
6.001, Spring 2006—Recitation 4 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring 2006

Recitation 4

Orders of Growth

Definitions

Theta (Θ) notation:

f(n) = Θ(g(n)) → k1 · g(n) ≤ f(n) ≤ k2 · g(n), for n > n0

Big-O notation:
f(n) = O(g(n)) → f(n) ≤ k · g(n), for n > n0

Adversarial approach: For you to show that f(n) = Θ(g(n)), you pick k1, k2, and n0, then I (the
adversary) try to pick an n which doesn’t satisfy k1 · g(n) ≤ f(n) ≤ k2 · g(n).

Implications

Ignore constants. Ignore lower order terms. For a sum, take the larger term. For a product,
multiply the two terms. Orders of growth are concerned with how the effort scales up as the size
of the problem increases, rather than an exact measure of the cost.

Typical Orders of Growth

• Θ(1) - Constant growth. Simple, non-looping, non-decomposable operations have constant
growth.

• Θ(log n) - Logarithmic growth. At each iteration, the problem size is scaled down by a
constant amount: (call-again (/ n c)).

• Θ(n) - Linear growth. At each iteration, the problem size is decremented by a constant
amount: (call-again (- n c)).

• Θ(n log n) - Nifty growth. Nice recursive solution to normally Θ(n2) problem.

• Θ(n2) - Quadratic growth. Computing correspondence between a set of n things, or doing
something of cost n to all n things both result in quadratic growth.

• Θ(2n) - Exponential growth. Really bad. Searching all possibilities usually results in expo-
nential growth.

What’s n?

Order of growth is always in terms of the size of the problem. Without stating what the problem
is, and what is considered primitive (what is being counted as a “unit of work” or “unit of space”),
the order of growth doesn’t have any meaning.



6.001, Spring 2006—Recitation 4 2

Problems

1. Give order notation for the following:

(a) 5n2 + n

Θ(n2)

(b)
√

n + n

Θ(n)

(c) 3nn2

Θ(3nn2)

2. (define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

Running time? Θ(n) Space? Θ(n)

3. (define (find-e n)

(if (= n 0)

1.

(+ (/ (fact n)) (find-e (- n 1)))))

Running time? Θ(n2) Space? Θ(n)

4. Assume you have a procedure (divisible? n x) which returns #t if n is divisible by x. It
runs in O(n) time and O(1) space. Write a procedure prime? which takes a number and
returns #t if it’s prime and #f otherwise. You’ll want to use a helper procedure.

(define (prime? p)

(define (helper n)

(if (> n (sqrt p))

#t

(if (divisible? p n)

#f

(helper (+ n 1)))))

(helper 2))

; iterative process

; assuming sqrt takes O(1) time, sqrt(n) * n

Running time? Θ(n
√

n) Space? Θ(1)

5. Write an iterative version of find-e. What is its running time and space?

(define (find-e-iter n)

(define (helper n s)

(if (= n 0) s

(helper (- n 1) (+ s (/ (fact n))))))

(helper n 1.0))

Running time? Θ(n2) Space? Θ(n)



6.001, Spring 2006—Recitation 4 3

Micro Quiz

Name:

1. Write a procedure that computes the number of decimal digits in it’s input. Do not use logs.
You may use quotient (integer division) if you wish.
(num-digits 102) → 3

(define (num-digits n)

(if (= n 0)

0

(+ 1 (num-digits (quotient n 10)))))

Running time? Θ(log n) Space? Θ(log n)

2. Write a procedure that will multiply two positive integers together, but the only arithmetic
operation allowed is addition (ie multiplication through repeated addition). In addition, your
procedure should be iterative, not recursive.
(slow-mul 3 4) → 12

(define (mul-helper a b total)

(if (= a 0)

total

(mul-helper (- a 1) b (+ total b)))) ; or (+ a -1) if picky

(define (slow-mul a b)

(mul-helper a b 0))

Running time? Θ(n) Space? Θ(1)


