
6.001, Fall 2007—Recitation 19 — 11/9/2007 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall 2007

Recitation 19 — 11/9/2007
Analysis & Quiz II Review

Since some sections of code will be evaluated repeatedly, performance can be improved by doing
some work before beginning to evaluate, such that each evaluation takes less time. The analyze

evaluator does this by computing how to evaluate an expression and saving it, such that at eval-
uation time, it doesn’t need to re-figure it out each time the expression is evaluated. It saves the
work in a procedure by returning a lambda that takes in an environment. Some bits of analyze:

(define (eval exp env)

((analyze exp) env))

(define (analyze exp)

(cond ((self-evaluating? exp)

(analyze-self-evaluating exp))

((quoted? exp) (analyze-quoted exp))

((variable? exp) (analyze-variable exp))

((assignment? exp) (analyze-assignment exp))

((definition? exp) (analyze-definition exp))

((if? exp) (analyze-if exp))

((lambda? exp) (analyze-lambda exp))

((begin? exp) (analyze-sequence (begin-actions exp)))

((cond? exp) (analyze (cond->if exp)))

((application? exp) (analyze-application exp))

(else

(error "Unknown expression type -- ANALYZE" exp))))

(define (analyze-variable exp)

(lambda (env) (lookup-variable-value exp env)))

(define (analyze-definition exp)

(let ((var (definition-variable exp))

(vproc (analyze (definition-value exp))))

(lambda (env)

(define-variable! var (vproc env) env)

’ok)))

(define (analyze-application exp)

(let ((fproc (analyze (operator exp)))

(aprocs (map analyze (operands exp))))

(lambda (env)

(execute-application (fproc env)

(map (lambda (aproc) (aproc env))



6.001, Fall 2007—Recitation 19 — 11/9/2007 2

aprocs)))))

(define (execute-application proc args)

(cond ((primitive-procedure? proc)

(apply-primitive-procedure proc args))

((compound-procedure? proc)

((procedure-body proc)

(extend-environment (procedure-parameters proc)

args

(procedure-environment proc))))

(else

(error

"Unknown procedure type -- EXECUTE-APPLICATION"

proc))))

1. Assuming that analyze is extended to include ((let? exp) (analyze-let exp)), imple-
ment analyze-let:

(define (analyze-let exp)

Quiz II Review

Environment Diagrams

2. Draw an environment diagram to trace through evaluating the following expressions:

(define (f x)

(if (< x 0)

(lambda (y) (- y x))

(lambda (y) (- x y))))

(define (foo bar x y)

(let ((g (bar y)))

(+ (g x) (g y))))

(foo f 1 -2)



6.001, Fall 2007—Recitation 19 — 11/9/2007 3

Random Streams

Assume that ran is a primitive Scheme procedure that generates random numbers in the
range 0 to 1, e.g.

(ran)

0.486726

(ran)

0.929204

(ran)

0.08849

(ran)

0.283186

Assume that successive calls to RAN never produce the same number.

Louis Reasoner wants to define a stream whose elements consist of different random numbers,
as in the sequence above. He attempts to define a stream of random numbers as follows:

(define random-stream

(cons-stream (ran)

random-stream))

Lem E. Tweakit isn’t sure that Louis’ definition will work, and he suggests the following:

(define (make-random-stream)

(cons-stream (ran)

(make-random-stream)))

(define random-stream (make-random-stream))

The two friends show their work to Alyssa P. Hacker who suggests that they use PRINT-
STREAM to examine the first few elements of their streams. Furthermore she suggests that
they run their code on two different Scheme interpreters, one that implements delayed pairs
using memoization, and one that does not.

Lous and Lem take her advice, and just to be sure, they print out their streams twice. Shown
below are pairs of printouts, of the sort that either Louis or Lem might have produced.



6.001, Fall 2007—Recitation 19 — 11/9/2007 4

Possible Outcomes:

(print-stream random-stream) ;;; OUTCOME A

0.486726 0.929204 0.008849 0.283186 ...

(print-stream random-stream)

0.486726 0.929204 0.008849 0.283186 ...

(print-stream random-stream) ;;; OUTCOME B

0.486726 0.929204 0.008849 0.283186 ...

(print-stream random-stream)

0.486726 0.521080 0.297045 0.991644 ...

(print-stream random-stream) ;;; OUTCOME C

0.486726 0.929204 0.008849 0.283186 ...

(print-stream random-stream)

0.365913 0.521080 0.297045 0.991644 ...

(print-stream random-stream) ;;; OUTCOME D

0.486726 0.486726 0.486726 0.486726 ...

(print-stream random-stream)

0.486726 0.486726 0.486726 0.486726 ...

(print-stream random-stream) ;;; OUTCOME E

0.486726 0.486726 0.486726 0.486726 ...

(print-stream random-stream)

0.591003 0.591003 0.591003 0.591003 ...

List all of the Possible outcomes (chosen from A,B,C,D,E) that could have been produced in
each of the following cases, or indicate none if none of these outcomes is possible.

(a) Louis’ definition; no memoization

(b) Louis’ definition; with memoization

(c) Lem’s definition; no memoization

(d) Lem’s definition; with memoization


