ECE6980

An Algorithmic and Information Theoretic Toolbox for Massive Data

Logistics

Instructor: Jayadev Acharya Email: acharya@cornell.edu Lectures: TuTh 1.25-2.40, 203 Phillips Office Hours: MoTh 3-4, 304 Rhodes Website: http://people.csail.mit.edu/jayadev/ece6980

Grading

- Scribe a lecture: 10%
 - Encouraged to fill in the details, provide examples
- Assignments 30-60%
 - 2-3 assignments
 - Typeset?
- Project report and presentation: 40-60%
 - Read a new related paper
 - Present a summary in your own words
 - Can choose from a list
- Interruptions: 5%

Lectures

- Lectures primarily on the board
- Derive things (mostly from scratch)

Course overview

- Lot of interest in data science
 - Number of courses on offer
 - Many aspects can be covered
- This course:
 - Core primitives
 - Efficient algorithms
 - Fundamental limits
 - Mostly theoretical, encourage implementation

Prerequisites

- Undergraduate probability/random processes
- Basic combinatorics
- What is the variance of a random variable?
- What is a binomial distribution?
- When are two random variables independent?

What you should learn?

- Fast algorithms for statistical problems
 - Learning discrete distributions
 - Finite sample hypothesis testing
- How to prove information theoretic lower bounds

Probabilistic thinking

Old questions, new issues

Classical

Modern

Domain:

n = 1000 tosses

Small domain D n large, |D| small

Asymptotic analysis Computation **not crucial** Domain:

One human genome

Large domain *D n small*, *D large*

New challenges

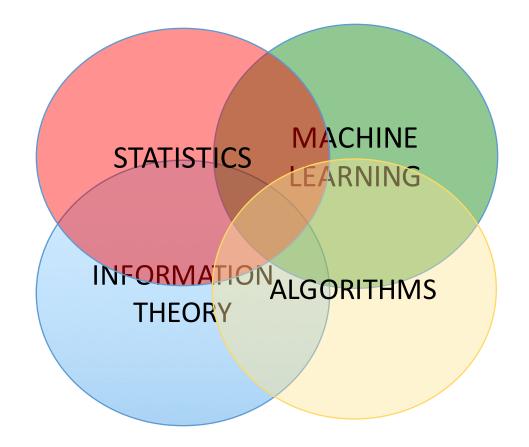
Resources

Samples

- How much data needed?
- Inference when data is scarce

Computation

- How does run-time scale with data and domain size?
- Even quadratic might be **prohibitive**


Other resources

- Storage: Not enough space to store all data
- Communication: Distributed data across servers

Goals

For statistical inference

- Design efficient algorithms
- Understand fundamental limits

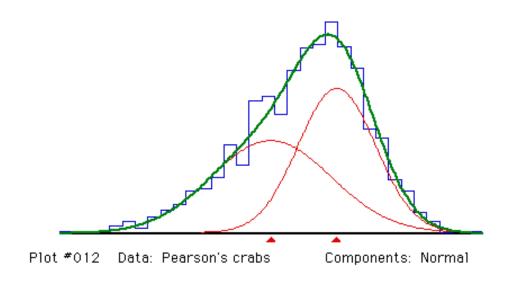
Distribution learning

A simple setting

- Support set ${\mathcal X}$
- Distribution $p: \mathcal{X} \to \mathbb{R}_{\geq 0}$, such that $\sum_{x \in \mathcal{X}} p(x) = 1$
- Samples $x^n = x_1 x_2 \dots x_n$ drawn from p
- Output a distribution $q(x^n)$ after observing x^n

```
Toss a coin: HTTTHTTH
```

```
Throw a die: 3 1 3 4 4 5 3 6
```


What is a good estimator

- Would like q to be close to p
- L(p,q): Loss for estimating p with q
 - Total variation distance, KL divergence, ...
- Find an estimator with small L
- For a given loss function, how many samples needed?
- Empirical estimators:
 - $q(H) = \frac{3}{8}$
- Analyze the performance of empirical estimators

Learning

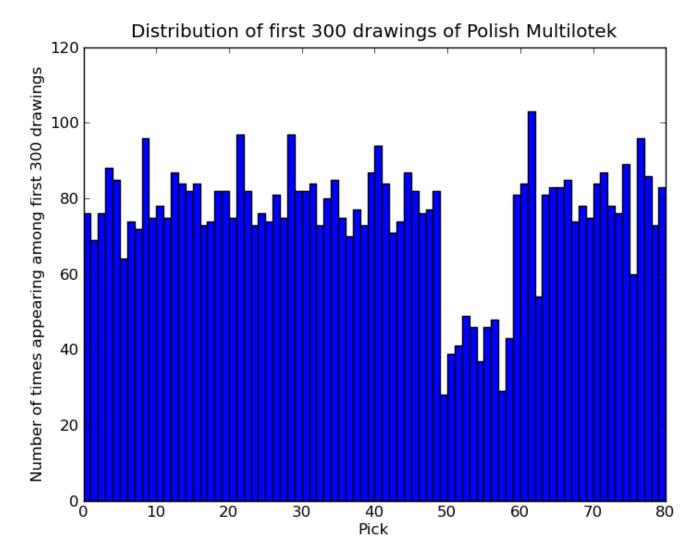
- Given samples from a Gaussian distribution $N(\mu, \sigma^2)$
- Learn with a Gaussian distribution
- Relatively simple

Learning

Ratio of breadth to height of 1000 crabs by W. Weldon Not normally distributed, more than one species? Karl Pearson: Mixtures of Gaussians (much harder!!)

Distribution testing

Testing uniformity


Polish Multilotek:

• Picks 20 numbers between 1,...,80

Is it fair?

Testing uniformity (contd)

(Figure by Onak, Price, Rubinfeld)

A simple setting

- $|\mathcal{X}| = k$
- u: uniform distribution over ${\mathcal X}$
- x^n : *n* samples from a distribution *p*

Question: Is $p = u \text{ OR } |p - u|_1 \ge \varepsilon$?

How many samples do we need? Take a guess ...

A simple classification problem

 X^n : a sports article

 Y^n : a religious article

Z: one word

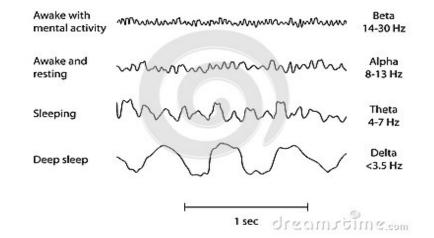
Q: Is Z more likely to appear in sports or religion?

Necessarily assign Z to where it appears more often?

Property estimation

Predicting new elements

How many **new species**?


Corbet collected butterflies in Malaya for one year

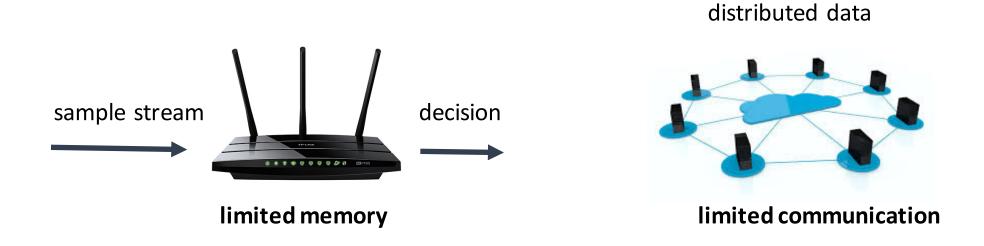
Frequency	1	2	3	4	5	6	7	••
Species	118	74	44	24	29	22	20	••

How many new species if he goes for one more year?

Entropy estimation

Normal Adult Brain Waves

How much randomness in neural spikes?


How to estimate **entropy** from observations?

Entropy estimation

- $|\mathcal{X}| = k$
- x^n : *n* samples from a distribution *p*

Question: Estimate H(p)

Resource constraints

Data too big to be stored in a single machine Lot of recent interest