
6.001, Fall 2007—Recitation 15 — 10/26/2007 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall 2007

Recitation 15 — 10/26/2007
Mutable Data Structures

Rings

Rings are a circular structure, similar to a list. Unlike a list however, the cdr of the last pair of a
ring points back to the first element:

4321 4321

1. Write a function called make-ring! that takes a list and makes a ring out of it. You may
want to start off writing a helper procdedure called last-pair.

(define (make-ring! ring-list)

2. Write a procedure rotate-left that takes a ring and returns a rotated version of the same
ring. This procedure should take Θ(1) time, and not create any new cons cells.

A left-rotated version of the ring above:

(define (rotate-left ring)
1432

3. Write a procedure ring-length which returns the length (number of elements) in a ring

(define (ring-length ring)



6.001, Fall 2007—Recitation 15 — 10/26/2007 2

4. Write a procedure rotate-right that rotates a ring to the right. Unlike rotate-left,
rotate-right takes Θ(n) operations, though it still should not create any new cons cells.

A right-rotated version of the ring above:

(define (rotate-right ring)
3214

Ring Buffer

Using the ring procedures defined previously, design an ADT for a queue of fixed maximum capacity.
It should have a constructor (make-rb n), which creates a ring of n elements. (rb-enqueue! x)

should add x to the queue, and (rb-dequeue!) should return the next element from the queue.
Each enqueue or dequeue operation should take constant time, and not create any new cons cells.
The queue may contain at most n elements at any one time. Adding more than n elements is an
error.

For example:

(define rb (make-rb 2)) --> unspecified

(rb-enqueue! rb 1) --> unspecified

(rb-enqueue! rb 2) --> unspecified

(rb-dequeue! rb) --> 1

(rb-enqueue! rb 3) --> unspecified

(rb-enqueue! rb 4) --> error -- too many elements

1. Finish the definition of make-rb:

;tagged list (ring-buffer capacity number-filled next-to-read next-to-fill)

(define (make-rb n)

(let ((rl

(make-ring! rl)

(list ’ring-buffer n 0 rl rl)))



6.001, Fall 2007—Recitation 15 — 10/26/2007 3

The definitions of ring selectors are as follows. Note that these are intended to be used only
inside ring-enqueue! and ring-dequeue!, and they return pairs that contain the relevent
data elements, rather than the actual values themselves.

(define (rb-capacity-pair rb)

(cdr rb))

(define (rb-number-filled-pair rb)

(cddr rb))

(define (rb-next-read-pair rb)

(cdddr rb))

(define (rb-next-fill-pair rb)

(cddddr rb))

(define (rb-empty? rb)

(if (not (ring-buffer? rb))

(error "not a ring buffer")

(= (car (rb-number-filled-pair rb)) 0)))

(define (rb-full? rb)

(if (not (ring-buffer? rb))

(error "not a ring buffer")

(= (car (rb-number-filled-pair rb))

(car (rb-capacity-pair rb)))))

2. Complete rb-enqueue!.

(define (rb-enqueue! rb e)

(cond ((not (ring-buffer? rb))

(error "not a ring buffer"))

((rb-full? rb)

(error "too many elements"))

(else



6.001, Fall 2007—Recitation 15 — 10/26/2007 4

3. Complete rb-dequeue!.

(define (rb-dequeue! rb)

(cond ((not (ring-buffer? rb))

(error "not a ring buffer"))

((rb-empty? rb)

(error "buffer empty"))

(else


