
6.001, Spring 2006—Recitation 22 — 5/5/2006 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring 2006

Recitation 22 — 5/5/2006
Interpretation – Dynamic Scoping

Missing Pieces

Sequences:

(define (eval-sequence exps env)

(cond ((last-exp? exps) (m-eval (first-exp exps) env))

(else (m-eval (first-exp exps) env)

(eval-sequence (rest-exps exps) env))))

Assignments:

(define (set-variable-value! var val env)

(if (eq? env the-empty-environment)

(error "Unbound variable -- LOOKUP" var)

(let* ((frame (first-frame env))

(binding (find-in-frame var frame)))

(if binding

(set-binding-value! binding val)

(set-variable-value! var val (enclosing-environment env))))))

Syntactic Transformations

Look at the evaluation rules for let and cond in the meval text:

((cond? exp) (m-eval (cond->if exp) env))

((let? exp) (m-eval (let->application exp) env))

cond->if and let->application rewrite the expression as another expression and immediately
pass it back to meval.

For example:

(let ((a 1) => ((lambda (a b) (* a b))

(b (+ 4 5))) 1

(* a b)) (+ 4 5))

Other special forms can be written the same way (and, or, case).



6.001, Spring 2006—Recitation 22 — 5/5/2006 2

Dynamic vs Lexical Scoping

What we’ve seen so far in Scheme is lexical scoping: we bundle up the environment and store it
with the double-bubble procedure object we create. When we call m-apply in the metacircular
evaluator, we don’t need to pass in an environment – it’s already there in the procedure object.
The rule is ”When you apply a procedure, attach your new frame to the environment in which the

procedure was created.”

Dynamic scoping works a bit differently. The rule here is now ”When you apply a procedure, attach
your new frame to the environment of the procedure that called you.”

1. What does this mean in terms of the environment diagram? What happens to our double-
bubbles?

Double bubbles (procedure objects) no longer need to remember where they were created, so
they become single bubbles.

2. Draw environemnt diagrams for both lexical and dynamic scoping evaluations of the following:

(define pi 3)

(define (circ r) (* 2 pi r))

(define (test)

(define pi 4)

(circ 5))

(test)

3. Time to be creatively destructive: come up with a series of function definitions and calls that
works in lexical scoping, but breaks in dynamic scoping.

How about:

(define (foo proc) (lambda (x) (proc x)))

((foo inc) 3)

Something odd is going on: look at
(lambda (x) (proc x))

inside the first define. Ordinarily, with lexical scoping, you’d be able to tell that proc comes
from the parameter just outside. With dynamic scoping, you have no such guarantee, and
you won’t even know whether or not proc is even defined at all! This kind of mysterious
dynamic binding problem makes for unreadable, very confusing code. This was one of the
biggest reasons for a move away from dynamic scoping and toward lexical scoping.



6.001, Spring 2006—Recitation 22 — 5/5/2006 3

4. Let’s change the metacircular evaluator to have dynamic scoping. What parts need to change
in meval?

Most things don’t need to change. However, since we now have single bubbles instead of
double bubbles for our procedure objects, we need to change the lambdas and applications.
Procedure objects no longer have the environment attached, and applications need to know
the environment from which they were called.

...

((lambda? exp)

(make-procedure (lambda-parameters exp) (lambda-body exp))) ; No env!

...

((application? exp)

(m-apply (meval (operator exp) env)

(list-of-valuesss (operands exp) env)

env)) ; New!

5. What needs to change in m-apply?

m-apply now takes an extra argument: the environment of the calling procedure. And since
the procedure object no longer has the environment attached, we need to attach the new
frame onto the environment we were called from.

(define (m-apply procedure arguments env) ; Added env!

(cond ...

((compound-procedure? procedure)

(eval-sequence

(procedure-body procedure)

(extend-environment (procedure-parameters procedure)

arguments

env))) ; Change!

(else ...)))



6.001, Spring 2006—Recitation 22 — 5/5/2006 4

Loop

Now, back to our normal lexical evaluation, let’s add a new special form called loop to meval:

(loop (i 1 inc) (= i 4)

(newline)

(display (list i (fact i))))

(1 1)

(2 2)

(3 6)

(4 24)

; Value: done

(define start-list ’(1 3 5))

(loop (lst start-list cdr) (null? lst)

(newline)

(display (fact (car lst))))

1

6

120

; Value: done

The syntax of loop is a follows. The first clause includes a loop variable (i in the first example), an
expression whose value is the initial value of the variable (1 in the first example), and an increment
procedure to apply to the loop variable on each iteration to create a new value for the loop variable
(the value associated with inc in the first example). The next clause is an end test, an expression
that will evaluate to true or false. The remaining expressions are the body of the loop.

The semantics of loop is as follows. The loop variable is initially set to the value of its initialization
expression. The end test is then evaluated. If the value is true, the loop exits, and the symbol
done is returned. If not, the expressions in the body of the loop are evaluated. The incrementation
procedure is then applied to the loop variable, and that variable is then bound to the returned
value. The process then repeats.

Each of the following procedures extracts elements of a loop. Complete the definitions (assume
that each would be applied to a full loop expression).

1. (define (loop-variable exp) YOUR-ANSWER)

2. (define (loop-initial-value exp) YOUR-ANSWER)

3. (define (loop-increment exp) YOUR-ANSWER)



6.001, Spring 2006—Recitation 22 — 5/5/2006 5

4. (define (loop-end-test exp) YOUR-ANSWER)

5. (define (loop-body exp) YOUR-ANSWER)

To implement the special form, we add a dispatch to eval, and create a new evaluation procedure:

(define (eval exp env)

(cond ...

((loop? exp) (eval-loop exp env))

...

(application? exp) ...)

(else ....)))

(define (eval-loop exp env)

(eval-loop-doit (loop-variable exp)

(loop-initial-value exp)

(loop-increment exp)

(loop-end-test exp)

(loop-body exp)

env))

(define (eval-loop-doit var init next end bod env)

(let ((new-env (extend-environment

ANSWER-1

ANSWER-2

env)))

(if ANSWER-3 ; test to see if done

ANSWER-4 ; value to return

(begin ANSWER-5 ; evaluate body

ANSWER-6)))) ; go to next iteration

1. Provide an expression for ANSWER-1. (Together with Question 2, this should create a new
environment with the loop variable bound to a new value.)

2. Provide an expression for ANSWER-2.

3. Provide an expression for ANSWER-3 to determine if the loop has satisfied the end condition.



6.001, Spring 2006—Recitation 22 — 5/5/2006 6

4. Provide an expression for ANSWER-4 to return the correct value from the loop.

5. Provide an expression for ANSWER-5 to evaluate the body of the loop.

6. Provide an expression for ANSWER-6 to handle the next loop iteration.


