
6.001, Spring 2006—Recitation 5 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring 2006

Recitation 5

More Orders of Growth: Solutions

Special Forms

1. begin - (begin expr1 expr2 ... exprn)

First evalutate expr1, then expr2, and so on. The value of the begin statement is the value
of the last expression in the sequence.

2. let - (let ((name1 val1) (name2 val2) ... (namen valn)) body)

Syntactic sugar for the following:
((lambda (name1 name2 ... namen) body) val1 val2 ... valn).
Used to bind additional names inside a procedure body.

Typical Orders of Growth: Review

• Θ(1) - Constant growth. Simple, non-looping, non-decomposable operations have constant
growth.

• Θ(log n) - Logarithmic growth. At each iteration, the problem size is scaled down by a
constant amount: (call-again (/ n c)).

• Θ(n) - Linear growth. At each iteration, the problem size is decremented by a constant
amount: (call-again (- n c)).

• Θ(n log n) - Nifty growth. Nice recursive solution to normally Θ(n2) problem.

• Θ(n2) - Quadratic growth. Computing correspondence between a set of n things, or doing
something of cost n to all n things both result in quadratic growth.

• Θ(2n) - Exponential growth. Really bad. Searching all possibilities usually results in expo-
nential growth.

Problems

1. (define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

Running time? Θ(n) Space? Θ(n)



6.001, Spring 2006—Recitation 5 2

2. (define (find-e n)

(if (= n 0)

1.

(+ (/ (fact n)) (find-e (- n 1)))))

Running time? Θ(n2) Space? Θ(n)

3. Assume you have a procedure (divisible? n x) which returns #t if n is divisible by x. It
runs in O(n) time and O(1) space. Write a procedure prime? which takes a number and
returns #t if it’s prime and #f otherwise. You’ll want to use a helper procedure.

(define (prime? p)

(define (helper n)

(cond ((> n (sqrt p)) #t)

((divisible? p n) #f)

(else (helper (+ n 1)))))

(helper 2))

Running time? Θ(n
√

n) Space? Θ(1)

4. Write an iterative version of find-e.

(define (find-e-iter n)

(define (helper n s)

(if (= n 0) s

(helper (- n 1) (+ s (/ (fact n))))))

(helper n 1.0))

Running time? Θ(n2) Space? Θ(n)

5. Write a version of sum-by-halves (from your problem set) that only computes the midpoint
between a and b once per iteration.

(define (sum-by-halves a b)

(cond ((= a b) a)

((= (- b a) 1) (+ b a))

(else

(let ((mean (floor (/ (+ a b) 2))))

(+ (sum-by-halves a mean)

(sum-by-halves (inc mean) b))))))

Running time? Θ(n) Space? Θ(n)


