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We did a brief recap of the previous lecture. We then outline the three things we will discuss
today:

• Basics of information theory

• Proof of Fano’s Inequality

• A ”simple” algorithm to learn ”many” classes ”almost” optimally

1 Basic Information Theory

1.1 Entropy

Definition 1. The entropy of a discrete distribution P over X is defined as

H(P ) =
∑
x∈X

P (x) log

(
1

P (x)

)
(1)

Claim 2. Let P be a discrete distribution over X , then

H(P ) ≤ log |X | (2)

Proof. We use Jensen’s inequality and the concavity of log(x) to prove the claim.

H(P ) =
∑
x∈X

P (x) log

(
1

P (x)

)
≤ log

(∑
x∈X

P (x)
1

P (x)

)
= log |X | (3)

To understand entropy, we consider an example of distinguishing a number in a set. Suppose
X = {0, 1, 2, ..., 127} and x is randomly chosen from X with equal probability. We would like to
identify x by asking several Yes/No questions. The problem is what is the smallest number of
questions we need to ask to find the exact value of x. The answer is 7 = log(128) and we will use
a binary search method to do this: firstly, we ask if x ≤ 64, if yes, we ask the second question if
x ≤ 32, or otherwise, ask if x ≤ 96 and keep doing this until we successfully identify the exact
value of x. Actually, entropy H characterizes the shortest length we need to distinguish a random
variable.



1.2 Joint Entropy

Definition 3. We consider a joint discrete distribution P over X × Y, then the joint entropy is
defined as

H(P ) =
∑
x,y

P (x, y) log

(
1

P (x, y)

)
(4)

Definition 4. Suppose P is a joint distribution over X × Y, the marginal distribution of P is
defined as

PX (x) =
∑
y

P (x, y) (5)

PY(y) =
∑
x

P (x, y) (6)

Definition 5. Suppose P is a joint distribution over X × Y, we say P is a product distribution if

P (x, y) = PX (x) · PY(y) (7)

We consider the following example. Table 1 gives us some statistics of the weather in San Diego.
Suppose X = {Sunny,Not Sunny}, Y = {Hot,Cold}.

Hot Cold

Sunny 30 125

Not Sunny 20 190

Table 1: Number of days of different weather

The question is, is the probability distribution of different kind of weather a product distribu-
tion? The answer is no since given Y = Hot or Cold, the probability

Pr(X = Sunny|Y = Hot) =
3

5
6= 25

63
= Pr(X = Sunny|Y = Cold)

In fact, we can change the number in the table appropriately to make it a product distribution.

Claim 6. If P : X × Y is a product distribution, then we have

H(P ) = H(PX ) +H(PY) (8)
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Proof.

H(P ) =
∑
x,y

P (x, y) log

(
1

P (x, y)

)
=
∑
x,y

PX (x)PY(y) log

(
1

PX (x)

1

PY(y)

)
=
∑
x,y

PX (x)PY(y) log

(
1

PX (x)

)
+
∑
x,y

PX (x)PY(y) log

(
1

PY(y)

)
=
∑
x

PX (x) log

(
1

PX (x)

)
+
∑
y

PY(y) log

(
1

PY(y)

)
= H(PX ) +H(PY)

(9)

Definition 7. If X is a random variable from a distribution P over X , we define the entropy of
the random variable X as

H(X)
∆
=H(P ) (10)

Similar to Claim 6, we also have the conclusion that if X,Y are independent r.v.s,

H(X,Y ) = H(X) +H(Y ) (11)

More generally, we have the following claim.

Claim 8. Consider two random variables X,Y , the following inequality holds:

H(X,Y ) ≤ H(X) +H(Y ) (12)

Proof. According to the definition,

H(X,Y ) =
∑
x,y

P (x, y) log

(
1

P (x, y)

)
H(X) =

∑
x

PX(x) log

(
1

PX(x)

)
=
∑
x,y

P (x, y) log

(
1

PX(x)

)
H(Y ) =

∑
y

PY (y) log

(
1

PY (y)

)
=
∑
x,y

P (x, y) log

(
1

PY (y)

) (13)

Thus, we have

H(X) +H(Y )−H(X,Y ) =
∑
x,y

P (x, y) log

(
P (x, y)

PX(x)PY (y)

)
= D(P ||PX · PY ) ≥ 0

(14)
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1.3 Conditional Entropy

Definition 9. Consider two random variables X,Y defined on X ,Y respectively. P is the joint
distribution. The conditional entropy of X given Y is defined as

H(X|Y = y) =
∑
x

P (X = x|Y = y) log

(
1

P (X = x|Y = y)

)
(15)

H(X|Y ) =
∑
y

PY (y)H(X|Y = y) =
∑
x,y

P (x, y) log

(
1

P (X = x|Y = y)

)
(16)

Exercise. Show the chain rule of entropy:

H(X,Y ) = H(Y ) +H(X|Y ) = H(X) +H(Y |X) (17)

More generally, suppose X1, ..., Xn are n random variables, show that:

H(X1, ...Xn) = H(X1) +
n∑

i=2

H(Xi|X1, ..., Xi−1) (18)

Remark. Combine the chain rule of entropy and Claim 8 together, we can derive that

H(X|Y ) ≤ H(X) (19)

Intuitively, when given Y , we get more information of X, then the uncertainty of X is smaller.

Definition 10. The mutual information of two r.v.s X,Y is defined as

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )

(20)

Intuitively, I(X;Y ) characterizes the information provided by Y (orX) to reduce the uncertainty
of X(or Y ) and is always non-negative.

2 Multiway Classification and Fano’s Inequality

2.1 Multiway Classification

Suppose there are M different distributions P1, ..., PM . Consider the following steps:

1. Randomly choose a distribution PX , X ∼ U [M ],

2. Observe Y from distribution PX ,

3. Using the outcome Y to predict X̃.
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For the process described above, we have the following claim:

Claim 11.

I(X;Y ) ≥ Pr(correct) · log(M − 1)− log 2 (21)

Proof. Define

Z =

{
0, if X 6= X̃

1, if X = X̃
(22)

It is obvious that H(Z|X, X̃) = 0. Thus, using the chain rule of entropy, we can get

H(X,Z|X̃) = H(X|X̃) +H(Z|X, X̃) = H(X|X̃) (23)

On the other hand, we have

H(X,Z|X̃) = H(Z|X̃) +H(X|Z, X̃)

≤ H(Z) + Pr(Z = 1)H(X|X̃, Z = 1) + Pr(Z = 0)H(X|X̃, Z = 0)

≤ log 2 + Pr(Z = 0) log(M − 1)

(24)

The last inequality holds because H(X|X̃, Z = 1) = 0 and

H(X|X̃, Z = 0) = H(X|X̃,X 6= X̃) ≤ log(M − 1)

Thus, we can get

H(X|X̃) ≤ log 2 + Pr(error) log(M − 1) (25)

Since H(X) = logM , we have

I(X; X̃) ≥ Pr(correct) · log(M − 1)− log 2 (26)

Consider the probability model, we have

X → Y → X̃

Using data processing inequality, we get the conclusion that

I(X;Y ) ≥ I(X; X̃) ≥ Pr(correct) · log(M − 1)− log 2 (27)

We use this result to prove Fano’s inequality.
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2.2 Fano’s Inequality

Theorem 12 (Fano’s inequality). Suppose there are M different distributions P1, ..., PM s.t.

D(Pi||Pj) ≤ β,∀i, j

For the multiway classification problem defined in section 2.1, the following inequality holds:

Pr(correct) · log(M − 1)− log 2 ≤ β (28)

Proof. For the multiway classification problem, it is not hard to find that

Pr(X = j) =
1

M
(29)

Pr(Y = y) =
1

M

∑
j

Pj(y) = P̄ (y) (30)

Using the result in Claim 11, we know that if I(X;Y ) ≤ β, the statement is true. Consider

I(X;Y ) = H(X)−H(X|Y )

=
∑
j,y

Pr(X = j, Y = y) log

(
Pr(X = j|Y = y)

Pr(X = j)

)

=
∑
j,y

Pr(X = j, Y = y) log

(
Pr(X = j, Y = y)

Pr(X = j)Pr(Y = y)

)

=
∑
j,y

1

M
Pj(y) log

(
Pj(y)

1
M

∑
j Pj(y)

)

=
1

M

∑
j

D(Pj ||P̄ )

(31)

So, we only need to prove that D(Pi||P̄ ) ≤ β. Since

M∑
j=1

D(P ||Qj) =
∑
x

P (x) log

(
PM (x)∏M
j=1Qj(x)

)

= M
∑
x

P (x) log

(
P (x)

(
∏M

j=1Qj(x))1/M

)

≤M
∑
x

P (x) log

(
P (x)

1
M (
∑M

j=1Qj(x))

)

= MD

P ∣∣∣∣∣∣ 1

M

M∑
j=1

Qj(x)



(32)
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The inequality comes from convexity of exp(·): M∏
j=1

Qj(x)

1/M

= exp

 1

M

M∑
j=1

log(Qj(x))


≥ 1

M

M∑
j=1

exp(log(Qj(x)))

=
1

M

M∑
j=1

Qj(x)

(33)

Thus,

D(Pi||P̄ ) ≤ 1

M

∑
j

D(Pi||Pj) ≤ β

Thus, I(X;Y ) ≤ β and then we get the conclusion.

3 Learning Distributions

Definition 13. Consider a collection of distributions P and a distance measure d : P × P → R,
define an ε−cover of P as a set of distributions P1, P2, ..., PN ∈ P, s.t. ∀P ∈ P, there exists
1 ≤ i ≤ N s.t. d(P, Pi) < ε.

Claim 14. For any collection of distributions P, we use the total variation distance as the distance
measure, i.e. d = dTV . Let Nε be the smallest size of the ε−cover of P. Then for any distribution
P ∈ P, we need only

log(Nε)

ε2
(34)

samples to learn P̂ s.t. dTV (P̂ , P ) < ε with probability at least 3/4.

To prove this claim, we first introduce the problem of finding the closest distribution. Consider
a collection of distributions P and N distributions P1, P2, ..., PN ∈ P. Suppose there is another
distribution P ∈ P and we observe n samples X1, ..., Xn from P . Our goal is to output the closest
distribution to P among {Pi}N1 based on the distance measure d = dTV .

Theorem 15. With

C log(N)

ε2
(35)

samples, with probability at least 3/4 we can learn Pj s.t.

dTV (P, Pj) ≤ 8∆ +O(ε) (36)

where ∆ = minj dTV (P, Pj)

In the next lecture, we will show how to prove this theorem and therefore prove the previous
claim. Also, we will give a ”simple” algorithm to learn distributions optimally.
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