
6.001, Spring 2006—Recitation 12 Solutions — (3/22/2006) 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring 2006

Recitation 12 Solutions — (3/22/2006)
Mutation – Stacks and Queues

Procedures

1. (set-car! cell value)
Evaluate cell to be a cons cell, and change its car pointer to pointer to be value.

2. (set-cdr! cell value)
Same as set-car! except that it changes the cdr part.

set-car! and set-cdr! have no return value.

Special Forms

1. (set! name value)
Look for a prior definition for name, and change the binding to be the value from evaluating
value. We’ll cover this more on Thursday and Friday.

Problems

For this Scheme expression, (a) Draw a box-and-pointer representation of the expression’s value.
(b) Write what Scheme prints for the expression’s value (if you can). (c) Show how the mutation
(given on the right) affects the box-and-pointer diagram and the printed representation, assuming
the value of the expression is named x.

(let ((w (list 3 4 5))) (set-car! (cdar x) (cddr x))

(set-car! (cdr w) w)

(list w w))

The inital value is unprintable (DrScheme prints it as (#0=(3 #0# 5) #0#), but this is nonstan-
dard). After the mutation, it prints out as ((3 () 5) (3 () 5)).

For the printed list on the left, draw a box-and-pointer representation corresponding to it, using as
few cons cells as possible. Write an expression that produces this box-and-pointer structure.

Show how the mutation (given on the right) affects the box-and-pointer structure and the printed
representation, assuming the structure is named x.

1. (c (b c) (a b c)) (set-cdr! (cdr x) (list-ref x 2))



6.001, Spring 2006—Recitation 12 Solutions — (3/22/2006) 2

(define x (let ((z (list ’a ’b ’c)))

(list (caddr z) (cdr z) z)))

After the mutation, the printed representation is (c (b c) a b c)

Queues and Stacks

In Lecture, we saw how to use mutation to build two data structures, queues and lists. Both
structures have one operation that adds a new item to the list, and one that removes the next item.
The difference is in which item is removed next.

1. A Queue adds new items via enqueue!. The accessor dequeue! removes the oldes item in
the queue. Think lines in a store – the next customer to be served is the one that had been
waiting in the queue the longest. FIFO (first-in-first-out).

2. A Stack adds new items via push!, and removes the next item with pop!. Think a pile of
books – the next one you pick up will be the last one you added to the pile. LIFO (last-in-
first-out).

Doubly linked lists

Lists in Scheme are normally singly linked – each cons cell contains a pointer to the next element
in the list, but not the previous. We’re going to build a doubly linked list (hereafter dubbed a
mutable-list for no good reason), where each element contains both a link to the next and prior
elements. This data structure will allow us to both add or remove elements from either the front or
the rear in Θ(1) time, and to insert or remove elements in the middle of the list without affecting
any other elements or needing to copy each one. We will then see how to construct both stacks
and queues using the same underlying data structure.

To begin, here are some constructors and selectors for our new ADT. None of these procedures use
mutation (yet). A mutable list is a tagged list, which contains a pointer to both the first and last
element of the list.

(define (tagged-list? l tag)

(and (pair? l)

(eq? (car l) tag)))

(define (make-mutable-list)

(list ’mutable-list ’() ’()))

(define (mutable-list? l)

(tagged-list? l ’mutable-list))

(define (first-element m-l)

(if (mutable-list? m-l)

(cadr m-l)



6.001, Spring 2006—Recitation 12 Solutions — (3/22/2006) 3

(error "not a mutable list")))

(define (last-element m-l)

(if (mutable-list? m-l)

(caddr m-l)

(error "not a mutable list")))

(define (empty-mutable-list? m-l)

(if (mutable-list? m-l)

(and (eq? (first-element m-l) ’())

(eq? (last-element m-l) ’()))

(error "not a mutable list")))

(define (single-entry? m-l)

(if (mutable-list? m-l)

(eq? (first-element m-l)

(last-element m-l))

(error "not a mutable list")))

Instead of composing our new list out of cons cells, we’re going to create a new data type called
an element which has both an element-value (like the car part of a normal list element), a
element-next and an element-prev that point to other elements.

(define (make-element e)

(list ’mutable-list-element ’() ’() e))

(define (mutable-element? e)

(tagged-list? e ’mutable-list-element))

(define (element-value e)

(list-ref e 3))

(define (element-prev e)

(list-ref e 1))

(define (element-next e)

(list-ref e 2))

1. Define the procedure set-last! which modifies the first or last pointers of a mutable-list to
point at the new elements. (set-first! is defined for you).

;type: mutable-list, <element|null> -> unspecified

(define (set-first! m-l e)

(if (mutable-list? m-l)

(set-car! (cdr m-l) e)

(error "not a mutable list")))



6.001, Spring 2006—Recitation 12 Solutions — (3/22/2006) 4

;type: mutable-list, <element|null>) -> unspecified

(define (set-last! m-l e)

(if (mutable-list? m-l)

(set-car! (cddr m-l) e)

(error "not a mutable list")))

2. Define procedures set-prev! and set-next! that change the prev or next field of a mutable-
element:

;type: element, <element|null> -> unspecified

(define (set-prev! element prev)

(if (mutable-element? element)

(set-car! (cdr element) prev)

(error "set-prev: not a mutable element")))

;type: element, <element|null> -> unspecified

(define (set-next! element next)

(if (mutable-element? element)

(set-car! (cdr (cdr element)) next)

(error "not a mutable element")))

3. Complete the definition for add-to-front! which takes any value and adds a new element to
the front of the list containing that value. Then define add-to-back! which does the same
for the back of the list.

;type: mutable-list, A -> unspecified

(define (add-to-front! lst item)

(let ((e (make-element item)))

(cond ((not (mutable-list? lst))

(error "not a mutable list"))

((empty-mutable-list? lst)

(set-first! lst e)

(set-last! lst e))

(else

(set-next! e (first-element lst))

(set-prev! (first-element lst) e)

(set-first! lst e)))))



6.001, Spring 2006—Recitation 12 Solutions — (3/22/2006) 5

;type: mutable-list, A -> unspecified

(define (add-to-back! lst item)

(let ((e (make-element item)))

(cond ((not (mutable-list? lst))

(error "not a mutable list"))

((empty-mutable-list? lst)

(set-first! lst e)

(set-last! lst e))

(else

(set-prev! e (last-element lst))

(set-next! (last-element lst) e)

(set-last! lst e)))))

4. Define procedures remove-from-back! and remove-from-front! which remove the first or
last element and returns it.

;type mutable-list -> A

(define (remove-from-back! lst)

(cond ((not (mutable-list? lst))

(error "not a mutable list"))

((empty-mutable-list? lst)

(error "list is empty"))

((single-entry? lst)

(let ((e (last-element lst)))

(set-first! lst ’())

(set-last! lst ’())

(element-value e)))

(else

(let ((e (last-element lst)))

(set-last! lst

(element-prev e))

(set-next! (last-element lst)

’())

(element-value e)))))



6.001, Spring 2006—Recitation 12 Solutions — (3/22/2006) 6

;type mutable-list -> A

(define (remove-from-front! lst)

(cond ((not (mutable-list? lst))

(error "not a mutable list"))

((empty-mutable-list? lst)

(error "list is empty"))

((single-entry? lst)

(let ((e (first-element lst)))

(set-first! lst ’())

(set-last! lst ’())

(element-value e)))

(else

(let ((e (first-element lst)))

(set-first! lst

(element-next e))

(set-prev! (first-element lst)

’())

(element-value e)))))

5. Define procedures push! and pop! to use the mutable list as a stack.

(define push! add-to-back!)

(define pop! remove-from-back!)

6. Define procedures enqueue! and dequeue! to use the mutable list as a queue.

(define enqueue! add-to-back!)

(define dequeue! remove-from-front!)

7. Using either a stack or a queue (or both!) define a procedure rpn-calc that takes a simple
arithmetic expression in postfix notation and evaluates it. You may assume a procedure
list->mutable-list which takes a scheme list and returns the corresponding doubly-linked
list. For example:

(rpn-calc ’(1 2 +)) --> 3

(rpn-calc ’(5 1 2 + - 10 + 6 / 3 *)) --> 6

(define (list->mutable-list lst)

(define (helper l m-l)

(if (null? l) m-l

(begin

(enqueue! m-l (car l))

(helper (cdr l) m-l))))

(helper lst (make-mutable-list)))



6.001, Spring 2006—Recitation 12 Solutions — (3/22/2006) 7

This version also works with a command called show which displays the value at the top of
the stack.

(define *binary-operations*

(list

(list ’+ +)

(list ’- -)

(list ’/ /)

(list ’* *)))

(define (rpn-calc exp)

(let ((stack (make-mutable-list))

(instruction-queue (list->mutable-list exp)))

(define (rpn-eval atom)

(cond ((number? atom)

(push! stack atom))

((eq? atom ’show)

(let ((v (pop! stack)))

(display v)

(newline)

(push! stack v)))

((assq atom *binary-operations*)

(let ((opl (assq atom *binary-operations*))

(a1 (pop! stack)))

(let ((a2 (pop! stack)))

(push! stack ((cadr opl) a2 a1)))))

(else (error "undefined operation"))))

(define (helper)

(if (empty-mutable-list? instruction-queue)

(pop! stack)

(begin (rpn-eval (dequeue! instruction-queue))

(helper))))

(helper)))



6.001, Spring 2006—Recitation 12 Solutions — (3/22/2006) 8

8. Can you define rpn-calc without using any mutating procedures? Why or why not, and if so,
which is better?

(define (rpn-calc exp)

(define (rpn-eval stack exp)

(cond ((null? exp) (car stack))

((number? (car exp))

(rpn-eval (cons (car exp) stack)

(cdr exp)))

((eq? (car exp) ’show)

(display (car stack))

(newline)

(rpn-eval stack (cdr exp)))

((assq (car exp) *binary-operations*)

(let ((op (cadr (assq (car exp) *binary-operations*))))

(rpn-eval (cons (op (cadr stack) (car stack))

stack)

(cdr exp))))

(else (error "undefined operation"))))

(rpn-eval ’() exp))


