Special Forms

1. **begin** - \((\text{begin } expr1 \ expr2 \ldots \ exprn)\)

 First evaluate \(expr1\), then \(expr2\), and so on. The value of the \(\text{begin}\) statement is the value of the last expression in the sequence.

2. **let** - \((\text{let } ((\text{name1 val1}) (\text{name2 val2}) \ldots (\text{namen valn})) \text{ body})\)

 Syntactic sugar for the following:
 \(((\lambda (\text{name1 name2 \ldots namen}) \text{ body}) \text{ val1 val2 \ldots valn})\).

 Used to bind additional names inside a procedure body.

Typical Orders of Growth: Review

- \(\Theta(1)\) - Constant growth. Simple, non-looping, non-decomposable operations have constant growth.

- \(\Theta(\log n)\) - Logarithmic growth. At each iteration, the problem size is scaled down by a constant amount: \((\text{call-again } (/ n c))\).

- \(\Theta(n)\) - Linear growth. At each iteration, the problem size is decremented by a constant amount: \((\text{call-again } (- n c))\).

- \(\Theta(n \log n)\) - Nifty growth. Nice recursive solution to normally \(\Theta(n^2)\) problem.

- \(\Theta(n^2)\) - Quadratic growth. Computing correspondence between a set of \(n\) things, or doing something of cost \(n\) to all \(n\) things both result in quadratic growth.

- \(\Theta(2^n)\) - Exponential growth. Really bad. Searching all possibilities usually results in exponential growth.

Problems

1. (define (fact n)

 (if (= n 0)
 1
 (* n (fact (- n 1))))

 Running time? Space?)
2. (define (find-e n)
 (if (= n 0)
 1.
 (+ (/ (fact n)) (find-e (- n 1)))))

Running time? Space?

3. Assume you have a procedure (divisible? n x) which returns #t if n is divisible by x. It runs in O(n) time and O(1) space. Write a procedure prime? which takes a number and returns #t if it’s prime and #f otherwise. You’ll want to use a helper procedure.

Running time? Space?

4. Write an iterative version of find-e.

Running time? Space?

5. Write a version of sum-by-halves (from your problem set) that only computes the midpoint between a and b once per iteration.

Running time? Space?