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We showed last time that the ML estimator can learn distributions in Ay (up to € — dry) using
k/€* samples. We also showed that is this tight (up to a constant) for Bernoulli distributions, i.e.,
any estimator needs at least c¢/e? samples to learn distributions in Ay, for some constant c.

1 Lower Bound for A,

Theorem 1. k:
(A >c— 1
n ( k> E) = 062’ ( )
for some constant ¢ (independent of k and €).

Remark 2. Recall that n*(Ayg,€) is the minimum number of samples needed to learn distributions
in A up to e —dpy with error probability at most 1/4. The definition can be found in the previous
lecture.

To prove the lower bound for Ay, we exhibited two distributions (in particular Ber(1/2) and
Ber(1/2 + ¢€)) that are hard to distinguish: that is, if we knew the samples were coming from one
of these two distributions, and we only needed to test which is the true one, we needed Q(k/e?)
samples — which gives a lower bound on complexity of the harder problem of learning.

We will adopt the same strategy for proving lower bounds on Ag. We will exhibit a collection
of distributions {Py, P, -+, Py} C Ay that are hard to distinguish in a testing problem. More
precisely, let {Pj, Py, -+, Py} satisfy:

1. dpy(Pi, Pj) > 2e, for all i # j,
2. D(P||P;) < 8, for all (4, 7),

where 3 is small, say 3 = ce?.

1.1 Testing Problem

Consider the following testing problem.
1. Pick a distrubtion P € {Py, P,,--- , Py} uniformly at random. Let ¢* be the chosen index.
2. Generate n samples from Pj«.

3. Decide i.



Let np be the minimum number of samples needed for a success probability > 3/4. Clearly
ny < n*(Ak, 6).

By Fano’s inequality:
nfS + log 2
log(M — 1)

So, (roughly) we need nf/log(M) > some constant, i.e., n > log(M)/p.

To get our desired result, we need M = exp{ck}. To build such a collection of distrbutions
(that is large and such that any two distributions are far apart), we borrow ideas from Coding
Theory where the goal is to build large codes that also have large minimum distance.

Pr(error) > 1 —

(2)

Let C C {0,1}* be binary code. The minimu distance is defined as:

dmin(C) := min dg(a,b), (3)
a,beC

where dg is the Hamming distance.
Claim: Can construct C C {0, 1}* such that

1. |C| > 2M/8,
2. dpmin(C) > k/8,
3. ForanyaeC, |{i:a; =0} =k/2.

Proof sketch: The number of sequence of weight k/2 is ( k:];2 ) > 2% /k. Pick a sequence of

weight k/2 and throw away all sequence that are too close in Hamming distance. There are at most
(roughly) 27k/8 such sequences. Thus, can repeat 2¥/% times.

Now, let U be the uniform distribution over {1,2,---, K'}. We will use the code to perturb this
distribution. In particular, let p* = (1 + 16¢)/k, and p~ = (1 — 16¢)/k. Then, with each codeword
¢, we assign the following probability distribution:

N pt, ife(i) =0 o
P:(i) = {p, if o) = 1. 1=1,2,--- k. (4)

It is straightforward to check that is a valid probability distribution (this comes from the weight of
the codewords being k/2). Moreover,

dry (Ps, Py) = d(a,b) x 16¢/k > (k/8)(16¢/k) = 2e. (5)
Ezercise: Show that D(P;, P;) < €2, for some constant ¢’.

The rest of the lecture was a review of basic information theory. These can be found in Elements
of Information Theory (Cover and Thomas) which is available online through the Cornell library.



