
6.001, Fall 2007—Recitation 6 Solutions 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall 2007

Recitation 6 Solutions

Higher-Order Procedures

Scheme

1. Special Forms

(a) let - (let bindings body)

Binds the given bindings for the duration of the body. The bindings are a list of (name

value) pairs. The body consists of one or more expressions which are evaluated in order
and the value of last is returned. Let is an example of syntactic sugar:
(let ((arg1 val1) (arg2 val2)) body)

is equivalent to
((lambda (arg1 arg2) body) val1 val2)

2. Procedures

(a) (map op lst) – Apply op to each element of lst in turn and return a list of the results.

(b) (filter pred lst) – Apply the predicate pred to each element of lst and return a list of
all elements for which the predicate returned true (anything other than #f).

Class Schedules Data Structures

You’ve been asked to help the registrar manage class schedules, and have started by creating an
abstraction for a class’s units, and another to for a class. So far, you have the following:

(define (make-units C L H)

(list C L H))

(define get-units-C car)

(define get-units-L cadr)

(define get-units-H caddr)

(define (make-class number units)

(list number units))

(define get-class-number car)

(define get-class-units cadr)

(define (get-class-total-units class)

(let ((units (get-class-units class)))

(+ (get-units-C units)

(get-units-L units)

(get-units-H units))))

(define (same-class? c1 c2)

(= (get-class-number c1) (get-class-number c2)))



6.001, Fall 2007—Recitation 6 Solutions 2

Next, you need to define constructors and selectors to form class schedules.

1. Define a constructor empty-schedule that returns an empty schedule.

(define (empty-schedule)

(list))

Order of growth in time & space?: Θ(1) for both time and space

2. Write a selector that when given a class and a schedule, returns a new schedule including the
new class:

(define (add-class class schedule)

(cons class schedule))

Order of growth in time, space?: Θ(1) for both time and space

3. Write a selector that takes in a schedule and returns the total number of units in that schedule

(define (total-scheduled-units sched)

(if (null? sched)

0

(+ (get-class-total-units (car sched))

(total-scheduled-units (cdr sched)))))

Order of growth in time, space?: Θ(n) for both time and space

4. Write a procedure that drops a particular class from a schedule.

(define (drop-class sched classnum)

(cond ((null? sched) nil)

((= (get-class-number (car sched)) classnum) (cdr sched))

(else

(cons (car sched) (drop-class sched classnum)))))

Order of growth in time, space?: Θ(n) for both time and space

5. Enforce a credit limit by taking in a schedule, and removing classes until the total number of
units is less than max-credits.

(define (credit-limit sched max-credits)

(if (> (total-scheduled-units sched) max-credits)

(credit-limit (cdr sched) max-credits)

sched))

Order of growth in time, space?: Θ(n2) time and Θ(n) space



6.001, Fall 2007—Recitation 6 Solutions 3

HOPs

(define (make-student number sched-checker)

(list number (list) sched-checker))

(define get-student-number car)

(define get-student-schedule cadr)

(define get-student-checker caddr)

(define (update-student-schedule student schedule)

(if ((get-student-checker student) schedule)

(list (get-student-number student)

schedule

(get-student-checker student))

(error "invalid schedule")))

6. Finish the call to make-student to require the student takes at least 1 class.

(make-student 575904467

(lambda (sched) (not (null? sched))))

7. Finish the call to make-student to create a first-term freshman (limited to 54 units).

(make-student 575904467

(lambda (sched) (< (total-scheduled-units sched) 54)))

8. Write a procedure that takes a schedule and returns a list of the class numbers in the schedule.
Use map.

(define (class-numbers sched)

(map get-class-number sched))

9. Rewrite drop-class to use filter.

(define (drop-class sched classnum)

(filter (lambda (class) (not (= (get-class-number class) classnum)))

sched))

10. Rewrite credit-limit to run in Θ(n) time.

(define (credit-limit sched limit)

(define (helper sched)

(if (null? sched) (list (list) 0)

(let ((res (helper (cdr sched)))

(newunits (get-class-total-units (car sched))))

(if (< (+ newunits (cadr res)) limit)

(list (add-class (car sched) (car res))

(+ newunits (cadr res)))

res))))

(car (helper sched)))


