
For the interpolated filter output,         at 
pixel i, scale s, and orientation θ, we 
define the angular energy as:

A plot of the angular energy as a function 
of orientation is shown on the right. The 
extracted features are boxed in orange.

We also define the bias of the texture as:

Our final feature set is shown in the table 
to the right.

Once these fields are found, we can find the traditional intrinsic image and
visualize the intrinsic texture image (equal contrast, bias, orientation, and scale).

For each feature, we impose a smooth, additive MRF. In the 
orientation case, this is represented as the diagram to the 
right where     is the smooth field and     is the intrinsic 
orientation.

We aim to capture four texture features: orientation, scale, contrast, and bias. In
natural textures, each feature can change due to the underlying geometric shape
of the object or a physical change in the texture. We measure these features and
impose a smooth Markov random field to capture the spatial correlations.
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Contrast
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The steerable pyramid [1] is a multi-scale and orientation decomposition of an
image. The red dot is recursively replaced with the gray box. The output at any
orientation can be interpolated from the basis. An example output is shown
below.
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Original Image Intrinsic Image Intrinsic Texture Image

We use our feature set in the segmentation algorithm presented in [2], treating
each feature as statistically independent. We incorporate the multi-region
segmentation algorithm used in [3].

Our model allows us to estimate a one parameter camera radiometric function. We
take advantage of the similarity between the following camera and texture model:

 - Original Image

Camera Model

Texture Model

 - Reflectance Image

 - Gain Field

 - Bias Field

 - Shading Image

 - Irradiance Image

Once the nonlinear camera model has been estimated with our model, we also
estimate a shading image. We use a common shape from shading algorithm [4] to
infer the shape.
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1) Maximize the distance between the conditional distributions

2) Maximize the distance between the joint of the pixels and the labels and the
product of the marginals

When the distance between the conditional distributions takes on a particular
symmetric form, , there is an equivalent Ali-
Silvey distance that can be used in Method 2 to reveal the exact same
relationship as Method 1.
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We define a binary class label,                  , at each pixel i.

There are two popular information-theoretic 
approaches to segment an image:
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We compare the following information-theoretic measures for segmentation

Using our defined features, classification on the Brodatz textures can be
computed perfectly under any of the three distance measures. Instead we
segment synthetic Brodatz images, with a subset of results shown below.
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