
Introduction: What and Why
 

What: We are studying the behavior of a quantum (“light”) par-
ticle in a fluid.
 

Why: Knowing how a light particle behaves in a fluid can give us 
better insight into the composition of materials.  For example, if 
we fill a porous material with gas and insert a positron, eventu-
ally the positron and an electron that resides in the fluid will an-
nihilate one another.  How long this takes depends on the size 
and shape of the cavities in the solid and the structure of the gas.  
Thus, if we know the lifetimes of positrons in differently sized 
or shaped voids, we can use them as a “probe” to investigate the 
properties of both the material and of the absorbed fluid.  
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Canonical Monte Carlo (CMC)
Canonical ensemble: Fixed volume, temperature, particle number

CMC: Starts in a random configuration and uses Metropolis Sam-
pling to accept or reject moves based on the change in energy.  
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Left: Average energy of a 
CMC simulation of a fluid.  
After a time it reaches 
equilibrium.  The time av-
erage shown agrees with 
literature values.

+ CMC can be used to find equilibrium configurations.
- Difficult to use for phase transitions.

Grand Canonical Monte Carlo (GCMC)
Grand Canonical Ensemble: Fixed temperature, volume, chemi-
cal potential; variable particle number.

GCMC: As CMC, except we also attempt to insert and remove 
particles.  Acceptance calculations include chemical potential. 

Above: Density variations of a 
GCMC simulation at a phase coexis-
tence point between vapor and liquid.

Above: A histogram of the data 
to the left. 

+ GCMC can be used to find phase coexistence points.
- Can’t overcome free energy barriers easily.
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Multicanonical Sampling
Multicanonical Sampling: Uses a weighting function to help 
Metropolis fully explore a system with high free energy barriers.
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Above: Simulation weight-
ed by the histogram in 
GCMC section. We explore  
all densities equally.

Above: Unweighting the histo-
gram to the left in post process-
ing gives the above histogram.

+ Multicanonical sampling explores space equally.
- Have to find weighting function.

Wang-Landau Sampling
Wang-Landau Sampling: Constructs density of energy states, 
which allows us to find statistical averages at all temperatures.
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Wang−Landau
MD (Johnson et al)
MC (Johnson et al)

Left: Average internal energy 
found using one Wang-
Landau simulation compared 
against literature values 
found using 12 simulations.

+ Wang-Landau is temperature independent.
- Simulations take a long time.

Light Particle Sampling Methods
Path Integral Monte Carlo (PIMC): Treats the light particle as a 
“polymer” of beads held together by springs.

Path Integral Wang-Landau Sampling: As for classical particles 
except constructs a two-dimensional density of states for poten-
tial and kinetic energy terms.
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⇒ Wang-Landau can be adapted to a light particle.

Left: The average potential 
energy for a light-particle in a 
simple harmonic potential.  The 
Wang-Landau simuluation (blue) 
is more accurate than simply 
using histogram reweighting on  
a single Metropolis PIMC simu-
lation (green).  The analytical 
result is shown in red.

Definitions
Monte Carlo (MC): A collection 
of computational methods that 
simulate complex statistical be-
haviors.  

Metropolis Sampling: A method 
for accepting or rejecting changes 
to a simulated system based on 
the properties of the system.

Lennard-Jones Fluid: We simu-
late a “Lennard-Jones Fluid,” 
which means the fluid obeys the Lennard-Jones pair potential

U
LJ

(r) = 4ε((σ/
r
)12 - (σ/

r
)6)

where r is the distance between two atoms and ε and σ are pa-
rameters that depend on the particular fluid molecules being 
modeled.

Light Particle: A particle whose dynamics are accurately de-
scribed only with quantum mechanics. 

Above: A simulated fluid

Histogram Reweighting
Histogram Reweighting: Method that takes a histrogram created 
at energy E

0
 and chemical potential μ

0
 and “reweights” it to a 

histogram at energy E
1
 and chemical potential μ

1
.

⇒ Can find weighting function for multicanonical

Conclusions and Future Work
 

Wang-Landau and multicanonical sampling are best for systems 
with high free energy barriers.  Wang-Landau takes longer than 
multicanonical but is more useful for systems where it is hard to 
obtain a weighting function.

In future work we hope to extend these techniques to the com-
bined fluid and light particle system.

Widom Method
Widom Method: Finds the chemical potential of a simulated 
system.
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⇒ GCMC and CMC are self-consistent.

We ran 8 CMC runs at differ-
ent densities and calculated 
chemical potential.  In 8 en-
suing runs at those potentials 
the difference in density be-
tween CMC and GCMC was 
always less than 4%
 

Above: One of 8 graphs comparing 
CMC and GCMC densities


