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1 Robust Estimation

Until now, we assumed the underlying distribution P belongs to a known class P, and we observe
samples Xn

1 ∼ P . However, the assumption that P ∈ P might not be true, or it is possible that
some of the entries are corrupted. Learning distributions under various possible corruptions is
called as robust statistics.

1.1 Huber’s contamination model

The most widely used model is Huber’s contamination model. Pu is an underlying distribution,
and Pe is an error distribution. Suppose we observe n samples Xn

1 where each Xi is distributed:

Xi ∼ (1− ε)Pu + εPe.

In other words, with probability ε the sample is not generated from Pu, but from Pe.

1.2 Adversarial contamination

A slightly stronger model is the following. First generate Xn
1 from the underlying distribution Pu.

An adversary can select any Xj1 , . . . Xjnε and replaces them with anything they like.
The goal is to estimate the underlying distribution Pu ∈ P up to a total variation distance Cε

for some absolute constant C.
Let us consider the following concrete question.

Question. Suppose Pu = N(µ, 1). The goal is to output a distribution P̂ such that dTV (Pu, P̂ ) ≤
Cε, for some constant ε. We want to understand:

• How many samples are required?

• What is the time complexity?

In Assignment 1 Problem 3, when we substitute σ = 1, we showed that if µ − hatµ < c1ε (for
some constant ε), there is a constant C1 (depending on c1) such that

dTV ((, N)(µ, 1), N(µ̂, 1)) ≤ C1ε.

Using this we showed that N((
∑
Xi)/n, 1) can estimate N(µ, 1) to total variation O(ε) using

O(1/ε2) samples. Please attempt that problem (first two parts) to get a sense of the sample
complexity of C/ε2.

Consider another approach. Let Xmed denote the median of Xn
1 .

We studied the CDF of a distribution last time in class. In particular we stated that:



Claim 1. Suppose P be any distribution on R, and Pn be the empirical distribution upon observing
n samples. Let FP (x) = P (X ≤ x) denote the CDF of P . Then for any x,

E[|FPn(x)− FP (x)|] ≤
√

1/n).

This result follows from the fact that FPn(x) is the number of symbols that are at most x,
which is a Binomial distribution with parameters n and FP (x). The remaining part follows from
the computations we did for variances of Binomials (refer to previous notes on estimating Bernoulli
random variables).

We first state a simple result for Gaussian distributions, which is left as an exercise (along the
lines done in class).

Claim 2. Let P = N(µ, 1), and ε > 0 a small constant (say < 0.1). Then there are universal
constants Cl, Cu, such that

1/2− Clε < P (X ≤ µ− ε) < 1

2
− Cuε.

Using this, we prove the following claim:

Claim 3. There is a constant C such that given C/ε2 samples, with probability at least 0.9 the
median lies between µ− ε, and µ+ ε.

Proof. By Claim 1, we can choose C to be such that for x = µ− ε and x = µ+ ε, w.p. at least 0.9,
(using Markov Inequality),

|FPn(µ± ε)− FP (µ± ε)| < εCu

10
.

Therefore, the number of points less than µ− ε is at most n(1/2−Cuε) +Cuεn/10 < n/2, and the
number of points larger than µ+ ε is more than n/2. Therefore the median lies in the interval.

This proves that the median is a good substitute for the sample mean. We can show that even
with corrupting ε fraction of the symbols, the median does not change by more then O(ε). In
particular, one can show that there exist constants C1 such that

1/2− 4ε < P (X ≤ µ− Clε).

By the same argument as the claim, we can show that with for n > C/ε2 the number of samples
at most µ−Clε is at most n/2−3nε, and the number of elements at most µ+ε is at least n/2+3nε.
Therefore, there are at least 6nε elements are within C1ε distance of µ. Therefore, when we change
nε fraction of the elements, the median does not leave this interval, and we are done.

1.3 Higher dimensions

Consider the problem of learning Gaussians in d dimensions, with unit covariance matrix. Namely,
the Pu = N(µ, Id). Again, a fraction ε of the samples are corrupted. We noticed in the assignment
that if there are no corruptions O(d/ε2) samples are sufficient to learn such a Pu.

If we allow some corruptions, one can construct large collection of distributions by picking each
coordinate to be any of the Xij ’s along the lines of what we did for learning mixtures of Gaussians.
If we do this, then a covering argument will give ”sample efficient”, but exponential time algorithms.
We do not want that. We briefly mentioned about two papers that avoid this exponential time.
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