
6.001, Spring 2006—Recitation 25 — 5/17/2006 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Spring 2006

Recitation 25 — 5/17/2006
Final Review

Random Streams

Assume that ran is a primitive Scheme procedure that generates random numbers in the range -
to 1, e.g.

(ran)

0.486726

(ran)

0.929204

(ran)

0.08849

(ran)

0.283186

Assume that successive calls to RAN never produce the same number.

Louis Reasoner wants to define a stream whose elements consist of different random numbers, as
in the sequence above. He attempts to define a stream of random numbers as follows:

(define random-stream

(cons-stream (ran)

random-stream))

Lem E. Tweakit isn’t sure that Louis’ definition will work, and he suggests the following:

(define (make-random-stream)

(cons-stream (ran)

(make-random-stream)))

(define random-stream (make-random-stream))

The two friends show their work to Alyssa P. Hacker who suggests that they use PRINT-STREAM
to examine the first few elements of their streams. Furthermore she suggests that they run their
code on two different Scheme interpreters, one that implements lazy pairs using memoization, and
one that does not.

6.001, Spring 2006—Recitation 25 — 5/17/2006 2

Lous and Lem take her advice, and just to be sure, they print out their streams twice. Shown
below are pairs of printouts, of the sort that either Louis or Lem might have produced.

Possible Outcomes:

(print-stream random-stream) ;;; OUTCOME A

0.486726 0.929204 0.008849 0.283186 ...

(print-stream random-stream)

0.486726 0.929204 0.008849 0.283186 ...

(print-stream random-stream) ;;; OUTCOME B

0.486726 0.929204 0.008849 0.283186 ...

(print-stream random-stream)

0.486726 0.521080 0.297045 0.991644 ...

(print-stream random-stream) ;;; OUTCOME C

0.486726 0.929204 0.008849 0.283186 ...

(print-stream random-stream)

0.365913 0.521080 0.297045 0.991644 ...

(print-stream random-stream) ;;; OUTCOME D

0.486726 0.486726 0.486726 0.486726 ...

(print-stream random-stream)

0.486726 0.486726 0.486726 0.486726 ...

(print-stream random-stream) ;;; OUTCOME E

0.486726 0.486726 0.486726 0.486726 ...

(print-stream random-stream)

0.591003 0.591003 0.591003 0.591003 ...

List all of the Possible outcomes (chosen from A,B,C,D,E) that could have been produced in each
of the following cases, or indicate none if none of these outcomes is possible.

1. Louis’ definition; no memoization

2. Louis’ definition; with memoization

3. Lem’s definition; no memoization

4. Lem’s definition; with memoization

6.001, Spring 2006—Recitation 25 — 5/17/2006 3

Evaluator

Suppose we want to add some simple type-checking to our language, that is, to specify conditions
or constraints on the types of arguments that a procedure may take, with the idea that before we
apply the procedure, we ensure that the supplied arguments meet those constraints. For example,
we could extend our syntax to allow:

(define (foo (number? x) (list? y) z)

some-body)

The idea is that when we are about to appl foo to some arguments, we will ensure that the first
argument satisfies number? and the second argument satisfies list? before proceeding. Since
there are no constraints specified on the last agument, anything is acceptable.

We will do this by making two changes to our evaluator. First, when creating a lambda, we will get
the actual procedure object associated with each type checking clause (e.g., the procedure object
for number?). Second, when we get to m-apply we will actually use those procedure objects to
ensure that the arguments meets the constraints. We change the dispatch clause in m-eval to:

((lambda? exp))

(make-procedure (CONVERT (lambda-parameters exp) env)

(lambda-body exp)

env))

Here is the framework for convert, which given a list of parameters (each of which is either
a name, or a list of a procedure name and a variable name), should return a list of the same
form, in which each name is kept, but the procedure name is replaced by the actual proce-
dure. Thus ((number? x) (list? y) z) would be converted to ((<actual procedure bound

to number?> x) (<actual procedure bound to list?> y) z):

(define (convert params env)

(cond ((null? params)

’())

(symbol? (car params)

(cons (car params) (convert (cdr params) env)))

(else (cons QUESTION-1

(convert (cdr params) env)))))

1. What expression should be provided for QUESTION-1?

Next, we change the standard version of m-apply (which in a real final exam would be attacned at
the end for reference) to handle the type checking as follows:

6.001, Spring 2006—Recitation 25 — 5/17/2006 4

(define (m-apply procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))

((compound-procedure? procedure)

(let ((params (procedure-parameters procedure)))

(if (type-ok? params arguments)

(eval-sequence

(procedure-body procedure)

(extend-environment

(map (lambda (x) (if (symbol? x) x (cadr x)))

params)

arguments

(procedure-environment procedure)))

(error "incorrect argument type" procedure))))

(else (error "Unknown procedure type -- APPLY" procedure))))

To complete this change, we need to implement type-ok? which should check that each argument
meets the specified type constraint:

(define (type-ok? params args)

(cond ((null? params)

QUESTION-2)

((null? args) #f)

((symbol? (car params))

QUESTION-3)

(QUESTION-4

(type-ok? (cdr params) (cdr args)))

(else #f)))

2. What expression should be used for QUESTION-2?

3. What expression should be used for QUESTION-3?

4. What expression should be used for QUESTION-4?

Lexical vs dynamic scope

(let ((x 20))

(let ((f (lambda (y) (- y x))))

(let ((x 10))

(f 30))))

1. Value in a dynamically-scoped Scheme:

2. Value in a lexically-scoped Scheme:

6.001, Spring 2006—Recitation 25 — 5/17/2006 5

Objects

This problem explores a small object-oriented world, consisting of Documents, Folders and Cabi-
nets. The properties of the classes (defined by the code below) are as follows:

• a Document is an object with a name, and a number of sheets.

• a Folder is a collection of documents.

• a Cabinet is a structure that can hold Folders. It behaves as if it were a giant folder.

(define (create-document name sheets)

(create-instance document name sheets))

(define (document self name sheets)

(let ((root-part (root-object self)))

(make-handler

’document

(make-methods

’NAME (lambda () name)

’INSTALL (lambda () ’installed)

’SHEETS (lambda () sheets))

root-part)))

(define (folder self name)

(let ((root-part (root-object self))

(contents ’()))

(make-handler

’folder

(make-methods

’NAME (lambda () name)

’CONTENTS (lambda () contents)

’ADD-THING (lambda (thing)

(set! contents (cons thing contents))

(map (lambda (thing) (ask thing ’NAME)) contents))

’DOCUMENTS (lambda ()

(fold-right + 0

(map (lambda (doc) 1) contents)))

)

root-part)))

(define (create-folder name)

(create-instance folder name))

(define (cabinet self name)

(let ((root-part (root-object self))

(folder-part (folder self name)))

(make-handler

’cabinet

(make-methods

’NAME (lambda () name)

’CONTENTS (lambda () (ask folder-part ’contents))

’ADD-THING (lambda (thing)

6.001, Spring 2006—Recitation 25 — 5/17/2006 6

(ask folder-part ’add-thing thing))

’SHEETS (lambda () 0)

)

folder-part root-part)))

(define (create-cabinet name)

(create-instance cabinet name))

Assume the following definitions have been evaluated:

(define doc1 (create-document ’doc1 10))

(define doc2 (create-document ’doc2 100))

(define folder1 (create-folder ’folder1))

(ask folder1 ’add-thing doc1)

(ask folder1 ’add-thing doc2)

(define cab (create-cabinet ’cab))

(ask cab ’add-thing folder1)

What is the value of each of the following expressions, assuming they are evaluated in the order
shown? (Write unspec for unspecified, no-method for an error because there is no method, error for
some other error, or procedure for a procedure value.)

1. (ask folder1 ’DOCUMENTS)

2. (ask folder1 ’SHEETS)

3. Add an explicit SHEETS method to Folders so that these objects will now return the total
number of sheets in the documents it contains.

6.001, Spring 2006—Recitation 25 — 5/17/2006 7

With that change, suppose we again evaluate:

(define doc1 (create-document ’doc1 10))

(define doc2 (create-document ’doc2 100))

(define folder1 (create-folder ’folder1))

(ask folder1 ’add-thing doc1)

(ask folder1 ’add-thing doc2)

(define cab (create-cabinet ’cab))

(ask cab ’add-thing folder1)

What is the value of each of the following expressions, assuming they are evaluated in the order
shown? (Write unspec for unspecified, error for error, or procedure for a procedure value.)

4. (ask folder1 ’SHEETS)

5. (ask cab ’SHEETS)

Suppose we remove the SHEETS method from the class definition for a cabinet.

With that change, suppose we again evaluate:

(define doc1 (create-document ’doc1 10))

(define doc2 (create-document ’doc2 100))

(define folder1 (create-folder ’folder1))

(ask folder1 ’add-thing doc1)

(ask folder1 ’add-thing doc2)

(define cab (create-cabinet ’cab))

(ask cab ’add-thing folder1)

What is the value of the following expression? (Write unspec for unspecified, error for error, or
procedure for a procedure value.)

6. (ask cab ’SHEETS)

6.001, Spring 2006—Recitation 25 — 5/17/2006 8

Environment Diagrams

Assume that the following definition has been evaluated:

(define (doubler) (lambda (x) (* x 2)))

and consider the following environment diagram.

p: x
b: (* x 2)

p: arg
b: (if (even? arg)
 (temp arg)
 arg)

foo:

temp:

1. Write an expression (without mutation or internal defines) whose evaluation would result in
this environment diagram.

Lists and pairs

Consider the following box and pointer diagram:

6.001, Spring 2006—Recitation 25 — 5/17/2006 9

2

1. What does this print out as?

For each of the following expressions, indicate whether the expression gives rise to the box and
pointer structure shown above.

2. ’((2) 2)

3. (list (list 2) 2)

4. (let ((temp (list 2)))

(cons temp temp))

5. (let ((temp (list 2)))

(let ((foo (cons (list 2) temp)))

foo))

6. (let ((temp (list 2)))

(let ((foo (cons (list 2) temp)))

(set-car! foo temp)

foo))

7. (let ((temp (list 2)))

(let ((foo (cons (list 2) temp)))

(set! (car foo) temp)

foo))

Types

What is the type of the procedure test?

(define (test a b)

(lambda (x) (a (b x))))

6.001, Spring 2006—Recitation 25 — 5/17/2006 10

Lambda Obfuscations

What does the following evaluate to:

((lambda (+ - *) (* + -))

(* 3 6)

((lambda (/ ^) (* ^ /))

4 6)

(lambda (- *) (+ - *)))

