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1 Introduction

Definition 1. A discrete distribution P over X is a function from a countable set X to R+, such
that

∑
x∈X P (x) = 1.

We will study the problem of distribution estimation.
Problem. Given independent samples X1, . . . , Xn from an unknown distribution P , output

a distribution P̂ such that L(P, P̂ ) is small. Here L(·, ·) is a loss function, or distance measures
between distributions.

In this lecture, we discuss some common statistical distance measures. We will restrict ourselves
to discrete random variables over X .

1.1 Total Variation/`1 distance

For a subset A ⊆ X , let P (A) =
∑

x∈A P (x) be the probability of observing an element in A.

Definition 2. The total variation distance between P , and Q is

dTV (P,Q) = sup
A⊆X

|P (A)−Q(A)|.

The TV distance is related to the `1 distance as follows:

Claim 3.
2 · dTV (P,Q) = |P −Q|1

def
=
∑
x∈X
|P (x)−Q(x)|

Proof. Let A∗ be the set such that dTV (P,Q) = P (A∗)−Q(A∗). Suppose there is an x ∈ X \A such
that P (x) > Q(x), then P (A∗ ∪ {x})−Q(A∗ ∪ {x}) > P (A∗)−Q(A∗), a contradiction. Similarly,
there is no x ∈ A∗ with Q(x) > P (x). Therefore, A∗ = {x ∈ X : P (x) > Q(x)}. Hence,

|P −Q|1
def
=
∑
x∈X
|P (x)−Q(x)| (1)

=
∑
x∈A∗

P (x)−Q(x) +
∑
x/∈A∗

Q(x)− P (x) (2)

= P (A∗)−Q(A∗) + (1−Q(A∗))− (1− P (A∗) (3)

= 2dTV (P,Q). (4)



Interpretation as classification error

Consider the following problem. P , Q are two distributions we know. Nature chooses a distribution
D, which is either P , or Q with equal probability, namely

D =

{
P w.p. 0.5

Q w.p. 0.5.

We get to see a sample from D, and then make a ( possibly randomized) prediction whether D
is equal to P or Q.

Let C(P |x) be the probability that we predict P upon observing x. Therefore, C(Q|x) =
1− C(P |x). Hence, by the Bayes rule

Pr (error) =
∑
x∈X

[Pr (D = P ) · P (x)C(Q|x) + Pr (D = Q) ·Q(x)C(P |x)] (5)

=
∑
x∈X

[
1

2
· P (x)C(Q|x) +

1

2
·Q(x) · (1− C(Q|x))

]
(6)

=
1

2
+

1

2

∑
x∈X

C(Q|x)(P (x)−Q(x)). (7)

Therefore, to minimize the probability of error, we should make C(Q|x) = 1 for all elements such
that P (x) > Q(x). Therefore, we are left with a summation that equals the total variation distance.
Let e∗ be the least probability of error. Then

e∗ =
1

2
− 1

2
dTV (P,Q) =

1

2
− 1

4
|P −Q|1. (8)

Let Bern(p) be the Bernoulli random variable that takes value 1 with probability p, and value
0 with probability 1− p.

Exercise Show that the mean and variance of Bern(p) is p and p(1− p) respectively.
Exercise See that (8) makes sense by taking

• P = Bern(0), and Q = Bern(1).

• P = Bern(0), and Q = Bern(0).

We now move on to another distance measure.

1.2 KL Divergence.

Definition 4. The KL divergence between P , and Q is

D(P ||Q)
def
=
∑
x∈X

P (x) log
P (x)

Q(x)
.

To be a distance, we first should show that this is non-negative. This follows easily using
Jensen’s inequality and concavity of logarithms. We will use the following simple inequality.

Using basic calculus, we can show that for x > −1, log(1 + x) ≤ x.
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Therefore,

D(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(9)

= −
∑
x∈X

P (x) log

(
1 +

Q(x)− P (x)

P (x)

)
(10)

≥ −
∑
x∈X

P (x) · Q(x)− P (x)

P (x)
(11)

= −
∑
x∈X

Q(x)− P (x) = 0 (12)

Data Compression and KL divergence. We will be covering the basics of information
theory in one of the lectures. We will show that a discrete random variable with distribution P can
be compressed to about

∑
P (x) log(1/P (x)) bits in expectation, using a scheme designed with the

knowledge of P . However, suppose we thought that the random variable is distributed according
to Q, when in fact it was distributed according to P . The extra number of bits we use on average
due to this misspecification will be exactly equal to the KL divergence between P and Q.

KL divergence will be helpful in proving some of the lower bounds on the sample complexity of
problems we consider owing to the Pinsker’s Inequality. We will prove it in the assignment.

Pinsker’s Inequality. For discrete distributions P and Q,

|P −Q|21 ≤ 2 ·D(P ||Q). (13)

One of the nice properties of KL divergence is additivity for independent random variables.
Suppose P = P1×. . .×Pm and Q = Q1×. . .×Qm are product distributions over X = X1×. . .×Xm.
For example, each Pi can be an independent toss from a Bernoulli random variable, and P is the
outcome of m independent tosses. Therefore, Xi = {0, 1}, and X = {0, 1}m.

Then, (show this)

D(P ||Q) =
m∑
i=1

D(Pi||Qi).

Finally, we discuss about chi-squared distance.

1.3 Chi-squared distance

There are a few different definitions of the chi-squared distance. We will use the following (asym-
metric) definition.

Definition 5. The chi-squared distance between P and Q is

χ2(P,Q) =
∑
x∈X

(P (x)−Q(x))2

Q(x)
.

Expanding the expression, and using
∑

x∈X P (x) =
∑

x∈X Q(x) = 1,

χ2(P,Q) =

[∑
x∈X

(P (x)2

Q(x)

]
− 1.
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Therefore, using log x < x− 1,

D(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(14)

≤
∑
x∈X

P (x) ·
(
P (x)

Q(x)
− 1

)
= χ2(P,Q). (15)

Relation between the measures

The following relation between distance measures will be useful:

1

2
|P −Q|21 ≤ D(P ||Q) ≤ χ2(P,Q)

1.4 Concentration

To analyze the estimators we design, concentration inequalities will be useful.
The first inequality is Markov’s Inequality.

Theorem 6 (Markov’s Inequality.). Let X be a non-negative random variable. Then for α > 0,

Pr (X ≥ α) ≤ E[X]

α
.

Proof. Let P be the distribution of X. By definition of expectation,

E[X] =

∫
x≥0

x · dP (x) ≥
∫
x≥α

x · dP (x) ≥
∫
x≥α

α · dP (x) = α · Pr (X ≥ α) .

Chebyshev’s inequality proves concentration of random variables around the mean in terms of
the standard deviation.

Theorem 7 (Chebyshev’s inequality). Let X be a random variable with mean µ and variance
E[(X − µ)2] = σ2. Then,

Pr (|X − µ| > α · σ) ≤ 1

α2
.

Proof. Let Y = |X − µ|. Apply Markov’s inequality on Y 2 and use E[Y 2] = σ2.

Concentration is very useful when applied to sum, and averages of random variables. Suppose
X1, . . . , Xn are independent random variables from a distribution with mean µ, and variance σ2.
Let X̄ = (X1 + . . .+Xn)/n be the sample mean. By Linearity of expectations, we have E[X̄] = µ.
By independence,

V ar(X̄) =
1

n2

n∑
i=1

V ar(Xi) =
σ2

n
. (16)

Applying the Chebyshev’s inequality,

Pr

(
|X̄ − µ| ≥ α ·

√
σ

n

)
≤ 1

α2
(17)
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1.5 Bernoulli Probability Estimation

We have enough machinery now to study the problem of estimating a Bernoulli distribution.
Problem. Given samples X1, . . . from an unknown P , an unknown Bern(p) random variable.

The goal is to output a distribution P̂ such that with probability at least 3/4, dTV (P,Q) ≤ ε.
Suppose we observe n samples X1, . . . , Xn, and let p̂ = (X1 + . . . + Xn)/n. We output the

distribution P̂ = Bern(p̂). Then,
E[p̂] = p,

and

E[p̂] =
p(1− p)

n
.

By Chebyshev’s inequality,

Pr

(
|p− p̂| > 2 ·

√
p(1− p)

n

)
≤ 1

4

Suppose, n > 4p(1− p)/ε2, then with probability at least 3/4,

Pr (|p− p̂| > ε) ≤ 1

4
. (18)

Note that the TV distance between Bern(p) and Bern(q) is |p− q|.

Theorem 8. With

n ≥ 4
p(1− p)

ε2

samples, we can estimate P to a total variation ε with probability at least 3/4.

In the next lecture, we will see why this might be the best we can do.

5


