
Recent Results on Pattern Maximum Likelihood

Jayadev Acharya
ECE Department, UCSD

Email: jayadev@ucsd.edu

Alon Orlitsky
ECE & CSE Departments, UCSD

Email: alon@ucsd.edu

Shengjun Pan
CSE Department, UCSD

Email: s1pan@ucsd.edu

Abstract—We derive some general sufficient conditions for
the uniformity of the Pattern Maximum Likelihood distribution
(PML). We also provide upper bounds on the support size of
a class of patterns, and mention some recent results about the
PML of 1112234.

I. INTRODUCTION

Estimating the distribution underlying an observed data

sample has important applications in a wide range of fields,

including statistics, genetics, system design, and compression.

Many of these applications do not require knowing the

probability of each element, but just the collection, or multiset
of probabilities. For example, in evaluating the probability that

when a coin is flipped twice both sides will be observed, we

don’t need to know p(heads) and p(tails), but only the multiset

{p(heads), p(tails)}. Similarly to determine the probability

that a collection of resources can satisfy certain requests, we

don’t need to know the probability of requesting the individual

resources, just the multiset of these probabilities, regardless of

their association with the individual resources. The same holds

whenever just the data “statistics” matters.

One of the simplest solutions for estimating this proba-

bility multiset uses standard maximum likelihood (SML) to

find the distribution maximizing the sample probability, and

then ignores the association between the symbols and their

probabilities. For example, upon observing the symbols @∧@,

SML would estimate their probabilities as p(@) = 2/3 and

p(∧) = 1/3, and disassociating symbols from their probabili-

ties, would postulate the probability multiset {2/3, 1/3}.

SML works well when the number of samples is large

relative to the underlying support size. But it falls short when

the sample size is relatively small. For example, upon observ-

ing a sample of 100 distinct symbols, SML would estimate

a uniform multiset over 100 elements. Clearly a distribution

over a large, possibly infinite number of elements, would better

explain the data. In general, SML errs in never estimating a

support size larger than the number of elements observed, and

tends to underestimate probabilities of infrequent symbols.

Several methods have been suggested to overcome these

problems. One line of work began by Fisher [1], and was

followed by Good and Toulmin [2], and Efron and Thisted [3].

Bunge and Fitzpatric [4] provide a comprehensive survey of

many of these techniques. A related problem, not considered

in this paper estimates the probability of individual sym-

bols for small sample sizes. This problem was considered

by Laplace [5], Good and Turing [6], and more recently

by McAllester and Schapire [7], Shamir [8], Gemelos and

Weissman [9], Jedynak and Khudanpur [10], and Wagner,

Viswanath, and Kulkarni [11].

A recent information-theoretically motivated method for the

multiset estimation problem was introduced in [12] and a

number of results are presented in [13], [14]. It is based

on the observation that since we do not care about the

association between the elements and their probabilities, we

can replace the elements by their order of appearance, called

the observation’s pattern. For example the pattern of @∧@ is

121, and the pattern of abracadabra is 12314151231.

Slightly modifying SML, this pattern maximum likelihood
(PML) method asks for the distribution multiset that maxi-

mizes the probability of the observed pattern. For example,

the 100 distinct-symbol sample above has pattern 123...100,

and this pattern probability is maximized by a distribution over

a large, possibly infinite support set, as we would expect.

To evaluate the accuracy of PML we conducted the fol-

lowing experiment. We took a uniform distribution over 500

elements, shown in Figure 1 as the solid (blue) line. We sam-

pled the distribution with replacement 1000 times. In a typical

run, of the 500 distribution elements, 6 elements appeared 7

times, 2 appeared 6 times, and so on, and 77 did not appear at

all as shown in the figure. The standard ML estimate, which

always agrees with empirical frequency, is shown by the dotted

(red) line. It underestimates the distribution’s support size by

over 77 elements and misses the distribution’s uniformity. By

contrast, the PML distribution, as approximated by the EM

algorithm described in [14] and shown by the dashed (green)

line, performs significantly better and postulates essentially the

correct distribution.

As shown in the above and other experiments, PML’s

empirical performance seems promising. In addition, several

results have proved its convergence to the underlying distribu-

tion [13]. As mentioned in [12], [15] the analytical calculation

of PML appears to be a difficult problem. Thus, analytic

methods for finding the PML distribution are of interest.

In [12], [15] certain patterns were shown to have uniform

PML distribution. We prove PML uniformity for a larger

set of patterns. Finding a good upper bound on the number

of elements or the number of distinct elements in the PML

multiset is an important issue, especially for the practical

implementation of the algorithms that estimate the PML of a

given pattern. We present some upper bounds on the maximum

number of discrete elements in the PML distribution of some

specific patterns. We also mention some recent progress that

we have made in finding the PML of 1112234, the only length
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Fig. 1. SML and PML reconstruction of uniform distribution over 500
symbols from 1000 samples

7 pattern whose PML is not known analytically.

II. NOTATION

The pattern ψ(x) of a sequence x
def= xn

1 is the integer

sequence obtained by replacing each symbol x in x by the

number of distinct symbols up to (and including) x’s first

appearance. For example, ψ(abracadabra) = 12314151231.
We denote the length of a pattern by n and its number

of distinct symbols by m. The multiplicity of an integer ψ
in a pattern ψ is the number μψ of times ψ appears in ψ.

For example, for 12314151231, n = 11, m = 5, μ1 = 5,

μ2 = μ3 = 2, and μ4 = μ5 = 1.
For simplicity, if a number ψ repeats consecutively i times,

we abbreviate it as ψi. For example, we may write the pattern

11222111 as 122313. A pattern of the form 1μ12μ2 · · ·mμm

with μ1 ≥ · · · ≥ μm is canonical. Clearly every pattern has

a canonical pattern with the same multiplicities. For example,

the canonical pattern of 123223 is 13223.
We now define pattern probabilities. To be most general,

we consider mixed distributions that assign probabilities to

discrete elements and a continuous interval. For example, a

distribution P may assign probability p(a) to an element a,

p(b) to an element b, and 1−p(a)−p(b) to the interval [0, 1].
If P is sampled independently with replacement then

P (ψ) def= P ({x : ψ(x) = ψ})
is the probability that the sample has pattern ψ. For example,

the distribution P above assigns to the pattern 121 probability

P (121) = P (aba)+P (bab)+P ({xyx : x ∈ {a, b}, y ∈ [0, 1]})
= p2(a)(1 − p(a)) + p2(b)(1 − p(b)).

Note that the pattern probability is determined by just the

multiset of discrete probabilities, hence P can be identified

with a vector in the monotone simplex

P def= {(p1, p2, . . . ) : p1 ≥ p2 ≥ · · · ≥ 0,
∑

pi ≤ 1}.

We call q
def= 1 − ∑

pi, the continuous part of P . The

maximum-likelihood (PML) probability of a pattern ψ is

P̂ψ(ψ) def= max
P∈P

P (ψ),

the highest probability assigned to ψ by any distribution,

and its maximum-likelihood (PML) distribution P̂ψ is the

distribution achieving this highest probability. We let k̂ = k̂ψ

denote the discrete support size of P̂ψ . Observe that every

distribution assigns the same probability to a pattern as it does

to its canonical form. Hence the two have the same PML

distribution. From now on we therefore consider without loss

of generality only canonical patterns.

III. SOME KNOWN RESULTS

A pattern is binary if, like 11122, it has m = 2. Theorem

11 in [12] shows that all binary patterns have k̂ = 2, and the

PML distribution can then be determined.

A pattern is uniform if, as in 121323, all multiplicities μi are

equal. A pattern is 1-uniform if any two multiplicities differ

by at most one. A pattern is quasi-uniform if the square of the

difference between any two multiplicities is at most their sum,

namely for all i, j, (μi − μj)2 ≤ μi + μj . For example, the

pattern 111223 is quasi-uniform. Note that a binary pattern is

quasi-uniform if (μ1 − μ2)2 ≤ n.

Theorem 11 in [12] shows also that all quasi-uniform binary

patterns have PML ( 1
2 , 1

2 ). The following lemma from [15]

extends this result to non-binary patterns when the underlying

distribution is limited to support size m.

Lemma 1: If an m-symbol pattern is quasi-uniform then

among all discrete distributions with support size m, its

probability is maximized by the uniform distribution. �
For example, the lemma implies that among all distributions

over three elements, ( 1
3 , 1

3 , 1
3 ) maximizes the probability of

111223.

Using Theorem 6 in [12] which states that

k̂ ≤ m +
m − 1

2μm − 2
(1)

with Lemma 1,

Corollary 2: The PML distribution of a quasi-uniform pat-

tern with μm > log2(m + 1) is uniform over m symbols. �
An important application of PML is to estimate the under-

lying distribution’s support size k̂. Inequality (1) bounds the

support size when the lowest multiplicity, μm, is at least 2.

The next theorem [15] upper bounds k̂ when μm = 1 and all

other multiplicities are at least 2, namely exactly one element

appears once, for example as in the pattern 11122334. We call

such patterns unique-singleton. We will later use this result to

establish the PML distribution of ternary patterns.

Theorem 3: For unique-singleton patterns,

k̂ ≤ 2(m − 1). �

A pattern ψ is 1-uniform if μi−μj ≤ 1 for all i, j, namely

all multiplicities are within one from each other as in 1112233.
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As shown in [13], all 1-uniform patterns have a uniform PML

distribution and can thus be evaluated.

As mentioned earlier, the simplest patterns are binary,

and their PML distribution was derived in [12], showing in

particular that all of them have k̂ = 2. The next simplest

patterns are ternary, and have m = 3. Three types of ternary

patterns can be addressed by existing results.

1) Uniform (1r2r3r). Of these, 123 has P̂ = (), and all

others have P̂ = (1/3, 1/3, 1/3) [12].

2) 1-uniform (1r2r3r−1 or 1r2r−13r−1). Of these, 1123

has P̂ = (1/5, 1/5, 1/5, 1/5, 1/5), and all others have

P̂ = (1/3, 1/3, 1/3) [13].

3) Skewed (1r23). Of these, 1123 is 1-uniform and ad-

dressed above, and all others have P̂ = ( r
r+2 ). This

result is proved in [16].

It is easy to see that all ternary patterns not covered by these

cases have at most one symbol appearing once, for example

111223 and 111122233. For all those, it was shown in [15]

that the PML distribution has support size 3.

Theorem 4: All ternary patterns with at most one symbol

appearing once have k̂ = 3.
The theorem allows us to compute the PML distribution of

all ternary patterns by combining the theorem with the Kuhn-

Tucker conditions.

Corollary 5: For all ternary patterns with at most one

symbol appearing once,

P̂1μ12μ23μ3 = (p1, p2, p3),

where p1, p2, p3 are solutions to the following three polyno-

mial equations,

p1 + p2 + p3 = 1,∑
μj1p

μj1−1
1 p

μj2
2 p

μj3
3 =

∑
μj1p

μj1−1
2 p

μj2
3 p

μj3
1 ,∑

μj1p
μj1−1
1 p

μj2
2 p

μj3
3 =

∑
μj1p

μj1−1
3 p

μj2
1 p

μj3
2 .

where the summation is over all six permutations (j1, j2, j3)
of (1, 2, 3).

Using these results, in [15], the PML distribution of all

patterns of length up to seven, with the exception of one was

found out. These include 111223, 1112223, 1111223, whose

PML can be found in the table.The only exception is 1112234,

which we conjecture to have PML (1/5, 1/5, . . . ,1/5) but have

not been able to prove yet.The PML distributions of these

patterns are shown in Table I along with references to where

they were shown.

IV. NEW RESULTS

In the next three subsections we present the recent results,

which were mentioned briefly in the Introduction.

A. Patterns with uniform PML distribution

It was shown in [13] that all 1-uniform patterns have a

uniform PML distribution. Lemma 1 showed that under certain

support size constraints, the probability of quasi-uniform pat-

ters is maximized by uniform distributions. Slightly tightening

the quasi-uniformity condition, we remove the support-size

Canonical ψ bPψ Reference

1 any distribution Trivial
11, 111, 111, . . . (1) Trivial
12, 123, 1234, . . . ( ) Trivial
112, 1122, 1112,

(1/2, 1/2) [12]
11122, 111122
11223, 112233, 1112233 (1/3, 1/3, 1/3) [13]
111223, 1112223, (1/3, 1/3, 1/3) [15]
1123, 1122334 (1/5, 1/5, . . . ,1/5) [12]
11234 (1/8, 1/8, . . . ,1/8) [13]
11123 (3/5) [16]
11112 (0.7887.., 0.2113..) [12]
111112 (0.8322.., 0.1678..) [12]
111123 (2/3) [16]
111234 (1/2) [16]
112234 (1/6, 1/6, . . . ,1/6) [13]
112345 (1/13, . . . ,1/13) [13]
1111112 (0.857.., 0.143..) [12]
1111122 (2/3, 1/3) [12]
1112345 (3/7) [16]
1111234 (4/7) [16]
1111123 (5/7) [16]

1111223
“

1√
7
,
√

7−1
2
√

7
,
√

7−1
2
√

7

”
[15]

1123456 (1/19, . . . ,1/19) [13]
1112234 (1/5, 1/5, . . . ,1/5)? Conjectured

TABLE I
PML DISTRIBUTIONS OF ALL PATTERNS OF LENGTH ≤ 7

constraints, thereby greatly extending the lemma’s applicabil-

ity.

Theorem 6: Let ψ̄
def= 1μ12μ2 · · ·mμm . Suppose that (μt −

μt′)2 ≤ μt + μt′ − 2 for all t, t′ ∈ [m]. Then the PML of ψ̄
can be achieved at a uniform distribution.

Proof of Theorem 6: The proof is along the similar lines

of the proof of 1-uniform and quasi-uniform patterns. Details

are being omitted due to lack of space. �
If P̂1μ12μ2 ···mμm = (p̂1, p̂2, · · · , p̂k), the two lemmas below

bound the ratio p̂1/p̂k, which we use to generalize Theorem 6.

Lemma 7: For all patterns,

p̂1

p̂k
≤ μ1 − 1

μm − 1
.

For t �= t′ ∈ [m], define dt,t′ = (μt−μt′)2− (μt +μt′ −2).
Then,

Lemma 8: If
∑k

i=1 p̂i = 1 and p̂1 �= p̂k,(
p̂1

p̂k

)μ1−μm

>

∑
dt,t′<0 |dt,t′ |∑
dt,t′>0 dt,t′

,

where the summations are over unordered pairs {t, t′}.

The following theorem is the most general sufficiency

condition we have for a pattern to have a uniform PML.

Theorem 9: Let ψ̄
def= 1μ12μ2 · · ·mμm . If∑

dt,t′<0 |dt,t′ |∑
dt,t′>0 dt,t′

≥
(

μ1 − 1
μm − 1

)μ1−μm

,

then the PML of ψ̄ can be achieved at a uniform distribution.

Proof of Theorem 9: The condition of the theorem violates

Lemmas 7 and 8 unless p̂1 = p̂k. This implies that the discrete
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part of PML is uniform. We can also prove that for such

patterns we can increase the pattern probability by adding two

probabilities pi and pj . This can be used to show that PML

can be achieved at a uniform distribution. �
Note that we can obtain the PML distribution for 1-uniform

patterns as well as for patterns in Theorem 6 as a special case

for this theorem, as we have dt,t′ ≤ 0 for all t, t′.

B. Upper bounds on support size of Patterns

As seen in the previous works, good upper bounds on the

support size, or on the number of distinct multiplicities of

the PML, is of practical value when estimating the PML.

With good support-size bounds, we can apply algorithms such

as EM more efficiently, and can be more certain about their

convergence. We can also use such bounds to find the exact

PML of some patterns [15]. In Theorem 4 of [12] the number

of distinct probabilities that occur in PML of any pattern was

shown to be at most min{n − 1, 2m}. This means that if we

can bound the number of times a certain value can repeat

in the PML multiset, we can bound the support size. If no

multiplicity is equal to 2 we obtain the following result.

Theorem 10: Let ψ̄ = 1μ12μ2 · · ·mμm . If for all i ∈ [m],
μi �= 2, k̂ ≤ 3m2(n − 1).

Proof of Theorem 10: For a probability distribution P =
(p1, p2, . . .), let Pi = (p1, . . . ,pi−1, 0, pi+1, . . .) be the sub-
distribution agreeing with P on all probabilities, except pi,

which is set to 0. Note that the probabilities in Pi, including

q, sum to 1− pi, hence if pi > 0 then Pi is not a distribution

but a point inside the probability simplex P .

Similarly for a pattern ψ = 1μ12μ2 · · ·mμm , let ψi
def=

1μ1 · · · (i− 1)μi−1iμi+1 · · · (m− 1)μm be the pattern obtained

by deleting all appearances of the ith symbol. For a set

S ⊆ [m] denote by ψ̄S̄ the pattern which misses the elements

in S.

As in [12], the pattern probability is a polynomial of the

underlying distribution multiset, and its derivative is a degree

n − 1 polynomial whose roots contain all values of the PML

distribution. We then assume that pi appears ki times, with

αi
def= kipi. Using the notation defined the following holds for

a fixed value of αi

P (ψ) =
∑

S⊆[m]

fS

(
1
ki

)
· αnS

i Pi(ψ̄S̄), (2)

where mS = |S|, nS =
∑

i∈S μi and

fS(x) def= xnS−mS

mS−1∏
t=1

(1 − tx).

Under the conditions assumed in the theorem it can be shown

that for

x <
1

3m2
,

f ′′
S (x) > 0 for all S ⊆ [m]. Thus, when the value of x is less

than the value stated above, we know that the function fS is

convex, and thus can have a maxima only at the boundaries.

One of the boundaries is x = 0, which converts αi into a

continuous part, and thus contributes nothing to the discrete

support size. The other boundary obtained from the bound on

x yields ki < 3m2. Since the number of distinct probabilities

is at most n − 1 the result follows. �

C. Recent work on the pattern 1112234

Following are some results on the PML of the pattern

1112234. Claim 1 shows that without a continuous part, the

number of distinct discrete probabilities is at most 4 , and

with a continuous part, that number is at most 3. Note that

this improves the above n − 1 = 6 bound.

Claim 1: The number of distinct probabilities in PML is at

most 4 if there is no continuous probability, else it is at most

3.

Proof of Claim 1: We first find the polynomial to which

the probabilities in PML are roots of. It is given by

− 42x6+24x5+5x4(2P̂ (11)−P̂ (12))+8x3(P̂ (111)−P̂ (112))

+ 3x2(P̂ (1123)−2P̂ (1112))+2x(P̂ (11123)−P̂ (11122))

+2P̂ (111223)−7P̂ (1112234) = 0.

Using the fact that the PML is majorized by the SML [12],

we can check that P̂ (11)−P̂ (12), and P̂ (111)−P̂ (112) are

both negative. Also the constant term can be seen to be zero

when there is a continuous part, and non-positive otherwise.

Using these we can bound the number of sign changes and

thus the number of positive roots. �
Corollary 11: k̂(1112234) ≤ 19.

Proof of Corollary 11: We first prove that either a given

probability value will occur at most 4 times or the value itself

is larger than 0.044. Combining this with the bound on the

number of distinct probabilities we can get the result. �
We are currently working towards obtaining more condi-

tions on the PML of 1112234, as well as reducing the support

size to a reasonable size when we can run a a program that

can find the PML distribution.
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