6.001, Spring 2006—Recitation 5 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring 2006

Recitation 5
More Orders of Growth: Solutions

Special Forms

1.

begin - (begin exprl expr2 ... exprn)
First evalutate ezpri, then expr2, and so on. The value of the begin statement is the value
of the last expression in the sequence.

. let - (let ((namel vall) (name2 val2) ... (namen valn)) body)

Syntactic sugar for the following:
((lambda (namel name2 ... namen) body) wvall val2 ... valn).
Used to bind additional names inside a procedure body.

Typical Orders of Growth: Review

O(1) - Constant growth. Simple, non-looping, non-decomposable operations have constant
growth.

©(logn) - Logarithmic growth. At each iteration, the problem size is scaled down by a
constant amount: (call-again (/ n c)).

©(n) - Linear growth. At each iteration, the problem size is decremented by a constant
amount: (call-again (- n c)).

O(nlogn) - Nifty growth. Nice recursive solution to normally ©(n?) problem.

O(n?) - Quadratic growth. Computing correspondence between a set of n things, or doing
something of cost n to all n things both result in quadratic growth.

©(2") - Exponential growth. Really bad. Searching all possibilities usually results in expo-
nential growth.

Problems

1.

(define (fact n)
(if (= n 0)
1
(* n (fact (- n 1)))))

Running time? ©(n) Space? ©(n)



6.001, Spring 2006—Recitation 5 2

2. (define (find-e n)

(if (= n 0)
1.
(+ (/ (fact n)) (find-e (- n 1)))))
Running time? ©(n?) Space? O(n)

3. Assume you have a procedure (divisible? n x) which returns #t if n is divisible by x. It
runs in O(n) time and O(1) space. Write a procedure prime? which takes a number and
returns #t if it’s prime and #f otherwise. You’ll want to use a helper procedure.

(define (prime? p)
(define (helper n)
(cond ((> n (sqrt p)) #t)
((divisible? p n) #f)
(else (helper (+ n 1)))))
(helper 2))

Running time? O(ny/n) Space? O(1)

4. Write an iterative version of find-e.

(define (find-e-iter n)
(define (helper n s)
(if (=n 0) s
(helper (- n 1) (+ s (/ (fact n))))))
(helper n 1.0))

Running time? ©(n?) Space? O(n)

5. Write a version of sum-by-halves (from your problem set) that only computes the midpoint
between a and b once per iteration.

(define (sum-by-halves a b)
(cond ((= a b) a)
(= (-Dba 1) (+ba))
(else
(let ((mean (floor (/ (+ a b) 2))))
(+ (sum-by-halves a mean)
(sum-by-halves (inc mean) b))))))

Running time? ©(n) Space? ©(n)



