6.001, Fall 2007—Recitation 7 — 9/26/2007

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall 2007

Recitation 7 — 9/26/2007
List Manipulations

List Functions

(define (length 1lst)
(if (null? 1st)
0
(+ 1 (length (cdr 1st)))))

(define (map proc 1lst)
(if (null? 1st)
40
(cons (proc (car 1lst))
(map proc (cdr 1st)))))

(define (filter pred 1lst)
(if (null? 1st)
0]
(if (pred (car 1st))
(cons (car 1st) (filter pred (cdr 1st)))
(filter pred (cdr 1st)))))

;also known as accumulate, foldr
(define (fold-right op init 1lst)
(if (null? 1st)
init
(op (car 1lst)
(fold-right op init (cdr 1st)))))

(define (list-ref 1st n)
(if (=n 0)
(car 1st)
(list-ref (cdr 1lst) (- n 1))))

(define (append 1lstl 1st2)
(if (null? 1stil)
1st2
(cons (car 1stl)
(append (cdr 1lstl) 1st2))))



6.001, Fall 2007—Recitation 7 — 9/26/2007 2

Problems
1. Write a function occurrences that takes a number and a list and counts the number of times

the number appears in the list. Write two versions — one that uses filter, and one that uses
fold-right. For example,

(occurrences 1 (list 1 211 3)) ==> 3

2. Define length using a higher order list procedure.

3. Define 1s to be a list of *procedures*:
(define (square x) (* x x))
(define (double x) (* x 2))
(define (inc x) (+ x 1))

(define 1s (list square double inc))

Now say we want a function apply-procs that behaves as follows:

(apply-procs 1ls 4)

=> ((square 4) (double 4) (inc 4)) = (16 8 5)
(apply-procs 1ls 3)
=> ((square 3) (double 3) (inc 3)) = (9 6 4)

Write a definition for apply-procs using map.



6.001, Fall 2007—Recitation 7 — 9/26/2007 3

4. Suppose x is bound to the list (1 2 3 4 5 6 7). Using map, filter, and /or fold-right, write
an expression involving x that returns:

(a) (1 4 9 16 25 36 49)

(b) (1357

(€) ((11) (22) (33) (44) (55) (66) (77))

(d) ((2) (@ . O

(e) The maximum element of x: 7

(f) list of last element of x: (7)

(g) The list in reverse order: (7 6 5 4 3 2 1)

(h) Bonus: reverse a list in less than ©(n?) time



