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We did a brief recap of the previous lecture. We then outline the three things we will discuss
today:

e Basics of information theory
e Proof of Fano’s Inequality

e A 7simple” algorithm to learn "many” classes ”almost” optimally

1 Basic Information Theory

1.1 Entropy

Definition 1. The entropy of a discrete distribution P over X is defined as
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Claim 2. Let P be a discrete distribution over X, then
H(P) <log|X| (2)

Proof. We use Jensen’s inequality and the concavity of log(z) to prove the claim.
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To understand entropy, we consider an example of distinguishing a number in a set. Suppose
X =1{0,1,2,...,127} and z is randomly chosen from X with equal probability. We would like to
identify = by asking several Yes/No questions. The problem is what is the smallest number of
questions we need to ask to find the exact value of z. The answer is 7 = log(128) and we will use
a binary search method to do this: firstly, we ask if x < 64, if yes, we ask the second question if
x < 32, or otherwise, ask if z < 96 and keep doing this until we successfully identify the exact
value of x. Actually, entropy H characterizes the shortest length we need to distinguish a random
variable.



1.2 Joint Entropy

Definition 3. We consider a joint discrete distribution P over X X ), then the joint entropy is
defined as

1
H(P)=) P(z,y)log| 55—~ (4)
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Definition 4. Suppose P is a joint distribution over X x Y, the marginal distribution of P is
defined as

Px(x) =)  P(z,y) (5)
y
Py(y) =) P(x,y) (6)
x
Definition 5. Suppose P is a joint distribution over X x Y, we say P is a product distribution if

P(z,y) = Px(z) - Py(y) (7)

We consider the following example. Table 1 gives us some statistics of the weather in San Diego.
Suppose X = {Sunny, Not Sunny}, Y = {Hot, Cold}.

Hot | Cold
Sunny 30 125
Not Sunny | 20 | 190

Table 1: Number of days of different weather

The question is, is the probability distribution of different kind of weather a product distribu-
tion? The answer is no since given Y = Hot or Cold, the probability

2
Pr(X = Sunny|Y = Hot) = % # é = Pr(X = Sunny|Y = Cold)

In fact, we can change the number in the table appropriately to make it a product distribution.

Claim 6. If P: X x Y is a product distribution, then we have

H(P) = H(P~x)+ H(Py) (8)
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Definition 7. If X is a random wvariable from a distribution P over X, we define the entropy of
the random variable X as

H(X)=H(P) (10)
Similar to Claim 6, we also have the conclusion that if X,Y are independent r.v.s,
HX,)Y)=H(X)+ H(Y) (11)
More generally, we have the following claim.
Claim 8. Consider two random variables X,Y , the following inequality holds:
HX)Y)<HX)+H(Y) (12)

Proof. According to the definition,

H(X,Y) =Y P(x,y)log <P(i,y)>
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1.3 Conditional Entropy

Definition 9. Consider two random variables X,Y defined on X,) respectively. P is the joint
distribution. The conditional entropy of X given Y is defined as

H(X|Y =y) = ZP —x\Y:y)log<P(X:i|Y:y)> (15)

H(X|Y) = ZPY H(X|Y =y) =) P(z,y)log <P(X:31r:\Y:y)> (16)

Exercise. Show the chain rule of entropy:
HX,)Y)=HY)+H(X|Y)=H(X)+ HY|X) (17)
More generally, suppose X1, ..., X,, are n random variables, show that:
n
H(Xy,..Xn) = H(X1) + > H(Xi| X1, .., Xio1) (18)
=2
Remark. Combine the chain rule of entropy and Claim 8 together, we can derive that
H(X]Y) < H(X) (19)

Intuitively, when given Y, we get more information of X, then the uncertainty of X is smaller.

Definition 10. The mutual information of two r.v.s X,Y is defined as

I(X:Y) = H(X) - HX|Y)
= H(Y) - H(Y|X) (20)
— H(X)+H(Y)— H(X,Y)

Intuitively, I(X;Y') characterizes the information provided by Y (or X) to reduce the uncertainty
of X(or Y) and is always non-negative.

2 Multiway Classification and Fano’s Inequality

2.1 Multiway Classification

Suppose there are M different distributions P, ..., Pys. Consider the following steps:
1. Randomly choose a distribution Px, X ~ U[M],
2. Observe Y from distribution Px,

3. Using the outcome Y to predict X.



For the process described above, we have the following claim:

Claim 11.
I(X;Y) > Pr(correct) - log(M — 1) — log 2

Proof. Define .
0, f X#X
Z = 1 7 -
1, f X=X

It is obvious that H(Z|X,X) = 0. Thus, using the chain rule of entropy, we can get
H(X,Z|X)=H(X|X)+ H(Z|X,X) = HX|X)
On the other hand, we have

H(X,Z|X)=H(Z|X)+ H(X|Z,X)
<H(Z)+Pr(Z=1)H(X|X,Z=1)+Pr(Z=0)H(X|X,Z =0)
<log2+ Pr(Z =0)log(M —1)

The last inequality holds because H(X|X,Z =1) =0 and
H(X|X,Z=0)=H(X|X,X # X) <log(M —1)
Thus, we can get
H(X|X) <log2 + Pr(error)log(M — 1)
Since H(X) = log M, we have
I(X; X) > Pr(correct) - log(M — 1) — log 2
Consider the probability model, we have
XY =X
Using data processing inequality, we get the conclusion that

I(X;Y) > I(X; X) > Pr(correct) - log(M — 1) —log 2

We use this result to prove Fano’s inequality.



2.2 Fano’s Inequality
Theorem 12 (Fano’s inequality). Suppose there are M different distributions Py, ..., Py s.t.

D(Fi||F;) < B,Vi, j
For the multiway classification problem defined in section 2.1, the following inequality holds:

Pr(correct) -log(M — 1) —log2 < (28)

Proof. For the multiway classification problem, it is not hard to find that

, 1
Pr(X =j) = M

Pr(Y =y) = 22 3 (o) = P(y) (30)

Using the result in Claim 11, we know that if I(X;Y) < 3, the statement is true. Consider
I(X;Y) = H(X) - HX|Y)
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So, we only need to prove that D(P;||P) < 3. Since
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The inequality comes from convexity of exp(-
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Thus,
_ 1
D(P||P) < 57> D(Pi||IP) <8
J
Thus, I(X;Y) < 8 and then we get the conclusion. O

3 Learning Distributions

Definition 13. Consider a collection of distributions P and a distance measure d : P x P — R,
define an e—cover of P as a set of distributions Py, Ps,...,Py € P, s.t. VP € P, there exists
1<i<N st dP,P)<e

Claim 14. For any collection of distributions P, we use the total variation distance as the distance
measure, i.e. d = dpy. Let N. be the smallest size of the e—cover of P. Then for any distribution
P € P, we need only
log(N:)
22

(34)

samples to learn P s.t. dry (P, P) < e with probability at least 3/4.

To prove this claim, we first introduce the problem of finding the closest distribution. Consider
a collection of distributions P and N distributions P;, P, ..., Py € P. Suppose there is another
distribution P € P and we observe n samples X7, ..., X,, from P. Our goal is to output the closest
distribution to P among {P;})V based on the distance measure d = drv .

Theorem 15. With

C'log(N)
T (35)
samples, with probability at least 3/4 we can learn P; s.t.
drv (P, Pj) < 8A + O(e) (36)

where A = min; dpy (P, P;)

In the next lecture, we will show how to prove this theorem and therefore prove the previous
claim. Also, we will give a ”simple” algorithm to learn distributions optimally.



