ECE 6980

An Algorithmic and Information-Theoretic Toolbox for Massive Data

Instructor: Jayadev Acharya Lecture #4
Scribe: Xiao Xu 6th September, 2016

Please send errors to xx243@cornell.edu and acharya@cornell.edu

We did a brief recap of the previous lecture. We then outline the three things we will discuss today:

- Basics of information theory
- Proof of Fano's Inequality
- A "simple" algorithm to learn "many" classes "almost" optimally

1 Basic Information Theory

1.1 Entropy

Definition 1. The entropy of a discrete distribution P over X is defined as

$$H(P) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{1}{P(x)} \right) \tag{1}$$

Claim 2. Let P be a discrete distribution over \mathcal{X} , then

$$H(P) \le \log |\mathcal{X}| \tag{2}$$

Proof. We use Jensen's inequality and the concavity of $\log(x)$ to prove the claim.

$$H(P) = \sum_{x \in \mathcal{X}} P(x) \log \left(\frac{1}{P(x)} \right) \le \log \left(\sum_{x \in \mathcal{X}} P(x) \frac{1}{P(x)} \right) = \log |\mathcal{X}| \tag{3}$$

To understand entropy, we consider an example of distinguishing a number in a set. Suppose $\mathcal{X} = \{0, 1, 2, ..., 127\}$ and x is randomly chosen from \mathcal{X} with equal probability. We would like to identify x by asking several Yes/No questions. The problem is what is the smallest number of questions we need to ask to find the exact value of x. The answer is $7 = \log(128)$ and we will use a binary search method to do this: firstly, we ask if $x \leq 64$, if yes, we ask the second question if $x \leq 32$, or otherwise, ask if $x \leq 96$ and keep doing this until we successfully identify the exact value of x. Actually, entropy H characterizes the shortest length we need to distinguish a random variable.

1.2 Joint Entropy

Definition 3. We consider a joint discrete distribution P over $\mathcal{X} \times \mathcal{Y}$, then the joint entropy is defined as

$$H(P) = \sum_{x,y} P(x,y) \log \left(\frac{1}{P(x,y)}\right)$$
(4)

Definition 4. Suppose P is a joint distribution over $\mathcal{X} \times \mathcal{Y}$, the marginal distribution of P is defined as

$$P_{\mathcal{X}}(x) = \sum_{y} P(x, y) \tag{5}$$

$$P_{\mathcal{Y}}(y) = \sum_{x} P(x, y) \tag{6}$$

Definition 5. Suppose P is a joint distribution over $\mathcal{X} \times \mathcal{Y}$, we say P is a product distribution if

$$P(x,y) = P_{\mathcal{X}}(x) \cdot P_{\mathcal{V}}(y) \tag{7}$$

We consider the following example. Table 1 gives us some statistics of the weather in San Diego. Suppose $\mathcal{X} = \{\text{Sunny}, \text{Not Sunny}\}, \mathcal{Y} = \{\text{Hot}, \text{Cold}\}.$

	Hot	Cold
Sunny	30	125
Not Sunny	20	190

Table 1: Number of days of different weather

The question is, is the probability distribution of different kind of weather a product distribution? The answer is no since given Y = Hot or Cold, the probability

$$\Pr(X = \text{Sunny}|Y = \text{Hot}) = \frac{3}{5} \neq \frac{25}{63} = \Pr(X = \text{Sunny}|Y = \text{Cold})$$

In fact, we can change the number in the table appropriately to make it a product distribution.

Claim 6. If $P: \mathcal{X} \times \mathcal{Y}$ is a product distribution, then we have

$$H(P) = H(P_{\mathcal{X}}) + H(P_{\mathcal{Y}}) \tag{8}$$

Proof.

$$H(P) = \sum_{x,y} P(x,y) \log \left(\frac{1}{P(x,y)}\right)$$

$$= \sum_{x,y} P_{\mathcal{X}}(x) P_{\mathcal{Y}}(y) \log \left(\frac{1}{P_{\mathcal{X}}(x)} \frac{1}{P_{\mathcal{Y}}(y)}\right)$$

$$= \sum_{x,y} P_{\mathcal{X}}(x) P_{\mathcal{Y}}(y) \log \left(\frac{1}{P_{\mathcal{X}}(x)}\right) + \sum_{x,y} P_{\mathcal{X}}(x) P_{\mathcal{Y}}(y) \log \left(\frac{1}{P_{\mathcal{Y}}(y)}\right)$$

$$= \sum_{x} P_{\mathcal{X}}(x) \log \left(\frac{1}{P_{\mathcal{X}}(x)}\right) + \sum_{y} P_{\mathcal{Y}}(y) \log \left(\frac{1}{P_{\mathcal{Y}}(y)}\right)$$

$$= H(P_{\mathcal{X}}) + H(P_{\mathcal{Y}})$$

$$(9)$$

Definition 7. If X is a random variable from a distribution P over \mathcal{X} , we define the entropy of the random variable X as

$$H(X) \stackrel{\Delta}{=} H(P) \tag{10}$$

Similar to Claim 6, we also have the conclusion that if X, Y are independent r.v.s,

$$H(X,Y) = H(X) + H(Y) \tag{11}$$

More generally, we have the following claim.

Claim 8. Consider two random variables X, Y, the following inequality holds:

$$H(X,Y) \le H(X) + H(Y) \tag{12}$$

Proof. According to the definition,

$$H(X,Y) = \sum_{x,y} P(x,y) \log \left(\frac{1}{P(x,y)}\right)$$

$$H(X) = \sum_{x} P_X(x) \log \left(\frac{1}{P_X(x)}\right) = \sum_{x,y} P(x,y) \log \left(\frac{1}{P_X(x)}\right)$$

$$H(Y) = \sum_{y} P_Y(y) \log \left(\frac{1}{P_Y(y)}\right) = \sum_{x,y} P(x,y) \log \left(\frac{1}{P_Y(y)}\right)$$
(13)

Thus, we have

$$H(X) + H(Y) - H(X,Y) = \sum_{x,y} P(x,y) \log \left(\frac{P(x,y)}{P_X(x)P_Y(y)} \right)$$

= $D(P||P_X \cdot P_Y) \ge 0$ (14)

1.3 Conditional Entropy

Definition 9. Consider two random variables X, Y defined on \mathcal{X}, \mathcal{Y} respectively. P is the joint distribution. The conditional entropy of X given Y is defined as

$$H(X|Y = y) = \sum_{x} P(X = x|Y = y) \log\left(\frac{1}{P(X = x|Y = y)}\right)$$
 (15)

$$H(X|Y) = \sum_{y} P_Y(y)H(X|Y=y) = \sum_{x,y} P(x,y) \log \left(\frac{1}{P(X=x|Y=y)}\right)$$
(16)

Exercise. Show the chain rule of entropy:

$$H(X,Y) = H(Y) + H(X|Y) = H(X) + H(Y|X)$$
(17)

More generally, suppose $X_1, ..., X_n$ are n random variables, show that:

$$H(X_1,...X_n) = H(X_1) + \sum_{i=2}^n H(X_i|X_1,...,X_{i-1})$$
(18)

Remark. Combine the chain rule of entropy and Claim 8 together, we can derive that

$$H(X|Y) \le H(X) \tag{19}$$

Intuitively, when given Y, we get more information of X, then the uncertainty of X is smaller.

Definition 10. The mutual information of two r.v.s X, Y is defined as

$$I(X;Y) = H(X) - H(X|Y)$$

$$= H(Y) - H(Y|X)$$

$$= H(X) + H(Y) - H(X,Y)$$
(20)

Intuitively, I(X;Y) characterizes the information provided by Y(or X) to reduce the uncertainty of X(or Y) and is always non-negative.

2 Multiway Classification and Fano's Inequality

2.1 Multiway Classification

Suppose there are M different distributions $P_1, ..., P_M$. Consider the following steps:

- 1. Randomly choose a distribution P_X , $X \sim U[M]$,
- 2. Observe Y from distribution P_X ,
- 3. Using the outcome Y to predict X.

For the process described above, we have the following claim:

Claim 11.

$$I(X;Y) \ge \Pr(correct) \cdot \log(M-1) - \log 2$$
 (21)

Proof. Define

$$Z = \begin{cases} 0, & \text{if } X \neq \tilde{X} \\ 1, & \text{if } X = \tilde{X} \end{cases}$$
 (22)

It is obvious that $H(Z|X, \tilde{X}) = 0$. Thus, using the chain rule of entropy, we can get

$$H(X,Z|\tilde{X}) = H(X|\tilde{X}) + H(Z|X,\tilde{X}) = H(X|\tilde{X})$$
(23)

On the other hand, we have

$$H(X, Z|\tilde{X}) = H(Z|\tilde{X}) + H(X|Z, \tilde{X})$$

$$\leq H(Z) + \Pr(Z = 1)H(X|\tilde{X}, Z = 1) + \Pr(Z = 0)H(X|\tilde{X}, Z = 0)$$

$$\leq \log 2 + \Pr(Z = 0)\log(M - 1)$$
(24)

The last inequality holds because $H(X|\tilde{X},Z=1)=0$ and

$$H(X|\tilde{X}, Z=0) = H(X|\tilde{X}, X \neq \tilde{X}) \le \log(M-1)$$

Thus, we can get

$$H(X|\tilde{X}) \le \log 2 + \Pr(error)\log(M-1)$$
 (25)

Since $H(X) = \log M$, we have

$$I(X; \tilde{X}) \ge \Pr(correct) \cdot \log(M - 1) - \log 2$$
 (26)

Consider the probability model, we have

$$X \to Y \to \tilde{X}$$

Using data processing inequality, we get the conclusion that

$$I(X;Y) \ge I(X;\tilde{X}) \ge \Pr(correct) \cdot \log(M-1) - \log 2$$
 (27)

We use this result to prove Fano's inequality.

2.2 Fano's Inequality

Theorem 12 (Fano's inequality). Suppose there are M different distributions $P_1, ..., P_M$ s.t.

$$D(P_i||P_j) \le \beta, \forall i, j$$

For the multiway classification problem defined in section 2.1, the following inequality holds:

$$\Pr(correct) \cdot \log(M-1) - \log 2 \le \beta \tag{28}$$

Proof. For the multiway classification problem, it is not hard to find that

$$\Pr(X=j) = \frac{1}{M} \tag{29}$$

$$\Pr(Y = y) = \frac{1}{M} \sum_{j} P_{j}(y) = \bar{P}(y)$$
 (30)

Using the result in Claim 11, we know that if $I(X;Y) \leq \beta$, the statement is true. Consider

$$I(X;Y) = H(X) - H(X|Y)$$

$$= \sum_{j,y} \Pr(X = j, Y = y) \log \left(\frac{\Pr(X = j|Y = y)}{\Pr(X = j)} \right)$$

$$= \sum_{j,y} \Pr(X = j, Y = y) \log \left(\frac{\Pr(X = j, Y = y)}{\Pr(X = j) \Pr(Y = y)} \right)$$

$$= \sum_{j,y} \frac{1}{M} P_j(y) \log \left(\frac{P_j(y)}{\frac{1}{M} \sum_j P_j(y)} \right)$$

$$= \frac{1}{M} \sum_j D(P_j || \bar{P})$$
(31)

So, we only need to prove that $D(P_i||\bar{P}) \leq \beta$. Since

$$\sum_{j=1}^{M} D(P||Q_{j}) = \sum_{x} P(x) \log \left(\frac{P^{M}(x)}{\prod_{j=1}^{M} Q_{j}(x)} \right)$$

$$= M \sum_{x} P(x) \log \left(\frac{P(x)}{(\prod_{j=1}^{M} Q_{j}(x))^{1/M}} \right)$$

$$\leq M \sum_{x} P(x) \log \left(\frac{P(x)}{\frac{1}{M} (\sum_{j=1}^{M} Q_{j}(x))} \right)$$

$$= MD \left(P \left| \left| \frac{1}{M} \sum_{j=1}^{M} Q_{j}(x) \right| \right) \right)$$
(32)

The inequality comes from convexity of $\exp(\cdot)$:

$$\left(\prod_{j=1}^{M} Q_j(x)\right)^{1/M} = \exp\left(\frac{1}{M} \sum_{j=1}^{M} \log(Q_j(x))\right)$$

$$\geq \frac{1}{M} \sum_{j=1}^{M} \exp(\log(Q_j(x)))$$

$$= \frac{1}{M} \sum_{j=1}^{M} Q_j(x)$$
(33)

Thus,

$$D(P_i||\bar{P}) \le \frac{1}{M} \sum_j D(P_i||P_j) \le \beta$$

Thus, $I(X;Y) \leq \beta$ and then we get the conclusion.

3 Learning Distributions

Definition 13. Consider a collection of distributions \mathcal{P} and a distance measure $d: \mathcal{P} \times \mathcal{P} \to \mathbb{R}$, define an ε -cover of \mathcal{P} as a set of distributions $P_1, P_2, ..., P_N \in \mathcal{P}$, s.t. $\forall P \in \mathcal{P}$, there exists $1 \leq i \leq N$ s.t. $d(P, P_i) < \varepsilon$.

Claim 14. For any collection of distributions \mathcal{P} , we use the total variation distance as the distance measure, i.e. $d = d_{TV}$. Let N_{ε} be the smallest size of the ε -cover of \mathcal{P} . Then for any distribution $P \in \mathcal{P}$, we need only

$$\frac{\log(N_{\varepsilon})}{\varepsilon^2} \tag{34}$$

samples to learn \hat{P} s.t. $d_{TV}(\hat{P}, P) < \varepsilon$ with probability at least 3/4.

To prove this claim, we first introduce the problem of finding the closest distribution. Consider a collection of distributions \mathcal{P} and N distributions $P_1, P_2, ..., P_N \in \mathcal{P}$. Suppose there is another distribution $P \in \mathcal{P}$ and we observe n samples $X_1, ..., X_n$ from P. Our goal is to output the closest distribution to P among $\{P_i\}_1^N$ based on the distance measure $d = d_{TV}$.

Theorem 15. With

$$\frac{C\log(N)}{\varepsilon^2} \tag{35}$$

samples, with probability at least 3/4 we can learn P_i s.t.

$$d_{TV}(P, P_i) \le 8\Delta + O(\varepsilon) \tag{36}$$

where $\Delta = \min_i d_{TV}(P, P_i)$

In the next lecture, we will show how to prove this theorem and therefore prove the previous claim. Also, we will give a "simple" algorithm to learn distributions optimally.