
6.001, Fall 2007—Recitation 9 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall 2007

Recitation 9

Trees

Binary Trees

A binary search tree is a recursively defined data structure which allows for fast searches: lookups
take Θ(log n) time.

In order to support such searches, an invariant on each tree node holds: Each (nonempty) node has
a value, and at most two child trees, with the requirement that any value reachable down the left
subtree is smaller than the root value, and any value reachable down the right subtree is larger.

;a tree is either an empty tree, or a tree-node (defined below)

(define the-empty-tree null)

(define empty-tree? null?)

(define tree? list?)

(define (make-tree-node value left-subtree right-subtree)

(list value left-subtree right-subtree))

;selector

(define (node-value node)

(car node))

(define (node-left node)

(cadr node))

(define (node-right node)

(caddr node))

Problems

1. Complete the definition for tree-lookup, which returns true if the value is present in the
tree.

(define (tree-lookup val tree)



6.001, Fall 2007—Recitation 9 2

2. Fill in the definition for tree-insert, which takes in a tree and a val and returns a new tree
with the value added.

(define (tree-insert val tree)

3. Consider the tree that results from evaluating the following

(tree-insert 1 (tree-insert 2 . . . (tree-insert n the-empty-tree)

What is the running time of calling tree-lookup on such a tree?



6.001, Fall 2007—Recitation 9 3

4. Write a procedure, build-balanced-tree, that takes a list of sorted elements, and returns
a balanced binary tree of those elements, ie one in which tree-lookup will run in Θ(log n)
time. Your solution (constructing the tree) may be slower than Θ(n) time, so long as lookups
are fast.

You may use the provided functions if you wish:

;return the last k elements of l

(define (list-tail l k)

(if (zero? k)

l

(list-tail (cdr l) (- k 1))))

;return a list of the first k elements of l

(define (list-head l k)

(if (zero? k)

’()

(cons (car l) (list-head (cdr l) (- k 1)))))

;lst must be sorted in increasing order

(define (build-balanced-tree lst)



6.001, Fall 2007—Recitation 9 4

5. Challenge: How would you construct a balanced binary tree starting with an unsorted list?
Sorting it first and then passing the result to build-balanced-tree as defined above is not
the fastest answer.


