Scheme

1. **Special Forms**

 (a) **define** - (define (name arg1 arg2 ...) body)
 Syntactic sugar for the following: (define name (lambda (arg1 arg2 ...) body))

 (b) **cond** - (cond (test consequent) (test consequent) ... (else alternative))
 Alternative to if when there are more than two cases. The value returned is the consequent where the first test evaluates to true (anything but #f). If no tests are true, evaluate and return the alternative, if any. The alternative else is optional. If a consequent is omitted, the value of the test is returned.

Problems

1. Consider the following definitions:

 (define (our-display x)
 (display x) ;this prints x to the screen
 x) ;this returns x as the value

 (define (count1 x)
 (cond ((= x 0) 0)
 (else (our-display x)
 (count1 (- x 1))))

 (define (count2 x)
 (cond ((= x 0) 0)
 (else (count2 (- x 1))
 (our-display x))))

 What will (count1 4) and (count2 4) display?
 count1: Display: 4321 return: 0
 count2: Display: 1234 return: 4

2. Write a procedure **fact** that computes the factorial of a number n.
 Plan:
6.001, Spring 2006—Recitation 3

3. Write a procedure `remainder` that computes the remainder of `num` divided by `divisor`. Plan:

```scheme
(define remainder
  (lambda (num divisor)
    (if (> divisor num)
        num
        (remainder (- num divisor) divisor))))
```

4. Write a procedure that computes e.
 Plan:

 $e \approx \sum_{x=0}^{n} \frac{1}{x!}$

```scheme
(define (find-e n)
  (if (= n 0)
      1.0
      (+ (/ (fact n)) (find-e (- n 1)))))
```

5. Write an iterative procedure that computes e.
 Plan:

```scheme
(define (find-e n)
  (define (helper sum i)
    (if (= i 0)
        sum
        (helper (+ (/ (fact i)) sum) (- i 1))))
  (helper 1.0 n))
```

6. Write a procedure `fib` that computes the n^{th} fibonacci number.
 Plan:

```scheme
(define (fib n)
  (if (< n 2)
      n
      (+ (fib (- n 1)) (fib (- n 2)))))
```

7. Write a procedure that computes the golden ratio, ϕ.
 Plan:

$$\frac{a+b}{a} = \frac{a}{b} = \phi$$
(define (find-golden-ratio n)
 (/ (fib n) (fib (- n 1))))

8. Write a procedure that computes π.

Plan:

$$\pi \approx \frac{1}{n} \sum_{i=1}^{n} g(x, y)$$

$$g(x, y) = \begin{cases}
1 & \text{if } x^2 + y^2 \leq 1 \\
0 & \text{if } x^2 + y^2 > 1
\end{cases}$$

(define (guess-pi count)
 (* (/ (throw-n-darts count) count) 4))

(define (sum-of-squares x y) (+ (* x x) (* y y)))

(define (throw-n-darts n)
 (if (= n 0)
 0
 (if (< (sum-of-squares (random 1.0) (random 1.0)) 1)
 (+ 1 (throw-n-darts (- n 1)))
 (throw-n-darts (- n 1))))))