0 In this proess, sine the soure / drain region isformed under the onditions of the impurity ions areimplanted.

λNounBeforeGen = 0.40 In this proess, sine the soure / drain region isformed under the onditions of implantation of im-purity ions.This next example is translated orretly with or without reordering the arguments�bu�er ounter� and �initial value� of `の'.Japanese バッファカウンタの初期値はＮに設定される。Referene The initial value of the bu�er ounter is set to N.
λNounBeforeGen = 0 The bu�er ounter is set to the initial value N.

λNounBeforeGen = 0.40 The initial value of the bu�er ounter is set to N.Finally, here is an example of a noisily a�eted translation. Here `の' is used as partof �xed grammatial onstrut (`Aの方が優れている', �A is better�), so reorderingits arguments is not desirable. With the NounBeforeGen-indued reordering, themeaning of the seond lause is lost, but the word hoie is �ukily better (it inludes�better�, whih also appears in the referene), so mistranslating this example mightboost BLEU sore. 81



Japanese ここで、図１０と図１２とを比較すれば、図１０の

特性の方が優れている。Referene Comparing FIGS. 10 and 12 indiates that the har-ateristis shown in FIG. 10 are better than those inFIG. 12.
λNounBeforeGen = 0 In this ase, the omparison between FIGS. 10 to 12,the harateristi is more exellent in FIG. 10.

λNounBeforeGen = 0.40 In this ase, the omparison between FIGS. 10 to 12,it is better harateristis of FIG. 10.5.6.3 Noun before verbal modi�erIn Japanese, relative lauses preede the noun they modify. For instane, `叫んでい
る男' (is yelling man) means �man who is yelling�. The NounBeforeVerb featuregives high marks to translations that reorder relative lauses to follow the nounsthat they modify. The impat on BLEU sore, shown in Figure 5-5, was small, butwe believe that the positive slope when 0 ≤ λVerbBeforeA ≤ 0.30 indiates that
λVerbBeforeA does have a signi�ant positive e�et on translation quality.In the following improved example, NounBeforeVerb auses `参照光が伝播す
る光路長' (referene light-Nom propagate optial path length) to orretly reorderinto �optial path length of the light propagating on a referene�, whih is very loseto the referene translation �optial path length through whih the referene light ispropagated�. Japanese このことにより、参照光が伝播する光路長を変化

させることができる。Referene As a onsequene, the optial path length throughwhih the referene light is propagated may be varied.
λNounBeforeVerb = 0 As a result, the referene light is propagated throughthe optial path length an be hanged.

λNounBeforeVerb = 0.30 As a result, the optial path length of the light prop-agating on a referene an be hanged.82
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Figure 5-5: λNounBeforeVerb against BLEU and METEOR fragmentation sores withBaseline preorder.Relative lauses are espeially pervasive in Japanese grammar. Here, �after� fol-lows relative lause �relief valve 140 operates�, whih NounBeforeVerb suessfullyreorders to the beginning of the sentene to form �After the relief valve 140 is oper-ated. . . � Japanese リリーフ弁１４０が作動した後の操舵力は、マニ

アル操舵特性に平行な直線となる。Referene Upon the operation of the pilot relief valve 140, thesteering fore is de�ned by lines whih are in parallelindiating the manual steering harateristi.6
λNounBeforeVerb = 0 The relief valve 140 is operated to the steering foreafter the straight line in parallel with the manualsteering harateristi.

λNounBeforeVerb = 0.30 After the relief valve 140 is operated to steering foreis a straight line parallel to the manual steering har-ateristi.6The given referene translation is a stand-in to make this example easier to understand. The83



Naturally, there are plenty of sentenes that unexplainably hanged for the worse.Here is one, where the baseline's orret �number of bits� turns into �bit number�.Japanese 加算により得られるデータ、すなわちシリアルア

ドレスは、最終的に決定される総ビット数よりも

小さな値に選ばれなければならない。Referene Data obtained by addition, that is, the serial address,must be hosen to be a value smaller than the �nallydetermined total number of bits.
λNounBeforeVerb = 0 The data obtained by the addition, that is, the serialaddress is determined to be a value smaller than thetotal number of bits must be seleted.

λNounBeforeVerb = 0.30 The data obtained by the addition, that is, the serialaddress is determined to be a value smaller than thetotal bit number must be seleted.5.7 Feature performane with unlimited reorderingWe hypothesized that our long-distane reordering features might o�er more im-provement if the deoder allowed unlimited reordering. To test this, we deodedthe test orpus setting MaxDistortion = −1 with a range of values for featuresVerbBeforeA, NounBeforeGen, and NounBeforeVerb. Table 5.6 showsthe maximum BLEU sore ahievable with the perfet weight for the test orpus.The features are bene�ial with either limited and unlimited reordering.Figures 5-6�5-8 plot the performane of these three features deoding test withdi�erent weights and no distortion limit. NounBeforeGen gives markedly lesspossible bene�t over the baseline with MaxDistortion = −1 ompared to with
MaxDistortion = 9 (whih was shown in Figure 5-4). NounBeforeVerb in on-trast o�ers a larger improvement with more reordering allowed.original referene inluded many things not mentioned in the Japanese sentene: �Upon the operationof the pilot relief valve 140, the steering fore is de�ned by one of four thin lines whih are in parallelwith the thik line indiating the musular-energy steering harateristi.� The problem of reativereferene translations is an issue with any test orpus.84



Feature MaxDistortion = 9 MaxDistortion = −1VerbBeforeA +0.14 +0.15NounBeforeGen +0.48 +0.26NounBeforeVerb +0.16 +0.30Table 5.6: Maximum BLEU improvements on test orpus for limited and unlimitedreordering.
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Figure 5-6: λVerbBeforeA against BLEU and METEOR fragmentation sores withBaseline preorder and unlimited reordering.
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Figure 5-7: λNounBeforeGen against BLEU and METEOR fragmentation sores withBaseline preorder and unlimited reordering.
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Figure 5-8: λNounBeforeVerb against BLEU and METEOR fragmentation sores withBaseline preorder and unlimited reordering.86



5.8 Feature performane on Rev preorderBeause our long-distane reordering features fous on target-side word order, wewould expet the same features to be useful regardless of preorder. On the ontrary,we found that our long-distane reordering features were largely useless when de-oding preordered sentenes. Table 5.7 shows the performane aross features. Wean infer that when translating with the Rev preorder, the deoder does not needour feature funtions to guide word order, beause long-distane is unneessary totranslate preordered sentenes.Feature Weight dev BLEU test BLEUParentBeforeChild 0.05 +0.02 -0.13ChildBeforeParent -0.50 +0.09 +0.14VerbBeforeA 0.15 +0.08 +0.07NounBeforeGen 0.15 +0.01 -0.04NounBeforeVerb 0.15 +0.04 -0.05Table 5.7: Best sores with Rev preorder.The mystery in Table 5.7 is why ChildBeforeParent is more useful than Par-entBeforeChild when deoding preordered sentenes, while we saw the oppositepattern when deoding Baseline preorder. This result may be attributable to noise.Figures 5-9 and 5-10 show BLEU sore when deoding test orpus in Rev preorder.Deoding the Rev preorder with λChildBeforeParent = −0.50 (the weight thatgave the highest BLEU sore on the dev orpus) gave us our highest absolute testBLEU sore, 28.74, among experiments onduted with MaxDistortion = 9. Thisrepresents a +0.78 inrease over the omparable baseline, whih is the Baselinepreorder deoded with MaxDistortion = 9 and only our Punt feature funtion.5.9 Combining featuresOur long-distane reordering features individually improved BLEU sore. If we em-ploy more than one at the same time, does the BLEU inrease by the sum of theinrease we saw for eah feature on its own?87
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Figure 5-9: λParentBeforeChild against BLEU and METEOR fragmentation soreswith Rev preorder.
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Figure 5-10: λChildBeforeParent against BLEU and METEOR fragmentation soreswith Rev preorder. 88



First we look at the simple example of using ChildBeforeParent and Par-entBeforeChild together. We found that dev BLEU sore using both features didnot improve over using just one of them, as evidened by Table 5.8.
λParentBeforeChild0 0.25

λChildBeforeParent 0 26.99 27.12-0.30 27.08 27.09Table 5.8: BLEU sore on dev orpus when using ChildBeforeParent and Par-entBeforeChild simultaneously.To gauge performane of unisonal employment of VerbBeforeA, NounBe-foreGen, and NounBeforeVerb, we found the weights of these features that gavehighest sores individually on the test test orpus. Then we deoded the test orpususing all three features at the same time with those perfet weights.7 The results areshown in Table 5.9. We see a total +0.58 inrease using all three features. The max-imum inrease, if eah feature ontributed an inrease equivalent to its standaloneimprovement, is +0.75. We an onlude ton the hat the features provide additiveimprovements in translation quality, but the improvement is less than the sum of theparts.
λVerbBeforeA λNounBeforeGen λNounBeforeVerb test BLEU0 0 0 27.960.10 0 0 28.060 0.40 0 28.450 0 0.30 28.120.10 0.40 0.30 28.54Table 5.9: Performane of pairwise dependeny features when ombined.

5.10 Chunk ohesionWe introdued the ChunkCohesion feature in Setion 3.6.2 to enourage hunksto be translated ompletely before moving on to translate other hunks. Figures 5-7It would be proper experimental tehnique to report results based on weights tuned on the dev,here our aim is only to ompare how e�etive features are alone versus ombined.89



11 and 5-12 show their e�et on BLEU and METEOR fragmentation sore whendeoding preorder Baseline and Rev using a range of λChunkCohesion.The ChunkCohesion feature improved translation on the Baseline preordersomewhat, but o�ered no improvement when translating the Rev preorder. Oneplausible explanation is that the ohesion helps hunks move as a unit over longdistanes but is inutile for short movements.Feature Weight dev BLEU test BLEUChunkCohesion -0.35 +0.21 +0.20Table 5.10: Best sores for hunk ohesion feature.
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Figure 5-11: λChunkCohesion against BLEU and METEOR fragmentation sores withBaseline preorder.Unfortunately, when used with our other long-distane reordering features, ChunkCo-hesion does not inrease translation quality. It o�ered maximum 0.02 BLEU sore in-rease when used with feature weights λVerbBeforeA = 0.15, λNounBeforeGen = 0.45,and λNounBeforeVerb = 0.35. 90



-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

ChunkCohesion weight

24

25

26

27

28

29

B
L
E
U
 
s
c
o
r
e

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

ChunkCohesion weight

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

M
E
T
E
O
R
 
f
r
a
g
m
e
n
t
a
t
i
o
n
 
s
c
o
r
e

Figure 5-12: λChunkCohesion against BLEU and METEOR fragmentation sores withRev preorder.
5.11 Puntuation
The Punt feature, introdued in Setion 3.6.3 to disourage phrase movement overpuntuation marks, did not prove espeially helpful for BLEU sore or subjetivequality. With the Baseline preorder, MaxDistortion = 9, and weight λPunt =

−0.45, this feature improved dev BLEU sore by 0.20 and test by 0.10.Subjetively, there was little systemati improvement to translations around pun-tuation. For the most part, we found that even without the Punt feature, phrasesdid not reorder over puntuation. Still, we found a few examples where this fea-ture helped lausal ohesion around puntuation. Setting λPunt to a highly negativeweight ensured that �for example� stayed inside the parenthetial in the followingexample. 91



Japanese 即ち、電気信号に変換され信号（例えば再生信号）として

取り出される。Referene Spei�ally, the returned light L.sub.R is onverted into aneletrial signal (e.g., reprodued signal) and then output.
λPunt = 0.05 That is, the signal is onverted into an eletrial signal (areproduing signal), for example.

λPunt = −10.0 In other words, the eletri signal is onverted to a signal (forexample, a reprodued signal) is output.Most of the time, however, word hoie was randomly juggled in the viinity ofpuntuation and not neessarily for the better. Here is one example where a morenegative weight (λPunt) for Punt improved translation quality. The sequene �notlimited to GaAs� is suessfully translated.
Japanese また、キャップ層６は、ＧａＡｓに限らず、オーミック接

触のとりやすい物質、例えばＩｎＧａＡｓ等を用いてもよ

い。Referene Not only GaAs but also a material whih makes the ohmiontat readily attainable, that is, InGaAs or the like, forexample, may be used for the ap layer 6.
λPunt = −0.05 Further, the GaAs ap layer 6 is not limited to the materialof the ohmi ontat to tend to, for example, InGaAs or thelike may be used.
λPunt = −10.0 Further, the ap layer 6 are not limited to GaAs, ohmi on-tat to tend to substane suh as, for example, InGaAs or thelike may be used.Just as often, however, the translation jugglery is for the worse. A more stronglynegative λPunt weight buthers this translation.92



Japanese この２分割デテクタは、２つのフォトダイオードＰＡ、Ｐ

Ｂからなり、照射された反射レーザ光をそれぞれのフォト

ダイオードＰＡ、ＰＢにより検出する。Referene The two-segment detetor 23 is made up of two photodi-odes PA, PB for deteting the re�eted laser light illuminatedthereon.
λPunt = −0.05 The two-division detetor inludes two photodiode Pa, PB,and the irradiation of the re�eted laser light are deteted bythe photodiode Pa and Pb.
λPunt = −10.0 The two-division detetor inludes two photodiode Pa, PB,and the re�eted laser beam is irradiated onto the photo diodePa, PB, the deteted.5.12 Minimum error rate trainingMoses omes with a sript to perform Minimum Error Rate Training (MERT) to tunefeature weights to maximize BLEU sore on a development orpus [Oh and Ney, 2001;Koehn et al., 2007℄. However, preliminary experiments showed that running MERTtraining, adding a new feature, then rerunning MERT training often resulted in lowerdev sores. Some sore randomness is expeted beause the Moses MERT algorithmis not deterministi, but we deided that for evaluating the e�et of new features onsores, it was best to tune parameters by hand. One reason for the poor results usingthe Moses MERT sript may be that it was designed and tested with the small numberof default Moses features, whih number 10 to 20 depending on on�guration. Lianget al. [2006℄ suessfully developed a disriminatively trained system with millions offeatures. Using their parameter tuning method would be e�etive to tune weights forour features, and would open the door to adding features to model many more partof speeh and ase dependeny relations.The weights learned from using the Moses MERT sript, presented in Table 5.11,hint at the promise of the MERT tehnique.8 Eah feature is automatially given a8The weights in Table 5.11 annot be ompared with weights in other tables, beause they havebeen normalized alongside the baseline Moses weights.93



weight that pushes translations toward orret English word order; that is, the MERTtuning orretly identi�es whether to sale eah feature positively or negatively toimprove dev translations. Feature WeightPunt -0.015772ChunkCohesion -0.004921ParentBeforeChild 0.017132ChildBeforeParent -0.219797VerbBeforeA 0.126323NounBeforeGen 0.102700NounBeforeVerb 0.098392Table 5.11: Feature weights after minimum error rate training.The baseline Moses distortion penalty weight (whih penalizes non-monotonitranslations, see Setion 3.4.4) was also noteworthy at −0.000135. The negativevalue indiates that, when using our new feature funtions, the deoder ould ahievebetter translations by preferring non-monotoni translations. In ontrast, MERTset the distortion penalty weight to a value greater than 0.01 every time we tunedparameters on a system that did not inlude our long-distane reordering features.5.13 BLEU versus METEOR for evaluating word or-der qualityWhen soring a hypothesis translation against a referene, BLEU fouses only on howmany n-grams in the hypothesis math the referene, and otherwise ignores word orderompletely. Beause BLEU typially ounts up to 4-grams, it does not expliitly fatorlong-distane word order into the sore at all. Callison-Burh et al. [2006℄ note thatif b is the number of bigram mismathes (pairs of words that appear together in thehypothesis translation but not the referene), then there are (k− b)! possible ways, togenerate identially sored translations using only the words in the hypothesis. Henetheoretially BLEU seems unable to distinguish di�erenes in word order betweentranslation systems. METEOR in ontrast expliitly inorporates a fragmentation94



sore, whih measures how dissimilar the word order is among words that appear inboth. The METEOR metri makes the assumption that the lower the fragmentationsore, the better the word order.In the plots in this hapter, we ompare BLEU sore and METEOR fragmentationsore on our experiments where we range the weight of one long-distane reorderingfuntion while keeping all other system parameters the same. For a feature thatlearly should have a positive e�et on English word order, like NounBeforeGen,we expeted the METEOR fragmentation sore to have a positive slope around zerountil a peak in translation quality. We expeted BLEU sore to inrease, but not assystematially.If anything, the plots show the opposite phenomenon: BLEU sore had a system-ati positive slope as the bene�ial feature weight inreased, while METEOR fragmen-tation sore tended to boune around. The plots for λVerbBeforeA, λNounBeforeGen,and λNounBeforeVerb in Figures 5-3�5-5 are an interesting sample to look at. For
λVerbBeforeA, BLEU sore is better than the baseline for all λVerbBeforeA ≤ 0.45,whih indiates that translation quality is inreasing. Meanwhile METEOR fragmen-tation sore is higher than the baseline for all values of λVerbBeforeA exept 0.15,whih indiates that translate quality is dereasing, at least word order wise. Lookingsubjetively at the translations, it more sentenes are improved word-order wise thanare harmed.For λNounBeforeVerb (Figure 5-5), another subjetively bene�ial feature, BLEUmonotonially inreases from weight 0 to 0.3, while METEOR sore is satteredand reahes its highest value (indiating worst quality) at weight 0.3. Either BLEUor METEOR fragmentation sore is making a mistake, and the evidene that ourfeatures do improve on word order leads us to onlude that BLEU is apturingword order di�erenes in translations better than METEOR fragmentation sore.This is not to say that METEOR is a bad metri; this is merely evidene that itsfragmentation omponent is likely not a great indiator of word order quality. It isalso lear that BLEU is not a fantasti metri for evaluating hanges in system wordorder; we interpret the plots and our subjetive judgments merely as evidene that95



BLEU is not totally useless for evaluating word order hoies in translation. This islikely beause translations with words in proper order simply generate more n-grammathes with the referene.
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Chapter 6
Conlusion
This thesis developed two tehniques to improve long-distane reordering deisions inthe phrase-based translation model and demonstrated their utility in a state-of-the-art Japanese�English system. Chapter 3 introdued our major ontribution, a set oflong-distane reordering feature funtions that use a dependeny analysis of the souresentene to enourage translations that reorder phrases in a way that preserves theiroriginal meaning. Chapter 4 presented algorithms for reordering Japanese into an En-glish word order before translation, with the surprising result that a naive preproessorthat basially �ips the Japanese to read bakwards outperforms a dependeny-tree�attening method we developed. Experiments in Chapter 5 demonstrated signi�antimprovement in BLEU sore and subjetive quality in experiments with both methodsand further gains when we ombined them.
6.1 Future workCurrent statistial translation systems have a long way to go to ahieve perfet wordorder for languages requiring long-distane reordering. Our pairwise dependeny or-der features are only the beginning of what is possible when inorporating dependenyanalysis into phrase-based models. 97



6.1.1 Smarter reordering limitTranslation quality inreses when we allow unlimited reordering of phrass, but trans-lation speed beomes prohibitively slow. Current phrase-based systems o�er littlereourse if we wish to limit reordering but still onsider linguistially-motivated long-distane reordering. The ubiquitous MaxDistortion limit is a vestige of systemsthat favor monotone translation and auses quality hemorrhage in language pairsthat require long-distane reordering.A disriminatively trained model for limiting reordering based on a dependenytree distane metri ould help the deoder to speedily try all of the important long-distane reorderings. For instane, after the deoder ompletely translates the subjetof a sentene into English, the distortion limit should fore the deoder to next trans-late a phrase that is within a ertain distane from the verb that the subjet modi�es.The hallenge is training a disriminative order model that is part of the deoder'sinternal mahinery.
6.1.2 More e�etive featuresIt is ritial to identify translation hypotheses with promising word order as earlyas possible to avoid the deoder pruning them. For example, it is undesirable thatthe pairwise dependeny order features of Setion 3.6.1 have value zero until boththe hild and parent have been translated. We should experiment with featuresthat have nonzero ontribution as soon as either the hild or the parent is trans-lated, beause at that point we an infer that the other member of the dependenyrelationship will be translated after it, based on the assumption that the deoderalways builds its translation left�to�right. This would allow earlier detetion, andless pruning, of orret word orders. To onretize this idea, an improved version of
χParentBeforeChildTemplate(fJ

2 , q, s) is given in Equation 6.1. This version ontributesa nonzero value to a hypothesis as soon as the parent hunk is translated.98
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(6.1)If our dependeny-based features were integrated into a disrminative trainingsystem with support for millions of features, we ould introdue features that are areparameterized on head and modi�er words themselves in addition to their parts ofspeeh. Features that measure how far modi�ers move away from their head or theorder of dependeny tree siblings may also improve translation quality.6.1.3 Other language pairsBeause our long-distane reordering features make no assumptions about soureor target language word order, they should be easily appliable to any phrase-basedsystem. Experimenting on other language pairs is an extremely exiting prospet.In partiular, features promoting verbal head movement should be very useful forEnglish�Japanese translation to help verbs to reorder to the right of all of theirmodi�ers.6.2 ContributionsTo translate between Japanese and English, or any language pair with very di�erentword order, we need a translation system that an perform long-distane reorderingwhile preserving the meaning of the original input. Towards this goal, this thesis:
• Designed a lass of feature funtions for phrase-based translation that an iden-tify translations with orret long-distane reordering for any language pair.99



• Implemented these features in a state-of-the-art phrase-based deoder to ahievesigni�ant improvements in Japanese�English BLEU sore and subjetive trans-lation quality.
• Remedied to a signi�ant extent the problem of leaving Japanese verbs sentene-�nal and genitive onstrutions inverted when translating into English, whihplagues most statistial phrase-based translation systems.
• Demonstrated a naive, trivially omputable soure-side preordering algorithmthat dramatially inreases Japanese�English translation quality when deod-ing with limited allowed reordering.
• Provided evidene that BLEU is useful for evaluating quality of translationsthat di�er mostly in word order.
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