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Abstract

It was recently shown that estimating the Shannon
entropy H(p) of a discrete k-symbol distribution p re-
quires Θ(k/ log k) samples, a number that grows near-
linearly in the support size. In many applications
H(p) can be replaced by the more general Rényi en-
tropy of order α, Hα(p). We determine the number of
samples needed to estimate Hα(p) for all α, showing
that α < 1 requires super-linear, roughly k1/α sam-
ples, noninteger α > 1 requires near-linear, roughly k
samples, but integer α > 1 requires only Θ(k1−1/α)
samples. In particular, estimating H2(p), which
arises in security, DNA reconstruction, closeness test-
ing, and other applications, requires only Θ(

√
k) sam-

ples. The estimators achieving these bounds are sim-
ple and run in time linear in the number of samples.

1 Introduction

1.1 Shannon and Rényi entropies The most
commonly used measure of randomness of a distri-
bution p over a set X is its Shannon entropy

H(p)
def
=
∑
x∈X

px log
1

px
.

The estimation of Shannon entropy has several
applications, including measuring genetic diver-
sity [SEM91], quantifying neural activity [Pan03,
NBdRvS04], network anomaly detection [LSO+06],
and others. However, it was recently shown that
estimating Shannon entropy of a k-element dis-
tribution p to a given additive accuracy requires
Θ(k/ log k) independent samples from p [Pan04,
VV11]; see [JVW14b, WY14] for subsequent exten-
sions. This number of samples grows near-linearly
with the alphabet size and is only a logarithmic fac-
tor smaller than the Θ(k) samples needed to learn p
itself to within a small statistical distance.
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A popular generalization of Shannon entropy is
the Rényi entropy of order α ≥ 0, defined for α 6= 1
by

Hα(p)
def
=

1

1− α
log
∑
x∈X

pαx

and for α = 1 by

H1(p)
def
= lim

α→1
Hα(p).

As shown in its introductory paper [Rén61], Rényi en-
tropy of order 1 is Shannon entropy, namely H1(p) =
H(p), and for all other orders it is the unique ex-
tension of Shannon entropy when of the four re-
quirements in Shannon entropy’s axiomatic defini-
tion, continuity, symmetry, and normalization are
kept but grouping is restricted to only additivity over
independent random variables.

Rényi entropy too has many applications. It is
often used as a bound on Shannon entropy [Mok89,
NBdRvS04, HNO08], and in many applications it
replaces Shannon entropy as a measure of ran-
domness [Csi95, Mas94, Ari96]. It is also of in-
terest in its own right, with diverse applications
to unsupervised learning [Xu98, JHE+03], source
adaptation [MMR12], image registration [MIGM00,
NHZC06], and password guessability [Ari96, PS04,
HS11] among others. In particular, the Rényi entropy
of order 2, H2(p), measures the quality of random
number generators [Knu73, OW99], determines the
number of unbiased bits that can be extracted from
a physical source of randomness [IZ89, BBCM95],
helps test graph expansion [GR00] and closeness of
distributions [BFR+13, Pan08], and characterizes the
number of reads needed to reconstruct a DNA se-
quence [MBT13].

Motivated by these applications, asymptotically
consistent and normal estimates of Rényi entropy
were proposed [XE10, KLS11]. Yet no systematic
study of the sample complexity of estimating Rényi
entropy is available. For example, it was hitherto
unknown if the number of samples needed to estimate
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the Rényi entropy of a given order α differs from that
required for Shannon entropy, or whether it varies
with the order α, or how it depends on the alphabet
size k.

1.2 Definitions and results We answer these
questions by showing that the number of samples
needed to estimate Hα(p) falls in three different
ranges. For α < 1 it grows superlinearly with k, for
1 < α 6∈ N it grows roughly linearly with k, and for
orders 1 < α ∈ N it grows as Θ(k1−1/α), much slower
than the corresponding growth rate for estimating
Shannon entropy.

To state the results more precisely we need
a few definitions. A Rényi-entropy estimator for
distributions over support set X is a function f :
X ∗ → R mapping a sequence of samples drawn from
a distribution to an estimate of its entropy. Given
independent samplesXn = X1, . . . , Xn from p, define
Sfα(k, δ, ε) to be the minimum number of samples an
estimator f needs to approximate Hα(p) of any k-
symbol distribution p to a given additive accuracy δ
with probability greater than 1− ε, namely

Sfα(k, δ, ε)
def
= min

{
n : p (|Hα(p)− f (Xn) | > δ) < ε,

for all p = (p1, ...,pk)
}

The sample complexity of estimating Hα(p) is then

Sα(k, δ, ε)
def
= min

f
Sfα(k, δ, ε),

the least number of samples any estimator needs to
estimate the order-α Rényi entropy of all k-symbol
distributions to additive accuracy δ with probability
greater than 1− ε.

We are mostly interested in the dependence of
Sα(k, δ, ε) on the alphabet size k and typically omit
δ and ε to write Sα(k). Additionally, to focus on
the essential growth rate of Sα(k), we use standard
asymptotic notation where Sα(k) = O(kβ) indicates
that for some constant c that may depend on α, δ, and
ε, for all sufficiently large k, Sα(k) ≤ c ·kβ . Similarly,
Sα(k) = Θ(kβ) adds the corresponding Ω(kβ) lower
bound for sufficiently small δ and ε. Finally, we

let Sα(k) =
∼∼
Ω (kβ) indicate that for all sufficiently

small δ and ε, and for all η > 0, for all sufficiently
large k, Sα(k) > kβ−η, namely that if δ and ε are
small enough then Sα(k) grows polynomially in k
with exponent not less than β.

We show that Sα(k) behaves differently in three
ranges of α. For 0 ≤ α < 1,

∼∼
Ω
(
k1/α

)
≤ Sα(k) ≤ O

(
k1/α/ log k

)
,

namely the sample complexity grows superlinearly in
k and estimating the Rényi entropy of these orders is
even more difficult than estimating Shannon entropy.
As shown in Subsection 1.3, the upper bound follows
from a result in [JVW14b], and in Theorem 3.2 we
show that the simple empirical-frequency estimator
requires only a little more, O

(
k1/α

)
samples. The

lower bound is proved in Theorem 4.4.
For 1 < α /∈ N,

∼∼
Ω (k) ≤ Sα(k) ≤ O(k),

namely as with Shannon entropy, the sample com-
plexity grows roughly linearly in the alphabet size.
The lower bound is proved in Theorem 4.3 and the
upper bound in Theorem 3.1 using the empirical-
frequency estimator.

For 1 < α ∈ N,

Sα(k) = Θ
(
k1−1/α

)
,

namely the sample complexity is sublinear in the
alphabet size. The upper and lower bounds are shown
in Theorems 3.3 and 4.2, respectively.

It was recently brought to our attention
that [BKS01] considered the related problem of esti-
mating integer moments of frequencies in a sequence.
While their setting and proofs are different, their
analysis implies our results for integer α, though not
for non-integer α.

Of the three ranges, the most frequently used is
the last, α = 2, 3, . . .. Some elaboration is therefore
in order.

First, for all orders in this range, Hα(p) can
be estimated with a sublinear number of samples.
The most commonly used Rényi entropy, H2(p), can
be estimated using just Θ(

√
k) samples, and hence

Rényi entropy can be estimated much more efficiently
than Shannon Entropy, a useful property for large-
alphabet applications such as language processing
and genetic analysis.

Second, when estimating Shannon entropy using
Θ(k/ log k) samples, the constant factors implied by
the Θ notation are fairly high. For Rényi entropy
of orders α = 2, 3, ..., the constants implied by
Θ(k1−1/α) are small. Furthermore, the experiments
described later in the paper suggest that they may
be even lower.

Finally, note that Rényi entropy is continuous
in its order α. Yet the sample complexity is dis-
continuous at integer orders. While this makes the
estimation of the popular integer-order entropies eas-
ier, it may seem contradictory. For instance, to ap-
proximate H2.001(p) one could approximate H2(p)
using significantly fewer samples. However, there

1856 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

05
/0

5/
15

 to
 1

37
.1

10
.8

4.
11

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



is no contradiction. Rényi entropy, while continu-
ous in α, is not uniformly continuous. In fact, as
shown in Example 1.2, the difference between say
H2(p) and H2.001(p) may increase to infinity when
the distribution-size increases.

It should also be noted that the estimators
achieving the upper bounds are simple and run in
time linear in the number of samples. Furthermore,
the estimators are universal in that they do not re-
quire the knowledge of k. On the other hand, the
lower bounds on Sα(k) hold even if the estimator
knows k.

1.3 Relation to power sum estimation The
power sum of order α for a distribution p over X
is

Pα(p)
def
=
∑
x∈X

pαx ,

and it is related to Rényi entropy via

Hα(p) =
1

1− α
logPα(p).

Hence estimating Hα(p) to an additive accuracy of
±δ is equivalent to estimating Pα(p) to a multiplica-
tive accuracy of 2±δ·(1−α). Since the dependence
on δ is absorbed in the asymptotic notation, letting
SP×α (k) denote the number of samples needed to es-
timate Pα(p) to a fixed multiplicative accuracy, it
follows that

SP×α (k) = Θ(Sα(k)),

and consequently the results outlined in Susbec-
tion 1.2 for the additive estimation of Hα(p) also ap-
ply to the multiplicative estimation of Pα(p).

Clearly, the power sums too measure the ran-
domness of a distribution [Goo89], and starting
with [AMS96], estimating the empirical power sums
of a data stream using minimum space has generated
considerable interest, with the order-optimal space
complexity for α ≥ 2 determined in [IW05].

Let SP+
α (k) denote the number of samples needed

to estimate Pα(p) to a given additive accuracy. Re-
sults derived in [BKS01] for the frequency-estimation
setting of this problem imply that for 1 < α ∈ N,
SP+
α (k) is a constant independent of k. Recently,

[JVW14b] showed that for α < 1,

(1.1) Ω

(
k1/α

log3/2 k

)
≤ SP+

α (k) ≤ O
(
k1/α

log k

)
,

and [JVW14a] showed that for 1 < α < 2,

SP+
α (k) ≤ O

(
k2/α−1

)
.

In the Appendix we show that for for all α > 1,
SP+
α (k) is a constant independent of k. Similar

results were concurrently obtained and appeared in
an updated version of [JVW14b].

Since Pα(p) > 1 for α < 1, power sum estimation
to a fixed additive accuracy implies also a fixed
multiplicative accuracy, and therefore

Sα(k) = Θ(SP×α (k)) ≤ O(SP+
α (k)),

namely for estimation to an additive accuracy, Rényi
entropy requires fewer samples than power sums.
Similarly, Pα(p) < 1 for α > 1, and therefore

Sα(k) = Θ(SP×α (k)) ≥ Ω(SP+
α (k)),

namely for an additive accuracy in this range, Rényi
entropy requires more samples than power sums.

It follows that the power sum estimation results
in [JVW14b, JVW14a] and the Rényi-entropy esti-
mation results in this paper complement each other
in several ways. For example, for α < 1,

∼∼
Ω
(
k1/α

)
≤ Sα(k) = Θ(SP×α (k))

≤ O(SP+
α (k))

≤ O
(
k1/α

log k

)
,

where the first inequality follows from Theorem 4.4
and the last follows from the upper-bound (1.1)
derived in [JVW14b]. Hence, for α < 1, estimating
power sums to additive and multiplicative accuracy
require a comparable number of samples.

On the other hand, for α > 1, Theorems 3.1

and 4.3 imply that for non integer α,
∼∼
Ω (k) ≤

SP×α (k) ≤ O (k) , while in the Appendix we show that
for 1 < α, SP+

α (k) is a constant. Hence in this range,
power sum estimation to a multiplicative accuracy
requires considerably more samples than estimation
to an additive accuracy.

1.4 The estimators As suggested by the above
discussion, we construct multiplicative-accuracy
power sum estimators and use them to derive
additive-accuracy estimators for Rényi entropy. We
use two simple and practical estimators, one for inte-
ger, and the other for noninteger, values of α.

To simplify the analysis we use Poisson sampling,
described further in Section 2. Instead of generating
exactly n independent samples from p, we generate
N ∼ Poi(n) samples, where Poi(n) is the Poisson
distribution with parameter n. Let X1, . . . , XN , be
the samples, and let

Nx
def
= | {1 ≤ i ≤ N : Xi = x} |
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be the number of times a symbol x appears. Note
that under Poisson sampling Nx ∼ Poi(npx) inde-
pendent of other symbols, and hence the empirical
frequency Nx/n is an unbiased estimator for px.

The following estimators are used for different
ranges of α.

1.4.1 Empirical estimator The empirical, or
plug-in, estimator of Pα(p) is given by

P̂ e
α

def
=
∑
x

(
Nx
n

)α
.

While P̂ e
α is biased, it gives a reasonably good per-

formance for all α 6= 1. Theorem 3.2 shows that for
α < 1 its sample complexity is O(k1/α), and Theo-
rem 3.1 shows that for α > 1 it is O(k). The lower
bounds in Section 4 show that these sample complex-
ities have the optimal exponent of k for all noninteger
α.

1.4.2 Bias-corrected estimator To reduce the
sample complexity for integer orders α > 1 to
below k we follow the path of the development of
Shannon entropy estimators. Traditionally, Shannon
entropy was estimated via an empirical estimator,
analyzed in, for instance, [AK01]. However, with
o(k) samples, the bias of the empirical estimator
remains high [Pan04]. This bias is reduced by the
Miller-Madow correction [Mil55, Pan04], but even
then, O(k) samples are needed for a reliable Shannon-
entropy estimation [Pan04].

We similarly reduce the bias for Rényi entropy
estimators using unbiased estimators for pαx . The
resulting bias-corrected estimator for Pα(p) is

P̂ u
α

def
=
∑
x

N
α
x

nα
,

as

E
[
P̂ u
α

]
=
∑
x

E
[
N
α
x

nα

]
=
∑
x

pαx = Pα(p).

Theorem 3.3 show that for 1 < α ∈ N, P̂ u
α estimates

Pα(p) using O(k1−1/α) samples, and Theorem 4.2
shows that this number is optimal up to a constant
factor.

We relate P̂ u
α to another simple power sum esti-

mator considered in [BKS01]. For α ∈ N, Pα(p) is
the probability that α independent samples from p
are all identical. This suggests taking n samples, and
estimating Pα(p) by the fraction P̂ u′

α of α-element
subsets that consist of a single value.

More formally, given n independent samples
Xn = X1, . . . , Xn from p, for S ⊆ [n], let

1S(Xn) =

{
1 Xi = Xj for all i, j ∈ S,
0 Xi 6= Xj for some i, j ∈ S

indicate whether the Xi are identical for all i ∈ S,
and let

(
[n]
α

)
denote the collection of all α-element

subsets of [n]. Then

P̂ u′

α =
1(
n
α

) ∑
S∈([n]

α )

1S(Xn).

Note that P̂ u′

α is unbiased because for all S ⊆ [n],

E[1S(Xn) ] = P|S|(p),

and hence,

E
[
P̂ u′

α

]
= E

 1(
n
α

) ∑
S∈([n]

α )

1S(Xn)

 = Pα(p).

To relate P̂ u′

α and P̂ u
α , observe that

1S(Xn) =
∑
x∈X

1(Xi = x ∀i ∈ S)

and let N ′x denote the number of 1 ≤ i ≤ n such that
Xi = x. Then∑

S∈([n]
α )

1S(Xn) =
∑

S∈([n]
α )

∑
x∈X

1(Xi = x ∀i ∈ S)

=
∑
x∈X

∑
S∈([n]

α )

1(Xi = x ∀i ∈ S)

=
∑
x∈X

(
N ′x
α

)
.

Hence

P̂ u′

α =
1(
n
α

) ∑
S∈([n]

α )

1S(Xn)

=
1(
n
α

) ∑
x∈X

(
N ′x
α

)
=
∑
x∈X

(N ′x)α

nα
,

namely P̂ u′

α can be viewed as a fixed-sampling equiv-

alent of the Poisson-sampling P̂ u
α .

The special case of P̂ u′

α where α = 2 was consid-
ered in [GR00, BFR+13] for testing whether a dis-
tribution is close to uniform. They also analyzed its
variance and their calculations along with Lemma 2.1
and Lemma 3.2 can provide an alternative derivation
of an order-optimal estimator for H2(p).
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1.5 Examples and experiments We demon-
strate the performance of the estimators for two pop-
ular distributions, uniform and Zipf. For each, we de-
termine the Rényi entropy of any order and illustrate
the performance for integer and noninteger orders by
showing that estimating Rényi entropy of order 2 re-
quires only a small multiple of

√
k samples, while for

order 1.5 the estimators require nearly k samples.

Example 1.1. The uniform distribution Uk over
[k] = {1, . . . , k} is defined by

pi =
1

k
for i ∈ [k].

Its Rényi entropy for every order 1 6= α ≥ 0, and
hence for all α ≥ 0, is

Hα(Uk) =
1

1− α
log

k∑
i=1

1

kα
=

1

1− α
log k1−α = log k.

Figure 1 shows the performance of the bias-corrected
and the empirical estimators for samples drawn from
a uniform distribution.

Example 1.2. The Zipf distribution Zβ,k for β > 0
and k ∈ [k] is defined by

pi =
i−β∑k
j=1 j

−β
for i ∈ [k].

Its Rényi entropy of order α 6= 1 is

Hα(Zβ,k) =
1

1− α
log

k∑
i=1

i−αβ − α

1− α
log

k∑
i=1

i−β .

We illustrate that the continuity of Hα(Zβ,k) in
α is not uniform in k. Specifically, we note that the
difference between H2(Zβ,k) and H2+ε(Zβ,k) may in-
crease to infinity when the distribution-size increases.
This implies that one cannot approximate, for in-
stance, H2.001(p) using H2(p) when the underlying
distribution p is unknown.

Table 1 summarizes the leading term g(k) in the
approximation1 Hα(Zβ,k) ∼ g(k).

1We say f(n) ∼ g(n) to denote limn→∞ f(n)/g(n) = 1.

300 400 500 600 700 800 900 1,000
Number of samples
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y

Renyi entropy of order 2 for a uniform distribution on 10000 symbols

actual entropy
median
1st to 3rd quartile
minimum and maximum estimates

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
Number of samples

11.5

12.0

12.5

13.0

13.5

14.0

E
st
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a
te

d
 e

n
tr

o
p
y

Renyi entropy of order 1.5 for a uniform distribution on 10000 symbols

actual entropy
median
1st to 3rd quartile
minimum and maximum estimates

Figure 1: Estimation of Rényi entropy of order 2
and order 1.5 using the bias-corrected estimator and
empirical estimator, respectively, for samples drawn
from a uniform distribution. The boxplots display the
estimated values for 100 independent experiments.

β < 1 β = 1 β > 1

αβ < 1 log k 1−αβ
1−α log k 1−αβ

1−α log k

αβ = 1 α−αβ
α−1 log k 1

2 log k 1
1−α log log k

αβ > 1 α−αβ
α−1 log k α

α−1 log log k constant

Table 1: The leading terms g(k) in the approxima-
tions Hα(Zβ,k) ∼ g(k) for different values of αβ and
β. The case αβ = 1 and β = 1 corresponds to the
Shannon entropy of Z1,k.

In particular, for α > 1

Hα(Z1,k) =
α

1− α
log log k + Θ

(
1

kα−1

)
+ c(α),

and the difference |H2(p)−H2+ε(p)| is O (ε log log k).
Therefore, even for very small ε this difference is
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unbounded and approaches infinity in the limit as k
goes to infinity. Figure 2 shows the performance of
our estimators for samples drawn from Z1,k.

300 400 500 600 700 800 900 1,000
Number of samples

4.0
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5.0

5.5

6.0

6.5

7.0

7.5

E
st

im
a
te

d
 e

n
tr

o
p
y

Estimating Renyi entropy of order 2 for Zipf(1) distribution on 10000 symbols

actual entropy
median
1st to 3rd quartile
minimum and maximum estimates

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000
Number of samples

6.6

6.8

7.0

7.2

7.4

E
st

im
a
te

d
 e

n
tr

o
p
y

Estimating Renyi entropy of order 1.5 for Zipf(1) distribution on 10000 symbols

actual entropy
median
1st to 3rd quartile
minimum and maximum estimates

Figure 2: Estimation of Rényi entropy of order 2
and order 1.5 using the bias-corrected estimator and
empirical estimator, respectively, for samples drawn
from Z1,k. The boxplots display the estimated values
for 100 independent experiments.

Figures 1 and 2 above illustrate the estimation
of Rényi entropy for α = 2 and α = 1.5 using the
empirical and the bias-corrected estimators, respec-
tively. As expected, for α = 2 the estimation works
quite well for n =

√
k and requires roughly k samples

to work well for α = 1.5. Note that the empirical es-
timator is negatively biased for α > 1 and the figures
above confirm this. Our goal in this work is to find
the exponent of k in Sα(k), and as our results show,
for noninteger α the empirical estimator attains the
optimal exponent; we do not consider the possible

improvement in performance by reducing the bias in
the empirical estimator.

1.6 Organization The rest of the paper is orga-
nized as follows. Section 2 presents basic properties
of power sums of distributions and moments of Pois-
son random variables, which may be of independent
interest. The estimation algorithms are analyzed in
Section 3, in Section 3.1 we show results on the em-
pirical or plug-in estimate, in Section 3.2 we provide
optimal results for integral α and finally we provide
an improved estimator for non-integral α > 1. Fi-
nally, the lower bounds on the sample complexity of
estimating Rényi entropy are established in Section
4.

2 Technical preliminaries

2.1 Bounds on power sums Consider a distri-
bution p over [k] = {1, . . . , k}. Since Rényi entropy
is a measure of randomness (see [Rén61] for a detailed
discussion), it is maximized by the uniform distribu-
tion and the following inequalities hold:

0 ≤ Hα(p) ≤ log k, α 6= 1,

or equivalently

1 ≤ Pα(p) ≤ k1−α, for α < 1(2.2)

k1−α ≤ Pα(p) ≤ 1, for α > 1.(2.3)

Furthermore, for α > 1, Pα+β(p) and Pα−β(p) can be
bounded in terms of Pα(p), using the monotonicity
of norms and of Hölder means (see, for instance,
[HLP52]).

Lemma 2.1. For every 0 ≤ α,

P2α(p) ≤ Pα(p)
2

Further, for α > 1 and 0 ≤ β ≤ α,

Pα+β(p) ≤ k(α−1)(α−β)/α Pα(p)2,

and
Pα−β(p) ≤ kβ Pα(p).

Proof. By the monotonicity of norms,

Pα+β(p) ≤ Pα(p)
α+β
α ,

which gives

Pα+β(p)

Pα(p)2
≤ Pα(p)

β
α−1

.

The first inequality follows upon choosing β = α. For
1 < α and 0 ≤ β ≤ α, we get the second by (2.2). For
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the final inequality, note that by the monotonicity of
Hölder means, we have

(
1

k

∑
x

pα−βx

) 1
α−β

≤

(
1

k

∑
x

pαx

) 1
α

.

The final inequality follows upon rearranging the
terms and using (2.2).

2.2 Bounds on moments of a Poisson random
variable Let Poi(λ) be the Poisson distribution with
parameter λ. We consider Poisson sampling where
N ∼ Poi(n) samples are drawn from the distribution
p and the multiplicities used in the estimation are
based on the sequence XN = X1, ..., XN instead of
Xn. Under Poisson sampling, the multiplicities Nx
are distributed as Poi(npx) and are all independent,
leading to simpler analysis. To facilitate our analysis
under Poisson sampling, we note a few properties of
the moments of a Poisson random variable.

We start with the expected value and the vari-
ance of falling powers of a Poisson random variable.

Lemma 2.2. Let X ∼ Poi(λ). Then, for all r ∈ N

E[Xr ] = λr

and

Var[Xr ] ≤ λr ((λ+ r)r − λr) .

Proof. The expectation is

E[Xr ] =

∞∑
i=0

Poi(λ, i) · ir

=

∞∑
i=r

e−λ · λ
i

i!
· i!

(i− r)!

= λr
∞∑
i=0

e−λ · λ
i

i!

= λr.

The variance satisfies

E
[
(Xr)2

]
=
∞∑
i=0

Poi(λ, i) · (ir)2

=

∞∑
i=r

e−λ · λ
i

i!

i!2

(i− r)!2

= λr
∞∑
i=0

e−λ · λ
i

i!
· (i+ r)r

= λr · E[(X + r)r ]

≤ λr · E

 r∑
j=0

(
r

j

)
Xj · rr−j


= λr ·

r∑
j=0

(
r

j

)
· λj · rr−j

= λr(λ+ r)r,

where the inequality follows from

(X + r)r =

r∏
j=1

[(X + 1− j) + r]

≤
r∑
j=0

(
r

j

)
·Xj · rr−j .

Therefore,

Var[Xr ] = E
[
(Xr)2

]
− [EXr ]2

≤ λr · ((λ+ r)r − λr) .

�

The next result establishes a bound on the mo-
ments of a Poisson random variable.

Lemma 2.3. Let X ∼ Poi(λ) and let β be a positive
real number. Then,

E
[
Xβ

]
≤ c(β) max{λ, λβ},

where the constant c(β) does not depend on λ.

Proof. For the case when λ > 1, we have

E
[
Xβ

]
≤
∑
i≤2λ

Poi(λ, i) iβ +
∑
i>2λ

Poi(λ, i) iβ

≤ 2βλβ +
∑
i>2λ

Poi(λ, i) iβ .

Using the standard tail bound for Poisson random
variables, if λ > 1, for all i > 2λ

Poi(λ, i) ≤ P (X ≥ i) ≤ exp

(
− i− λ

8λ

)
,
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where the second inequality follows upon bounding
the cumulant-generating function of X for i > 2λ
and λ > 1. Therefore,

E
[
Xβ

]
≤
(

2β + e1/8

∫ ∞
0

e−x/8xβ dx

)
λβ , λ > 1.

For λ ≤ 1, since λi ≤ λ for all i ≥ 1

E
[
Xβ

]
≤ λ

∞∑
i=1

iβ

i!
,(2.4)

and the lemma follows upon choosing

c(β) = max

{ ∞∑
i=1

iβ

i!
,

(
2β + e1/8

∫ ∞
0

e−x/8xβ dx

)}
,

which is a finite quantity. �

We close this section with bounds on |E[Xα ] −
λα|, which will be used in the next section to bound
the bias of the empirical estimator.

Lemma 2.4. For X ∼ Poi(λ),

|E[Xα ]− λα| ≤

{
α
(
cλ+ (c+ 1)λα−1/2

)
α > 1

min(λα, λα−1) α ≤ 1,

where the constant c is given by
√
c(2α− 2) with

c(2α− 2) as in Lemma 2.3.

Proof. For α ≤ 1, (1 + y)α ≥ 1 + αy − y2 for all
y ∈ [−1,∞], hence,

Xα = λα
(

1 +
(X
λ
− 1
))α

≥ λα
(

1 + α
(X
λ
− 1
)
−
(X
λ
− 1
)2
)
.

Taking expectations on both sides,

E[Xα ] ≥ λα
(

1 + αE
[(X

λ
− 1
)]
− E

[(X
λ
− 1
)2
])

= λα
(

1− 1

λ

)
.

Since xα is a concave function and X is nonnegative,
the previous bound yields

|E[Xα ]− λα| = λα − E[Xα ]

≤ min(λα, λα−1).

For α > 1,

|xα − yα| ≤ α|x− y|
(
xα−1 + yα−1

)
,

hence by the Cauchy-Schwarz Inequality,

E[|Xα − λα| ]
≤ αE

[
|X − λ|

(
Xα−1 + λα−1

) ]
≤ α

√
E[(X − λ)2 ]

√
E[(X2α−2 + λ2α−2) ]

≤ α
√
λ
√

E[(X2α−2 + λ2α−2) ]

≤ α
√
c(2β − 2) max{λ2, λ2α−1}+ λ2α−1

≤ α
(
cmax{λ, λα−1/2}+ λα−1/2

)
,

where the last-but-one inequality is by Lemma 2.3.
�

3 Upper bounds on sample complexity

In this section, we analyze the performances of the
estimators we proposed in Section 1.4. Our proofs are
based on bounding the bias and the variance of the
estimators under Poisson sampling. We first describe
our general recipe and then analyze the performance
of each estimator separately.

Let X1, ..., Xn be n independent samples drawn
from a distribution p over k symbols. Consider an es-
timate fα (Xn) = 1

1−α log P̂α(n,Xn) of Hα(p) which
depends on Xn only through the multiplicities Tand
the sample size. Here P̂α(n,Xn) is the corresponding
estimate of Pα(p) – as discussed in Section 1, small
additive error in the estimate fα (Xn) of Hα(p) is
equivalent to small multiplicative error in the esti-
mate P̂α(n,Xn) of Pα(p). For simplicity, we analyze
a randomized estimator f̃α described as follows:

f̃α (Xn) =

{
constant, N > n,

1
1−α log P̂α(n/2, XN ), N ≤ n.

The following reduction to Poisson sampling is well-
known.

Lemma 3.1. (Poisson approximation 1) For n ≥
8 log(2/ε) and N ∼ Poi(n/2),

P
(
|Hα(p)− f̃α (Xn) | > ε

)
≤P
(
|Hα(p)− 1

1− α
log P̂α(n/2, XN )| > ε

)
+
ε

2
.

It remains to bound the probability on the right-side
above, which can be done provided the bias and the
variance of the estimator are bounded.

Lemma 3.2. For N ∼ Poi(n), let the power sum

estimator P̂α = P̂α(n,XN ) have bias and variance
satisfying ∣∣∣E[P̂α ]− Pα(p)

∣∣∣ ≤ δ

2
Pα(p),

Var
[
P̂α

]
≤ δ2

12
Pα(p)2.
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Then, there exists an estimator P̂′α that uses
O(n log(1/ε)) samples and ensures

P
(∣∣∣P̂′α − Pα(p)

∣∣∣ > δ Pα(p)
)
≤ ε.

Proof. By Chebychev’s Inequality

P
(∣∣∣P̂α − Pα(p)

∣∣∣ > δ Pα(p)
)

≤P
(∣∣∣P̂α − E

[
P̂α

]∣∣∣ > δ

2
Pα(p)

)
≤ 1

3
.

To reduce the probability of error to ε, we use the
estimate P̂α repeatedly for O(log(1/ε)) independent

samples XN and take the estimate P̂′α to be the
sample median of the resulting estimates. Specifi-
cally, let P̂1, ..., P̂t denote t-estimates of Pα(p) ob-

tained by applying P̂α to independent sequences XN ,
and let 1Ei be the indicator function of the event

Ei = {|P̂i−Pα(p)| > δ Pα(p)}. By the analysis above
we have E[1Ei ] ≤ 1/3 and hence by Hoeffding’s in-
equality

P

(
t∑
i=1

1Ei >
t

2

)
≤ exp(−t/18).

The claimed bound follows on choosing t =
18 log(1/ε) and noting that if more than half of

P̂1, ..., P̂t satisfy |P̂i − Pα(p)| ≤ δ Pα(p), then their
median must also satisfy the same condition. �

In the remainder of the section, we bound the
bias and the variance for our estimators when the
number of samples n are of the appropriate order.
Denote by f e

α and fu
α, respectively, the empirical es-

timator 1
1−α log P̂ e

α and the bias-corrected estimator
1

1−α log P̂ u
α .

3.1 Performance of empirical estimator First,
we present upper bounds for the sample complexity
of the empirical estimator separately for α > 1 and
α < 1.

Theorem 3.1. For α > 1, δ > 0, and 0 < ε < 1, the
estimator feα satisfies

S
fe
α
α (k, δ, ε) ≤ O

(
k

δmax{4, 1/(α−1)} log
1

ε

)
.

Proof. Denote λx
def
= npx. For α > 1, the bias of the

power sum estimator is bounded using Lemma 2.4 as

follows:∣∣∣∣E[∑xN
α
x

nα

]
− Pα(p)

∣∣∣∣
≤ 1

nα

∑
x

|E[Nα
x ]− λαx |

≤ α

nα

∑
x

(
cλx + (c+ 1)λα−1/2

x

)
≤ αc

nα−1
+
α(c+ 1)√

n
Pα−1/2(p)

≤ α

(
c

(
k

n

)α−1

+ (c+ 1)

√
k

n

)
Pα(p)(3.5)

where the previous inequality is by Lemma 2.1 and
(2.2).

Similarly, for bounding the variance, using inde-
pendence of multiplicities, the following inequalities
ensue:

Var

[∑
x

Nα
x

nα

]

=
1

n2α

∑
x

Var[Nα
x ]

=
1

n2α

∑
x

E
[
N2α
x

]
− [ENα

x ]
2

=
1

n2α

∑
x

E
[
N2α
x

]
− λ2α

x + λ2α
x − [ENα

x ]
2

≤ 1

n2α

∑
x

∣∣E[N2α
x

]
− λ2α

x

∣∣
≤ 2α

(
c

(
k

n

)2α−1

+ (c+ 1)

√
k

n

)
Pα(p)2(3.6)

where the last-but-one inequality holds by Jensen’s
inequality since zα is a convex function; the final
inequality is by2 (3.5) and Lemma 2.1. Therefore,
the bias and variance are small when n = O(k) and
theorem follows by Lemma 3.2. �

Theorem 3.2. For α < 1, δ > 0, and 0 < ε < 1, the
estimator feα satisfies

S
fe
α
α (k, δ, ε) ≤ O

(
k1/α

δmax{4, 2/α} log
1

ε

)
.

Proof. For α < 1, once again we take a recourse to

2For brevity, the constants in (3.5) and (3.6), albeit differ-
ent, are both denoted by c.

1863 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

05
/0

5/
15

 to
 1

37
.1

10
.8

4.
11

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Lemma 2.4 to bound the bias as follows:∣∣∣∣E[∑xN
α
x

nα

]
− Pα(p)

∣∣∣∣ ≤ 1

nα

∑
x

|E[Nα
x ]− λαx |

≤ 1

nα

∑
x

min
(
λαx , λ

α−1
x

)
≤ 1

nα

[∑
x/∈A

λαx +
∑
x∈A

λα−1
x

]
,

for every subset A ⊂ [k]. Upon choosing A = {x :
λx ≥ 1}, we get∣∣∣∣E[∑xN

α
x

nα

]
− Pα(p)

∣∣∣∣ ≤ 2

(
k1/α

n

)α
≤ 2Pα(p)

(
k1/α

n

)α
,(3.7)

where the last inequality uses (2.2). For bounding
the variance, note that

Var

[∑
x

Nα
x

nα

]

=
1

n2α

∑
x

Var[Nα
x ]

=
1

n2α

∑
x

E
[
N2α
x

]
− [ENα

x ]
2

≤ 1

n2α

∑
x

E
[
N2α
x

]
− λ2α

x +
1

n2α

∑
x

λ2α
x − [ENα

x ]
2
.

Consider the first term on the right-side. For α ≤
1/2, it is bounded above by 0 since z2α is concave in
z, and for α > 1/2 the bound in (3.6) applies to give

1

n2α

∑
x

E
[
N2α
x

]
− λ2α

x(3.8)

≤ 2α

(
c

n2α−1
+ (c+ 1)

√
k

n

)
Pα(p)2.

For the second term, we have∑
x

λ2α
x − [ENα

x ]
2

=
∑
x

(λαx − E[Nα
x ]) (λαx + E[Nα

x ])

≤ 2nαPα(p)

(
k1/α

n

)α∑
x

(λαx + E[Nα
x ])

≤ 4n2αPα(p)2

(
k1/α

n

)α
,

where the last-but-one inequality is by (3.7) and the
last inequality uses the concavity of zα in z. The
proof is completed by combining the two bounds
above and using Lemma 3.2. �

3.2 Performance of bias-corrected estimator
for integral α Next, we bound the number of sam-
ples needed for the bias-corrected estimator, thereby
establishing its optimality for integer α > 1.

Theorem 3.3. For an integer α > 1, any δ > 0, and
0 < ε < 1, the estimator fuα satisfies

S
fu
α
α (k, δ, ε) ≤ O

(
k(α−1)/α

δ2
log

1

ε

)
.

Proof. For bounding the variance of gα, we have

Var

[∑
xN

α
x

nα

]
=

1

n2α

∑
x

Var[Nα
x ]

≤ 1

n2α

∑
x

(
λαx(λx + α)α − λ2α

x

)
=

1

n2α

α−1∑
r=0

∑
x

(
α

r

)
αα−rλx

α+r

=
1

n2α

α−1∑
r=0

nα+r

(
α

r

)
αα−rPα+r(p),(3.9)

where the inequality uses Lemma 2.2. It follows from
Lemma 2.1 that

1

n2α

Var
[∑

xN
α
x

]
Pα(p)2

≤ 1

n2α

α−1∑
r=0

nα+r

(
α

r

)
αα−r

Pα+r(p)

Pα(p)2

≤
α−1∑
r=0

nr−α
(
α

r

)
αα−rk(α−1)(α−r)/α

≤
α−1∑
r=0

(
α2k(α−1)/α

n

)α−r
.

Furthermore, by Lemma 2.2 the estimator is unbiased
under Poisson sampling, which completes the proof
by Lemma 3.2. �

4 Lower bounds on sample complexity

We now establish lower bounds on Sα(k). The proof
relies on the approach in [Val08] and is based on
exhibiting two distributions p and q with Hα(p) 6=
Hα(q) for which similar multiplicities appear if fewer
samples than the claimed lower bound are available.

As before, there is no loss in considering Poisson
sampling.

Lemma 4.1. (Poisson approximation 2) Suppose
there exist δ, ε > 0 such that, with N ∼ Poi(2n), for

all estimators f̂ we have

max
p∈P

P
(
|Hα(p)− f̂α(XN )| > δ

)
> ε,
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where P is a fixed family of distributions. Then, for
all fixed length estimators f̃

max
p∈P

P
(
|Hα(p)− f̃α(Xn)| > δ

)
>
ε

2
,

when n > 4 log(2/ε).

Next, denote by Φ = Φ(XN ) the profile of XN

[OSVZ04], i.e., Φ = (Φ1,Φ2, . . .) where Φl is the
number of elements x that appear l times in the
sequence XN . The following well-known result says
that for estimating Hα(p), it suffices to consider only
the functions of the profile.

Lemma 4.2. (Sufficiency of profiles). Consider

an estimator f̂ such that

P
(
|Hα(p)− f̂(XN )| > δ

)
≤ ε, for all p.

Then, there exists an estimator f̃(XN ) = f̃(Φ) such
that

P
(
|Hα(p)− f̃(Φ)| > δ

)
≤ ε, for all p.

Thus, lower bounds on sample complexity will follow
upon showing a contradiction for the second inequal-
ity above when the number of samples n is sufficiently
small. The result below facilitates such a contradic-
tion.

Lemma 4.3. If for two distributions p and q on X
the variational distance ‖p− q‖ < ε, then one of the

following holds for every function f̂ :

p

(
|Hα(p)− f̂(X)| ≥ |Hα(p)−Hα(q)|

2

)
≥ 1− ε

2
,

or q

(
|Hα(q)− f̂(X)| ≥ |Hα(p)−Hα(q)|

2

)
≥ 1− ε

2
.

We omit the simple proof. Therefore, the required
contradiction, and consequently the lower bound

Sα(k) > k c(α),

will follow upon showing that there are distributions
p and q of support-size k such that the following hold:

(i) There exists δ > 0 such that

|Hα(p)−Hα(q)| > δ;(4.10)

(ii) denoting by pΦ and qΦ, respectively, the distri-
butions on the profiles under Poisson sampling
corresponding to underlying distributions p and
q, there exist ε > 0 such that

‖pΦ − qΦ‖ < ε,(4.11)

if n < k c(α).

Therefore, we need to find two distributions p and
q with different Rényi entropies and with small
variation distance between the distributions of their
profiles, when n is sufficiently small. For the latter
requirement, we recall a result of [Val08] that allows
us to bound the variation distance in (4.11) in terms
of the differences of power sums |Pa(p)− Pa(q)|.

Theorem 4.1. [Val08] Given distributions p and q
such that

max
x

max{px; qx} ≤
ε

40n
,

for Poisson sampling with N ∼ Poi(n), it holds that

‖pΦ − qΦ‖ ≤
ε

2
+ 5

∑
a

na|Pa(p)− Pa(q)|.

It remains to construct the required distributions
p and q, satisfying (4.10) and (4.11) above. By
Theorem 4.1, the variation distance ‖pΦ − qΦ‖ can
be made small by ensuring that the power sums of
distributions p and q are matched, that is, we need
distributions p and q with different Rényi entropies
and identical power sums for as large an order as
possible. To that end, for every positive integer d and
every vector x = (x1, ..., xd) ∈ Rd, associate with x
a distribution px of support-size dk such that

px
ij =

|xi|
k‖x‖1

, 1 ≤ i ≤ d, 1 ≤ j ≤ k.

Note that

Hα(px) = log k +
α

α− 1
log
‖x‖1
‖x‖α

,

and for all a

Pa (px) =
1

ka−1

(
‖x‖a
‖x‖1

)a
.

We choose the required distributions p and q, respec-
tively, as px and py, where the vectors x and y are
given by the next result.

Lemma 4.4. For every d ∈ N and α not integer,
there exist positive vectors x,y ∈ Rd such that

‖x‖r = ‖y‖r, 1 ≤ r ≤ d− 1,

‖x‖d 6= ‖y‖d,
‖x‖α 6= ‖y‖α.

A constructive proof of Lemma 4.4 will be given at
the end of this section. We are now in a position to
prove our converse results.

We first prove the lower bound for an integer
α > 1.
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Theorem 4.2. Given an integer α > 1 and any
estimator f of Hα(p), for every 0 < ε < 1 there exits
a distribution p with support of size k, δ > 0 and a
constant C > 0 such that for n < Ck(α−1)/α we have

P (|Hα(p)− f (Xn) | ≥ δ) ≥ 1− ε
2

.

In particular, for every 0 < ε < 1/2 there exists δ > 0
such that

Sα(k, δ, ε) ≥ Ω
(
k(α−1)/α

)
.

Proof. For d = α, let p and q, respectively, be the
distributions px and py, where the vectors x and y
are given by Lemma 4.4. In view of the foregoing
discussion, we need to verify (4.10) and (4.11) to
prove the theorem. Therefore, (4.10) holds by Lemma
4.4 since

|Hα(p)−Hα(q)| = α

1− α

∣∣∣∣log
‖x‖α
‖y‖α

∣∣∣∣ > 0,

and for n < C2k
(d−1)/d and 5Cd2/(1 − C2) < ε/2.

inequality (4.11) follows from Theorem 4.1 as

‖pΦ − qΦ‖ ≤
ε

2
+ 5

∑
a≥d

( n

k(a−1)/a

)a
≤ ε.

�

Next, we lower bound Sα(k) for noninteger α > 1
and show that it must be almost linear in k.

Theorem 4.3. Given a nonintegral α > 1, for every
0 < ε < 1/2, we have

Sα(k, δ, ε) ≥
∼∼
Ω (k).

Proof. For a fixed d, let distributions p and q be
as in the previous proof. Then, as in the proof of
Theorem 4.3, inequality (4.10) holds by Lemma 4.4
and (4.11) holds by Theorem 4.1 if n < C2k

(d−1)/d.
The theorem follows since d can be arbitrary large.�

Finally, we show that Sα(k) must be super-linear
in k for α < 1.

Theorem 4.4. Given α < 1, for every 0 < ε < 1/2,
we have

Sα(k, δ, ε) ≥
∼∼
Ω
(
k1/α

)
.

Proof. Consider distributions p and q on an alphabet
of size kd+ 1, where

pij =
px
ij

kβ
and qij =

qx
ij

kβ
, 1 ≤ i ≤ d, 1 ≤ j ≤ k,

where the vectors x and y are given by Lemma 4.4
and β satisfies α(1 + β) < 1, and

p0 = q0 = 1− 1

kβ
.

For this choice of p and q, we have

Pa (p) =

(
1− 1

kβ

)a
+

1

ka(1+β)−1

(
‖x‖a
‖x‖1

)a
,

and

Hα(p) =
1− α(1 + β)

1− α
log k+

α

1− α
log
‖x‖α
‖x‖1

+O(ka(1+β)−1),

and similarly for q, which further yields

|Hα(p)−Hα(q)| = α

1− α

∣∣∣∣log
‖x‖α
‖y‖α

∣∣∣∣+O(ka(1+β)−1).

Therefore, for sufficiently large k, (4.10) holds by
Lemma 4.4 since α(1 + β) < 1, and for n <
C2k

(1+β−1/d) we get (4.11) by Theorem 4.1 as

‖pΦ − qΦ‖ ≤
ε

2
+ 5

∑
a≥d

( n

k1+β−1/a

)a
≤ ε.

The theorem follows since d and β < 1/α − 1 are
arbitrary. �

We close with a proof of Lemma 4.4.
Proof of Lemma 4.4. Let x = (1, ..., d)). Con-

sider the polynomial

p(z) = (z − x1)...(z − xd),

and q(z) = p(z)−∆, where ∆ is chosen small enough
so that q(z) has d positive roots. Let y1, ..., yd be
the roots of the polynomial q(z). By Newton-Girard
identities, while the sum of dth power of roots of a
polynomial does depend on the constant term, the
sum of first d− 1 powers of roots of a polynomial do
not depend on it. Since p(z) and q(z) differ only by
a constant, it holds that

d∑
i=1

xri =

d∑
i=1

yri , 1 ≤ r ≤ d− 1,

and that

d∑
i=1

xdi 6=
d∑
i=1

ydi .
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Furthermore, using a first order Taylor approxima-
tion, we have

yi − xi =
∆

p′(xi)
+ o(∆),

and for any differentiable function g,

g(yi)− g(xi) = g′(xi)(yi − xi) + o(|yi − xi|).

It follows that

d∑
i=1

g(yi)− g(xi) =

d∑
i=1

g′(xi)

p′(xi)
∆ + o(∆),

and so, the left side above is nonzero for all ∆
sufficiently small provided

d∑
i=1

g′(xi)

p′(xi)
6= 0.

Upon choosing g(x) = xα, we get

d∑
i=1

g′(xi)

p′(xi)
=
α

d!

d∑
i=1

(
d
i

)
(−1)d−i iα.

Denoting the right side above by h(α), note that
h(i) = 0 for i = 1, ..., d − 1. Since h(α) is a linear
combination of d exponentials, it cannot have more
than d−1 zeros (see, for instance, [Tos06]). Therefore,
h(α) 6= 0 for all α /∈ {1, ..., d − 1}; in particular,
‖x‖α 6= ‖y‖α for all ∆ sufficiently small. �
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Appendix: Estimating power sums

As in Section 1.3, let SP+
α (k) denote the number of

samples needed to estimate the power sum Pα(p) to a
given additive accuracy. We show that the empirical
estimator requires a constant number of samples to
estimate Pα(p) independent of k, i.e., SP+

α (k) =
O(1). In view of Lemma 3.2, it suffices to bound
the bias and variance of the empirical estimator.

As before, we comsider Poisson sampling with
N ∼ Poi(n) samples. The empirical or plug-in
estimator of Pα(p) is

P̂ e
α

def
=
∑
x

(
Nx
n

)α
.

The next result shows that the bias and the variance
of the empirical estimator are o(1).

Lemma 4.5. For an appropriately chosen constant
c > 0, the bias and the variance of the empirical
estimator are bounded above as∣∣∣P̂ e

α − Pα(p)
∣∣∣ ≤ 2cmax{n−(α−1), n−1/2},

Var[P̂α] ≤ 2cmax{n−(2α−1), n−1/2},

for all n ≥ 1.

Proof. Denoting λx = npx, we get the following
bound on the bias for an appropriately chosen con-
stant c:∣∣∣P̂ e

α − Pα(p)
∣∣∣

≤ 1

nα

∑
λx≤1

|E[Nα
x ]− λx|+

1

nα

∑
λx>1

|E[Nα
x ]− λx|

≤ c

nα

∑
λx≤1

λx +
c

nα

∑
λx>1

(
λx + λα−1/2

x

)
where the last inequality holds by Lemma 2.4
and (2.4) since xα is convex in x. Noting

∑
i λx = n,

we get∣∣∣P̂ e
α − Pα(p)

∣∣∣ ≤ c

nα−1
+

c

nα

∑
λx>1

λα−1/2
x .

Similarly, proceeding as in the proof of Theorem 3.1,
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the variance of the empirical estimator is bounded as

Var[P̂α] =
1

n2α

∑
x∈X

E
[
N2α
x

]
− E[Nα

x ]2

≤ 1

n2α

∑
x∈X

∣∣E[N2α
x

]
− λ2α

x

∣∣
≤ c

n2α−1
+

c

n2α

∑
λx>1

λ2α−1/2
x .

The proof is completed upon showing that∑
λx>1

λα−1/2
x ≤ max{n, nα−1/2}, α > 1.

To that end, note that for α < 3/2∑
λx>1

λα−1/2
x ≤

∑
λx>1

λx ≤ n, α < 3/2.

Further, since xα−1/2 is convex for α ≥ 3/2, the
summation above is maximized when one of the λx’s
is n and the remaining equal 0 which yields∑

λx>1

λα−1/2
x ≤ nα−1/2, α ≥ 3/2

and completes the proof. �
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