
MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall 2007

Recitation 2

More Scheme

Scheme

1. Basic Elements

(a) self-evaluating - expressions whose value is the same as the expression.

(b) names - Name is looked up in the symbol table to find the value associated with it.
Names may be made of any collection of characters that doesn’t start with a number.

2. Combination

(procedure arguments-separated-by-spaces)

Value is determined by evaluating the expression for the procedure and applying the resulting
value to the value of the arguments.

3. Special Forms

(a) define - (define name value)

The name is bound to the result of evaluating the the value. Return value is unspecified.

1

(b) if - (if test consequent alternative)

If the value of the test is not false (#f), evaluate the consequent, otherwise evaluate the
alternative.

(c) lambda - (lambda (arg1 . . . argn) expression1 . . . expressionn)

We will see this in more detail in lecture. A lambda captures a common pattern of
computation as a procedured. When applied to a set of arguments, it “substitutes” the
value of each expression for the corresponding argument in the body of the lambda, then
evaluates the body.

Problems

1. Evaluate the following expressions

4

(+ 1 2)

(7)

(* (+ 7 8) (- 5 6))

(define one 1)

(define two (+ 1 one))

(define five 3)

(+ five two)

(define biggie-size *)

(define hamburger 1)

2

(biggie-size hamburger five)

(= 7 (+ 3 4))

(= #t #f)

((+ 5 6))

biggie-size

2. Evaluate the following expressions (assuming x is bound to 3):

(if #t (+ 1 1) 17)

(if #f #f 42)

(if (> x 0) x (- x))

(if 0 1 2)

(if x 7 (7))

3. Evaluate the following expressions:

(lambda (x) x)

((lambda (x) x) 17)

((lambda (x y) x) 42 17)

((lambda (x y) y) (/ 1 0) 3)

((lambda (x y) (x y 3)) (lambda (a b) (+ a b)) 14)

4. Suppose we’re designing an point-of-sale and order-tracking system for Wendy’s1. Luckily
the Über-Qwuick drive through supports only 4 options: Classic Single Combo (hamburger
with one patty), Classic Double With Cheese Combo (2 patties), and Classic Triple with
Cheese Combo (3 patties), Avant-Garde Quadruple with Guacamole Combo (4 patties). We
shall encode these combos as 1, 2, 3, and 4 respectively. Each meal can be biggie-sized to
acquire a larger box of fries and drink. A biggie-sized combo is represented by 5, 6, 7, and 8
respectively.

(a) Write a procedure named biggie-size which when given a regular combo returns a
biggie-sized version.

16.001 and MIT do not endorse and are not affiliated with Wendy’s in any way. They merely capitalize on the

pleasant way “biggie-size” rolls off the tongue.

3

(b) Write a procedure named unbiggie-size which when given a biggie-sized combo returns
a non-biggie-sized version.

(c) Write a procedure named biggie-size? which when given a combo, returns true if the
combo has been biggie-sized and false otherwise.

(d) Write a procedure named combo-price which takes a combo and returns the price of
the combo. Each patty costs $1.17, and a biggie-sized version costs $.50 extra overall.

(e) An order is a collection of combos. We’l encode an order as each digit representing a
combo. For example, the order 237 represents a Double, Triple, and biggie-sized Triple.

Write a procedure named empty-order which takes no arguments and returns an empty
order.

(f) Write a procedure named add-to-orderwhich takes an order and a combo and returns a
new order which contains the contents of the old order and the new combo. For example,
(add-to-order 1 2) -> 12.

(g) Write a procedure named order-size which takes an order and returns the number of
combos in the order. For example, (order-size 237) -> 3. You may find quotient

(integer division) useful.

(h) Write a procedure named order-cost which takes an order and returns the total cost of
all the combos. In addition to quotient, you may find remainder (computes remainder
of division) useful.

4

