
Quadratic-backtracking Algorithm for String
Reconstruction from Substring Compositions

Jayadev Acharya
UCSD

jacharya@ucsd.edu

Hirakendu Das
Yahoo Labs

hdas@yahoo-inc.com

Olgica Milenkovic
UIUC

milenkov@uiuc.edu

Alon Orlitsky
UCSD

alon@ucsd.edu

Shengjun Pan
Google

s1pan@eng.ucsd.edu

Abstract—Motivated by the problem of deducing the struc-
ture of proteins using mass-spectrometry, we study the re-
construction of a string from the multiset of its substring
compositions. We specialize the backtracking algorithm used
for the more general turnpike problem for string reconstruction.
Employing well known results about transience of random walks
in ≥ 3 dimensions, we show that the algorithm reconstructs
random strings over alphabet size ≥ 4 with high probability in
near-optimal quadratic time.

I. INTRODUCTION

Proteins are long sequences made of 20 amino acids
and the ordering of these building blocks determines their
properties. A common technique for finding the amino-acid
sequence is mass-spectrometry [1, 2]. It involves taking a
large number of identical proteins, ionizing and randomly
breaking them into substrings, and analyzing the resulting
mixture to determine the substring weights. These weights
are then used to infer the amino-acid sequence.

In [3], the following two assumptions were made to
reduce the problem of reconstructing proteins from the mass-
spectrometer measurements into a combinatorial string recon-
struction problem.
A1 The compositions of a substring can be deduced from

its weight. For example, let A, B, and C be three
amino acids with respective weights 13, 7, and 4. A
string weight of 11 clearly consists of one B and one
C. Similarly, weight 18 implies two B’s and one C.
However, weight 20 could arise from one A and one B
or from 5 C’s, hence we cannot deduce the composition
from the weights. It is assumed that such confusions
never arise or can be resolved by other means.

A2 Each protein-sequence bond gets cut independently with
the same probability. For example, if the sequence is
ABC and the cut probability is p, then the partition
A|B|C is obtained with probability p2, the partitions
A|BC, and AB|C are obtained with probability p(1−
p), and the partition ABC with probability (1 − p)2.
This assumption ensures that the multiset of weights of
all substrings is estimated reliably.

While the assumptions are strong, it gives rise to a simply
stated combinatorial problem of string reconstruction from
the multiset of its substring compositions.

The composition, also known as the type or Parikh vector,
of a string s, denoted w(s) is the multiset of its ele-

ments, namely the number of times each element appears,
regardless of the order. For example, w(BABCAA) =
{A,A,A,B,B,C}, equivalently denoted by A3B2C to in-
dicate that the string consists of three A’s, two B’s, and one
C.

For a string s = s1s2 . . . sn ∈ Σn, let sji
def
= sisi+1 . . . sj .

The composition multiset of s is

Ss
def
= {w(sji) : 1 ≤ i ≤ j ≤ n},

the multiset of compositions of all
(
n+1
2

)
contiguous sub-

strings of s. For example,

SACAB={A,A,B,C,AB,AC,AC,A2C,ABC,A2BC}.

Note that since these are multisets, there is no apriori
information about the ordering among the compositions in
Ss. Also note that the reversal s∗ def

= snsn−1 . . . s1 of s
trivially has the same composition multiset. The problem is
therefore to reconstruct a string s ∈ Σn or its reversal, given
only Ss.

In [3], the problem of unique reconstruction of a binary
string from its composition multiset is studied. Analyzing
small length strings, it is shown that strings s with certain
combinatorial properties cannot be uniquely determined from
Ss. In [4], string reconstruction is related to the well known
turnpike problem, where the locations of n highway exits
need to be recovered from the multiset of their

(
n
2

)
inter-

exit distances. For example, inter-exit distances 1, 2, 3, 3, 5, 6
correspond to exit locations 0, 1, 3, 6. Building on an al-
gebraic characterization for the turnpike problem [5], re-
construction is equivalently formulated as factorization of a
bivariate polynomial related to the multiset. Applying results
on factorization of cyclotomic polynomials, it is shown that
if the length of the sequence is p−1 or 2p−1 for some prime
p, or 7, then the composition multiset uniquely determines
the string up to reversal. For all other lengths, there exist
strings whose reconstruction is not unique.

There are several related works that considered variations
of the string reconstruction problem. Reconstruction of a
string from a few of its substrings was considered in [6].
Reconstruction from subsequences, not necessarily contigu-
ous, was considered in [7–10]. However, in their settings,
the substrings or subsequences themselves, which include the
order of their symbols, are given. By contrast, in our problem,

for each substring we are given just the composition, neither
the order of the symbols within it nor the substring’s location
in the original string. In another related work [11], sequences
are characterized based on the set of compositions, i.e., each
repeated composition is assumed to be observed only once.

In Section II we state our results, in Section III we show
some useful relations between s and Ss, and use them to
develop our reconstruction algorithm in Section IV. Finally,
we provide the proofs in Section V.

II. RESULTS

We define two strings s and s′ to be equicomposable,
denoted s ∼ s′, if they have the same composition multiset.
Let

Es
def
= {t : t ∼ s}

be the set of all strings equicomposable with s.
As a non-trivial example of equicomposable strings, con-

sider the following construction shown in [3, 4]. The
interleaving of string u with the string t = t1 . . . tm is the
string u ◦ t def

= u t1 u t2 · · · tm u. Let t∗ def
= tmtm−1 . . . t1 be

the reversal of t. In [3, 4], it is shown that for any strings u
and t, Su◦t = Su◦t∗ , i.e., u ◦ t ∼ u ◦ t∗. We demonstrate this
fact when t has length 3 in the following figure, in which the
triangle denotes u. The general result follows by showing a
similar bijection from substrings of u◦t to u◦t∗ that preserves
compositions.

u ◦ t: t1 t2 t3

u ◦ t∗: t1t2t3

From [4, 5], it is known that

|Es| ≤ min{2d(n+1)−1, (n+ 1)1.23} (1)

where d(n) is the number of divisors of n. This shows that
E is of polynomial size. However, for the general turnpike
problem no polynomial time reconstruction algorithms are
known [12].

Our problem is a special case of the turnpike problem
and therefore the polynomial factorization formulation given
by [4] can be used along with the LLL algorithm [13] to pro-
vide a polynomial time algorithm for reconstructing strings
from their composition multiset. Using the current known
best algorithms for polynomial factorization, this method can
be shown to have complexity O(n12) [14]. These algorithms
consider factorizing all possible polynomials while our poly-
nomials have a specific structure. Therefore, either the time
complexity of such algorithms are high or do not provide
guarantees for our problem [15].

Hence, instead of considering algebraic methods, we study
an alternative, combinatorial approach of the backtracking
algorithm proposed in [5] for the general turnpike problem.
In [16], an example for was shown for which this algorithm
has exponential complexity. However, we develop a back-
tracking algorithm for string reconstruction, and show that
random strings coming from an alphabet Σ with |Σ| ≥ 4 can
be reconstructed in near-optimal quadratic time.

Our algorithm reconstructs strings from both ends, two
symmetric positions at a time: (s1, sn), followed by
(s2, sn−1) and so on. In state i, given the reconstruction
si−11 and snn−i+2 up to this state, it tries to extend it and
reconstruct si and sn−i+1 that is consistent with the given
composition multiset. However, as shown later, at times there
may be more than one choice for (si, sn−i+1). In that case,
one of them is chosen to proceed to next states. If at some
state in future, it turns out that no reconstruction is feasible,
then the algorithm backtracks to the last fork and considers
other choices, backtracking further if necessary.

Our algorithm relies on compositions from both ends. We
therefore define two terms that we use to provide perfor-
mance guarantees. For a string s, let

`s
def
=
∣∣{i < n/2 : w(si1) = w(snn+1−i) and si+1 6= sn−i}

∣∣
be the number of substrings from starting at the ends having
the same composition, and the next two symbols are distinct.
We assume that for i = 0, empty strings have the same
composition. Let

Ls
def
= max

t∈Es
`t

be the largest value of ` over all strings in Es.
In Section IV, we describe the backtracking algorithm for

string reconstruction, and then modify it slightly to give an
algorithm that works with high probability for random strings
over alphabet size ≥ 4. The next result bounds the complexity
of reconstruction.

Theorem 1. The backtracking algorithm, given Ss, in time
O(2`sn2 log n) outputs a subset of Es that contains s. If run
until time O(2Lsn2 log n), it outputs Es.

The problem then reduces to bounding ` for random
strings. Using well known results from random walk theory,
we show that `s are bounded by a geometric distribution for
alphabet size ≥ 4. This will be used to prove the following
result.

Theorem 2. For a random string s over an alphabet of size
k ≥ 4 the backtracking algorithm with probability 1 − δ
outputs a subset of Es containing s in time Oδ,k(n2 log n)1.

For reconstructing the entire set Es, we show that Ls
is with high probability bounded above by a logarithmic
function.

Theorem 3. For a random string s over an alphabet of size
≥ 4 the backtracking algorithm with probability 1−δ outputs
Es in time Oδ

(
n

1.23
log kn2 log n

)
.

We note that the algorithm also works for alphabet size
3, with weaker guarantees, e.g., we can show using similar
tools that,

1g(n, δ, k) = Oδ,k(f(n)) if g(n) < C(δ, k)f(n), where C(δ, k) is a
function independent of n

2

Theorem 4. The backtracking algorithm for random strings
over alphabet size 3 outputs a subset of Es containing s in
time O

(
n

0.6
δ

)
.

III. ANCILLARY RESULTS

We first present some properties of Ss that will be used
to design an efficient algorithm. The next lemma shows that
the composition multiset determines the set {si, sn+1−i} of
symbols at the symmetric positions i and (n + 1 − i) for
i = 1, 2, . . . , dn2 e. If along with the set of symbols, we know
of the association, namely instead of {si, sn+1−i} we know
the pair (si, sn+1−i), the string is determined trivially.

Lemma 5. For every s, Ss determines {si, sn+1−i} for i =
1, 2, . . . , dn2 e.

Proof: Let the union of compositions be their union as
multisets. For example, A2B ∪ ABC2 ∪ AC = A4B2C3.
For a string s, let Mi denote the union of the compositions
of all substrings of length i. For example, for ABAC, M1 =
A2BC, M2 = A3B2C. Note that all Mi’s can be easily
determined from the string, and it can be shown that for
1 ≤ i ≤ bn/2c, Mn+1−i = Mi. For a multiset S, let j · S
be the j-fold union S ∪ . . . ∪ S. It is easy to see that

M2 ∪ {s1, sn} = 2 ·M1,

hence {s1, sn}, can be deduced from Ss. More generally, for
i = 2, . . . ,dn2 e,

Mi ∪ {si−1, sn−i+2} ∪ 2 · {si−2, sn−i+3}∪
. . . ∪ (i− 1) · {s1, sn} = i ·M1.

Using this equation inductively over i = 2, . . . ,dn2 e, yields
all multisets {si, sn+1−i}.

The backtracking algorithm reconstructs the string from
both ends. We say that the algorithm is at state i, if there
is a possible reconstruction of si and snn+1−i, i.e., we have
potential reconstruction of the initial and final i symbols.
It next decides on the symbols si+1 and sn−i. We now
describe a sufficient condition under which there is a unique
reconstruction, i.e., we can determine (si+1, sn−i) (not just
the set {si+1, sn−i}).

For 1 ≤ i < dn/2e, let Ti be the collection of compositions
of strings skj where j, k ≤ i, or j, k ≥ n+1−i, or j ≤ i+1 ≤
n−i ≤ k, namely the collection of compositions of all strings
that are either on “one side” of sn−ii or “straddle” sn−ii+1 . The
next lemma shows that the composition of the whole string,
along with the strings si and snn+1−i determine Ti.

Lemma 6. Ss, si, and snn+1−i determine Ti.

Proof: Ti consists of compositions of three types of
strings, those that are substrings of si1, that are substrings of
snn+1−i, and substrings that cover all symbols in between, i.e.,
sn−ii+1 . The first and last i symbols determine the compositions
of the first two type of strings. The third type of strings
are those that contain the symmetric string sn−ii+1 , and by
Lemma 5 we can determine its composition. Knowing this

composition and the first and last i symbols yields the
multiset of such strings.

We use the two lemmas to help reconstruct the string.
Recall that Ss determines the multiset {si+1, sn−i}.

Lemma 7. If w(si1) 6= w(snn+1−i), then Ss, si1, and snn+1−i
determine the pair (si+1, sn−i).

Proof: By Lemma 6, we can determine Ti. Consider the
two longest compositions in Ss \ Ti. They correspond to the
length-(n−i−1) strings sn−i−11 and sni+2. The complements
of these two compositions are therefore the compositions of
si+1 and snn−i.

By Lemma 5, we can also derive the multiset {si+1, sn−i}.
If si+1 = sn−i, then we can determine si+1 and snn−i.
Otherwise, si+1 6= sn−i, and since w(si1) 6= w(snn+1−i), it is
easy to see that {w(si1) ∪ w(si+1), w(sn−i) ∪ w(snn+1−i)} 6=
{w(si1) ∪ w(sn−i), w(si+1) ∪ w(snn+1−i)}, hence we can de-
termine the pair (si+1, sn−i).

We now describe the reconstruction algorithm.

IV. ALGORITHM

We modify the backtracking algorithm of [5] for the
turnpike problem and present an algorithm for reconstructing
strings from their composition multiset.

The algorithm reconstructs the string by sequentially de-
ciding on the values of a symmetric pair of symbols si and
sn+1−i.

The algorithm first determines s1s2 and sn−1sn, uniquely
up to reversal, as follows By Lemma 5, we know the multiset
{s1, sn} and can arbitrarily decide which is s1 and which is
sn. It next determines s2 and sn−1. Again by the lemma
we know {s2, sn−1}, and if s1 = sn we can decide on s2
and sn−1 arbitrarily, while if s1 6= sn, by Lemma 7, we can
determine s2 and sn−1.

For {s3, sn−2}, the ends s21 and snn−1 can differ, while
their weights could be the same. In such cases Lemma 7
cannot be applied. However if s3 = sn−2, which can be
determined from the Lemma 5, we can still determine the
bits. In other words, for all points at which si = sn+1−i,
the algorithm sails smoothly. Therefore, from this point on,
when the algorithm is in state i, and w(si1) = w(snn+1−i)
but si+1 6= sn−i, it guesses one of the two possibilities
for (si+1, sn−i) and proceeds, while keeping track of the
number t and locations i1 < i2 < . . . < it of locations
where guesses were made. After determining the next two
symbols, the algorithm finds Ti+1, and update i → i + 1,
and both can be accomplished in linear time. It then checks
whether Ti ⊆ Ss as multisets. If at some point Ti (Ss, the
algorithm realizes it has done a mistake at some state, and
backtracks. It changes its guess at location it by swapping sit
and sn+1−it , changes t to t − 1, and restarts reconstruction
from location it + 1. The process continues until the whole
string is reconstructed, namely i = dn2 e and Tdn/2e = Ss.
If at that point there are t ≥ 1 guesses, then as before the
algorithm backtracks to guess t and tries to find additional
strings in Es.

3

We make minor modifications to the algorithm to ensure
efficient reconstruction of random strings.

The algorithm induces a tree where nodes represent loca-
tions at which there are two possible reconstructions. The
procedure described above does a depth-first search. Instead
we could also do a breadth first search, where we consider
all branches at once, namely at any time, all potential
reconstructions correspond to level t or t + 1. This implies
that given Ss, the algorithm is able to find s before depth
`s + 1.

V. PROOFS

A. Proof of Theorem 1

We now analyze the algorithm’s complexity. We assume
an arbitrary order over the elements of Σ. This introduces a
lexicographical ordering over compositions of strings on Σ.
We use Red-Black tree [17] to store multisets of composi-
tions. The advantage of this data structure is that insertion,
deletion and search all require time O(log n), where n is the
size of the data.

Note that Ti+1 is obtained by adding to Ti compositions
of substrings that have an endpoint at si+1 or sn−i. In
particular, at most 2n compositions are added, requiring
O(n log n) time. For each branch, we keep a copy of Ss
and we prune it to populate T , i.e., while constructing
Ti+1 we simultaneously remove the new entries/compositions
from the copy of S corresponding to this branch, requiring
another O(n log n). When there are two possibilities for
reconstruction at any stage, we make copies of Ti and S
corresponding to that node and proceed along each. This step
takes time O(n2 log n).

The algorithm while reconstructing s does not “fork out”
more then `s + 1 times, therefore the number of branches
before reconstructing s is at most 2`s . Along each path we
make n/2 iterations requiring a total time of O(n2 log n).
Combining these, the total complexity of reconstructing s is
at most O(2`sn2 log n).

To reconstruct Es, we note that the number of “forks”
is ≤ Ls. Therefore, a similar computation shows that the
algorithm runs in time O(2Lsn2 log n).

B. Proof of Theorem 2

We bound the run time as a function of `s. We show that
the distribution of `s for random strings over |Σ| ≥ 4 is
bounded by a geometric random variable. More precisely,

Lemma 1. For k ≥ 4, there exists pk < 1 such that for a
random string s ∈ Σn, and m ≥ 1

P (`s ≥ m) < pmk .

We first use this result to prove Theorem 2, and return
to prove the lemma. The lemma can be restated as P (`s <
m) > 1− pmk . Suppose the error probability is δ. Therefore,
with probability ≥ 1−δ, a random string satisfies ` < log δ

log pk
.

By Theorem 1, all such strings can be reconstructed in time

O(2
log δ
log pk n2 log n) = Oδ,k(n2 log n).

We now prove the lemma using well known results on
random walks. These are applications of Stirling’s approxi-
mation of factorials.

Lemma 8 (Stirling’s approximation). For any n ≥ 1, there
is a θn ∈ (1

12n+1 ,
1

12n) such that

n! =
√

2πn
(n
e

)n
eθn .

We first apply this and bound the probability that two ran-
dom strings have the same composition. A stronger version
of the result that finds asymptotic equality is proved in [18],
but is not required for our purpose.

Lemma 9. For |Σ| = k, let s and t be two random length-n
strings over Σ, then for k ≥ n

P (w(s) = w(t)) <
n!

kn
,

and for k < n

P (w(s) = w(t)) <
kk/2e1/12n

(2πn)(k−1)/2
.

Proof: The probability that the symbols in Σ appear
i1, . . . ,ik times respectively in a random length-n string is

1

kn

(
n

i1, . . . ,ik

)
.

Therefore, the probability that two random strings have the
same composition is∑

i1+...+ik=n

1

k2n

(
n

i1, . . . ,ik

)2

≤ 1

kn
max
i1,...,ik

(
n

i1 . . . ik

) ∑
i1+...+ik=n

1

kn

(
n

i1, . . . ,ik

)
=

1

kn
max
i1,...,ik

(
n

i1 . . . ik

)
,

where the last step follows from∑
i1+...+ik=n

1

kn

(
n

i1, . . . ,ik

)
= 1.

For k ≥ n it is easy to see that

max
i1,...,ik

(
n

i1 . . . ik

)
= n!.

Plugging this above proves the first part.
For n ≥ k, note that

f(x)
def
=
√

2πx
(x
e

)x
is convex in (1,∞). Therefore,

k∏
j=1

ij !
(a)
>

k∏
j=1

f(ij)
(b)
>
(
f
(n
k

))k
=

(√
2π
n

k

)k (n
ke

)n
.

where (a) uses Stirling’s approximation, and (b) follows from
convexity of f .

4

max
i1,...,ik

(
n

i1 . . . ik

)
<

n!(
f
(
n
k

))k < kk/2e1/12n

(2πn)(k−1)/2
,

where in the last step we approximate n!.

Consider two uniformly random independent infinite
strings s∞ and t∞ over Σ. Let Fm be the event that there
are at least m non-consecutive integers i0

def
= 0 < i1 < i2 <

. . . < im such that for each j ≤ m, w(s
ij
1) = w(t

ij
1). After

a location ij at which w(s
ij
1) = w(t

ij
1) by independence the

process is equivalent to starting at time 0. Note that i1 > 1 for
non-consecutiveness. It follows that P (Fj+1|Fj) = P (F1).
Therefore,

P (Fm) = P (F1)m. (2)

Let M(s∞, t∞) denote the total number of non-
consecutive integers for which w(si1) = w(ti1). Then by
Equation (2),

E[M] =
∑
m≥1

P (M ≥ m) =
∑
m≥1

P (Fm) =
P (F1)

1− P (F1)
.

However, if instead of non-consecutiveness, we only re-
strict i1 ≥ 2, Lemma 9 shows that

E[M] ≤
k∑

n=2

n!

kn
+

∞∑
n=k+1

kk/2e1/12n

(2πn)(k−1)/2
.

The right hand side of this equation is finite for k ≥ 4. In fact
it decays as 1/k2 with k. This implies that pk

def
= P (F1) < 1

and therefore for a random string s, Equation (2) gives

P (`s > m) ≤ P (Fm) = pmk ,

proving the lemma.

C. Proof sketch of Theorem 3 and Theorem 4

We use the fact that |Es| < (n+ 1)1.23 and therefore, an
union bound shows that

Lemma 10. With probability ≥ 1−n1.23pmk , a random string
over alphabet size k ≥ 4 satisfies Ls < m.

Applying this to Theorem 1 proves the result.
For alphabet size 3, a similar computation shows that

P (F1) = 1. However, we can show that `s has expected value
O(log n) and then prove the theorem. Details are omitted due
to the lack of space.

REFERENCES
[1] T. E. Creighton, Proteins: Structures and Molecular Properties, 2nd ed.

W. H. Freeman, 1992.
[2] D. W. Mount, Bioinformatics: Sequence and Genome Analysis, 2nd ed.

Cold Spring Harbor Laboratory Press, 2001.
[3] H. Das, O. Milenkovic, and A. Orlitsky, “Order from disorder,”

Information Theory and Applications Workshop, 2009.
[4] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “On

reconstructing a string from its substring compositions,” in Information
Theory Proceedings (ISIT), 2010 IEEE International Symposium on,
2010, pp. 1238–1242.

[5] S. S. Skiena, W. D. Smith, and P. Lemke, “Reconstructing sets from
interpoint distances (extended abstract),” in Symposium on Computa-
tional Geometry, 1990, pp. 332–339.

[6] D. Margaritis and S. S. Skiena, “Reconstructing strings from substrings
in rounds,” in Proceedings of the 36th Annual Symposium on Founda-
tions of Computer Science, 1995, pp. 613–620.

[7] V. I. Levenshtein, “Efficient reconstruction of sequences from their
subsequences or supersequences,” Journal of Combinatorial Theory,
Series A, vol. 93, no. 2, pp. 310–332, 2001.

[8] M. Dudik and L. J. Schulman, “Reconstruction from subsequences,”
Journal of Combinatorial Theory, Series A, vol. 103, no. 2, pp. 337–
348, 2003.

[9] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Reconstructing
strings from random traces,” in Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms, 2004, pp. 910–918.

[10] K. Viswanathan and R. Swaminathan, “Improved string reconstruction
over insertion-deletion channels,” in Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, 2008, pp. 399–
408.

[11] G. Fici and Z. Liptk, “On prefix normal words,” in Developments in
Language Theory, ser. Lecture Notes in Computer Science, G. Mauri
and A. Leporati, Eds. Springer Berlin Heidelberg, 2011, vol. 6795,
pp. 228–238.

[12] T. Dakic, “On the turnpike problem,” Ph.D. dissertation, Simon Fraser
University, 2000.

[13] A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring polynomials
with rational coefficients,” Math. Ann., vol. 261, pp. 515–534, 1982.

[14] S. Gao, “Factoring multivariate polynomials via partial differential
equations.” Math. Comput., vol. 72, no. 242, pp. 801–822, 2003.

[15] V. Shoup, “On the deterministic complexity of factoring polynomials
over finite fields,” Inform. Process. Lett, vol. 33, pp. 261–267, 1990.

[16] Z. Zhang, “An exponential example for a partial digest mapping
algorithm.” Journal of Computational Biology, vol. 1, no. 3, pp. 235–
239, 1994.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. The MIT Press, 2001.

[18] L. B. Richmond and J. O. Shallit, “Counting abelian squares,” Elec-
tronic Journal of Combinatorics, vol. 16, no. 1, pp. 317–348, 2009.

5

