
6.001, Spring 2006—Recitation 13 Solutions — 3/24/2006 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring 2006

Recitation 13 Solutions — 3/24/2006
Stateful Functions and Rings

Counter

Before this week, every time we evaluated a procedure with a given argument, we got the same
value back. For example, if a procedure (foo 7) returned 12, (foo 7) would always return 12.
No longer! Consider the following example:

(define count (list 0)) (counter) ==> 1

(define (counter) (counter) ==> 2

(set-car! count (+ (car count) 1)) (counter) ==> 3

(car count))

There’s one problem with this approach though – what if count is defined somewhere else? Redefine
counter to fix this problem:

(define counter

(let ((count (list 0)))

(lambda ()

(set-car! count (+ (car count) 1))

(car count))))

Remember

Write a function called remember that takes one argument x and returns the value of the last call
to remember. For example:

(remember 1) ==> #f

(remember 2) ==> 1

(remember ’x) ==> 2

(remember ’(y)) ==> x

(remember -) ==> (y)

(define remember

(let ((saved (list #f)))

(lambda (x)

(let ((result (car saved)))

(set-car! saved x)

result)))



6.001, Spring 2006—Recitation 13 Solutions — 3/24/2006 2

Rings

Rings are a circular structure, similar to a list. Unlike a list however, the cdr of the last pair of a
ring points back to the first element:

4321 4321

1. Write a function called make-ring! that takes a list and makes a ring out of it. You may
want to start off writing a helper procdedure called last-pair.

(define (make-ring! ring-list)

(define (last-pair lst)

(if (null? (cdr lst))

lst

(last-pair (cdr lst))))

(or (pair? ring-list) (error "cannot ringify ()"))

(set-cdr! (last-pair ring-list) ring-list)

ring-list)

2. Write a procedure rotate-left that takes a ring and returns a rotated version of the same
ring. This procedure should take Θ(1) time, and not create any new cons cells.

A left-rotated version of the ring above:

(define (rotate-left ring)

(cdr ring))
1432

3. Write a procedure ring-length which returns the length (number of elements) in a ring

(define (ring-length ring)

(define (helper n here)

(if (eq? here ring) n

(helper (+ 1 n) (cdr here))))

(helper 1 (cdr ring)))

4. Write a procedure rotate-right that rotates a ring to the right. Unlike rotate-left,
rotate-right takes Θ(n) operations, though it still should not create any new cons cells.

A right-rotated version of the ring above:

(define (rotate-right ring)

((repeated rotate-left

(- (ring-length ring) 1)) ring))

3214



6.001, Spring 2006—Recitation 13 Solutions — 3/24/2006 3

Ring Buffer

Using the ring procedures defined previously, design an ADT for a queue of fixed maximum ca-
pacity. It should have a constructor (make-ring-buffer n), which creates a ring of n elements.
(ring-enqueue! x) should add x to the queue, and (ring-dequeue!) should return the next
element from the queue. Each enqueue or dequeue operation should take constant time, and not
create any new cons cells. The queue may contain at most n elements at any one time. Adding
more than n elements is an error.

For example:

(define rb (make-ring-buffer 2)) --> unspecified

(ring-enqueue! rb 1) --> unspecified

(ring-enqueue! rb 2) --> unspecified

(ring-dequeue! rb) --> 1

(ring-enqueue! rb 3) --> unspecified

(ring-enqueue! rb 4) --> error -- too many elements

;tagged list (ring-buffer capacity number-filled next-to-read next-to-fill)

(define (make-ring-buffer n)

(define (helper n)

(if (= n 0)

’()

(cons ’initial-value (helper (- n 1)))))

(let ((rl (helper n)))

(make-ring! rl)

(list ’ring-buffer n 0 rl rl)))

(define (ring-buffer-size-pair rb)

(cdr rb))

(define (ring-buffer-filled-pair rb)

(cddr rb))

(define (ring-buffer-read-pair rb)

(cdddr rb))

(define (ring-buffer-fill-pair rb)

(cddddr rb))

(define (empty-ring-buffer? rb)

(if (not (ring-buffer? rb))

(error "not a ring buffer")

(eq? (car (ring-buffer-filled-pair rb)) 0)))

(define (full-ring-buffer? rb)

(if (not (ring-buffer? rb))



6.001, Spring 2006—Recitation 13 Solutions — 3/24/2006 4

(error "not a ring buffer")

(eq? (car (ring-buffer-filled-pair rb))

(car (ring-buffer-size-pair rb)))))

(define (ring-enqueue! rb e)

(cond ((not (ring-buffer? rb))

(error "not a ring buffer"))

((full-ring-buffer? rb)

(error "too many elements"))

(else (set-car! (car (ring-buffer-fill-pair rb)) e)

(set-car! (ring-buffer-fill-pair rb)

(rotate-left

(car (ring-buffer-fill-pair rb))))

(set-car! (ring-buffer-filled-pair rb)

(+ 1 (car (ring-buffer-filled-pair rb)))))))

(define (ring-dequeue! rb)

(cond ((not (ring-buffer? rb))

(error "not a ring buffer"))

((empty-ring-buffer? rb)

(error "buffer empty"))

(else

(let ((val (car (ring-buffer-read-pair rb))))

(set-car! (ring-buffer-read-pair rb)

(rotate-left

(car (ring-buffer-read-pair rb))))

(set-car! (ring-buffer-filled-pair rb)

(- (car (ring-buffer-filled-pair rb)) 1))

(car val)))))


