
6.001, Fall 2007—Recitation 11 Solutions 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall 2007

Recitation 11 Solutions

Tagged Data: Symbolic Manipulation

Tagging procedure:

(define (tagged-list? x tag)

(and (pair? x) (eq? (car x) tag)))

A tagged abstraction for variables:

(define *variable-tag* ’variable)

(define (make-variable vname)

(list *variable-tag* vname))

(define (variable? x)

(tagged-list? x *variable-tag*))

(define (varname var)

(if (variable? var)

(cadr var)

(error "not a variable: " var)))

(define (variable=? v1 v2)

(eq? (varname v1) (varname v2)))

Tagged abstraction for constants:

(define *constant-tag* ’constant)

(define (make-constant c)

(list *constant-tag* c))

(define (constant? c)

(tagged-list? c *constant-tag*))

(define (constval c)

(if (constant? c)

(cadr c)

(error "not a constant: " c)))



6.001, Fall 2007—Recitation 11 Solutions 2

Tagged abstraction for polynomials:

(define *poly-tag* ’poly)

(define (make-poly var terms)

(list *poly-tag* var terms))

(define (poly? x)

(tagged-list? x *poly-tag*))

(define (poly-get-var poly)

(if (poly? poly)

(cadr poly)

(error "not a polynomial:" poly)))

(define (poly-get-terms poly)

(caddr poly))

Problems

2. Write constant-add:

(define (constant-add c1 c2)

(make-constant (+ (constval c1) (constval v2))))

3. Write a basic add, which works only on two constants or two polynomials, assuming you have
a procedure poly-add which adds two polynomials:

(define (add e1 e2)

(cond ((and (constant? e1)

(constant? e2))

(constant-add e1 e2))

((and (poly? e1)

(poly? e2))

(poly-add e1 e2))

(else (error "not both constants or polys" e1 e2))))

4. Draw a box-and-pointer diagram of the representation of 5x2 + 3x + 1.

poly

variable x

constant constant constant1 3 5

5. To actually build poly-add, which adds two polynomials:



6.001, Fall 2007—Recitation 11 Solutions 3

(a) First write add-terms, which takes two lists of terms and returns a new list of sum
terms:

(define (add-terms t1 t2)

(cond ((null? t1)

t2)

((null? t2)

t1)

(else

(cons (add (car t1)

(car t2))

(add-terms (cdr t1) (cdr t2))))))

(b) Then write poly-add using add-terms:

(define (poly-add p1 p2)

(if (and (poly? p1) (poly? p2))

(if (variable=? (poly-get-var p1)

(poly-get-var p2))

(make-poly

(poly-get-var p1)

(add-terms (poly-get-terms p1)

(poly-get-terms p2)))

(make-poly

(poly-get-var p1)

(cons (add (car (poly-get-terms p1))

p2)

(cdr (poly-get-terms p1)))))

(error "not given two polys")))

6. What happens (with add defined as above), if you try to evaluate the following sequence of
expressions:

(define x (make-variable ’x))

(define 5x+1 (make-poly x (list (make-constant 1) (make-constant 5))))

(define five (make-constant 5))

(add 5x+1 5x+1)

(add five five)

(add 5x+1 five)

(add x 5x+1)

What goes wrong?

All of the add operations only deal with pairs of identical types: two constants or two poly-
nomials. Expressions of mixed types aren’t handled



6.001, Fall 2007—Recitation 11 Solutions 4

7. Give the following procedures, var->poly and const->poly, which promote variables and
constants to polynomials, write a general ->poly which promotes any of the three types to a
polynomial.

(define (var->poly var)

(make-poly var

(list (make-constant 0)

(make-constant 1))))

(define (const->poly var const)

(make-poly var (list const)))

(define (->poly var exp)

(cond ((constant? exp)

(const->poly var exp))

((variable? exp)

(var->poly exp))

((poly? exp)

exp)

(else

(error "unknown exp" exp))))

8. Write a new version of add which uses promotion. Use the following procedure to guess what
variable to use when promoting:

(define (find-var e1 e2)

(cond ((poly? e1)

(poly-get-var e1))

((poly? e2)

(poly-get-var e2))

((variable? e1)

e1)

((variable? e2)

e2)

(else

(make-variable ’x))))

(define (add e1 e2)

(if (and (constant? e1)

(constant? e2))

(constant-add e1 e2)

(let ((var (find-var e1 e2)))

(poly-add (->poly var e1)

(->poly var e2)))))


