
6.001, Fall 2007—Recitation 8 — 9/28/2007 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall 2007

Recitation 8 — 9/28/2007
Symbols and Quote

Scheme

1. Special Forms

(a) quote - (quote expr)

Returns whatever the reader built for expr.

(b) ’thing - syntactic sugar for (quote thing).

2. Procedures

(a) (eq? v1 v2) - returns true if v1 and v2 are bitwise identical. “Works on” symbols,
booleans, and pairs. Doesn’t “work on” numbers and strings.

(b) (eqv? v1 v2) - like eq? except it “works on” numbers as well.

(c) (equal? v1 v2) - return true if v1 and v2 print out the same. “Works on” almost
everything.

Problems

1. Evaluation - give printed value, assuming x is bound to 5.

(a) ’3

(b) ’x

(c) ’’x

(d) (quote (3 4))

(e) (’+ 3 4)

(f) (if ’(= x 0) 7 8)

(g) (eq? ’x ’X)

(h) (eq? (list 1 2) (list 1 2))

(i) (equal? (list 1 2) (list 1 2))

(j) (let ((a (list 1 2))) (eq? a a))



6.001, Fall 2007—Recitation 8 — 9/28/2007 2

Boolean Formulas

A boolean formula is a formula containing boolean operations and boolean variables. A boolean
variable is either true or false. and, or, and not are all boolean operations. For the purposes of
this problem, and and or will be defined to take exactly two inputs.

Example formulas:

a

(not b)

(or b (not c))

(and (not a) (not c))

(not (or (not a) c))

(and (or a (not b)) (or (not a) c))

Some useful procedures:

(define (variable? exp)

(symbol? exp))

(define (make-variable var)

var)

(define (variable-name exp)

exp)

(define (or? exp)

(and (pair? exp) (eq? (car exp) ’or)))

(define (make-or exp1 exp2)

(list ’or exp1 exp2))

(define (or-first exp)

(cadr exp))

(define (or-second exp)

(caddr exp))

(define (and? exp)

(and (pair? exp) (eq? (car exp) ’and)))

(define (make-and exp1 exp2)

(list ’and exp1 exp2))

(define (and-first exp)

(cadr exp))

(define (and-second exp)

(caddr exp))

4. Write selectors, constructor, and predicate for not



6.001, Fall 2007—Recitation 8 — 9/28/2007 3

5. Given a boolean expression and a set of variable assignments, evaluate the expression to
decide whether the result is #t or #f. Assume that you have a procedure (variable-value

name environment), which takes a variable name and list of values and returns the value
assigned to the variable, if a binding for it exists, or throws an error if no binding is found.

(define (eval-boolean exp env)

6. The evaluator as described so far only allows expressions to be either boolean operators or
variable values. Extend the operator so that expressions can include literal booleans as well,
so that evaluating expressions such as (and #t #f) work.


