
Synthetic Results 
The following examples illustrate when topology constraints can help. 
The additional prior knowledge can improve robustness. However, 
incorrect, overly-restrictive constraints can cause problems. 

Imposing Different Constraints 
With the mapping of topological numbers to topology changes, one can control the 
evolution of the shape to have any topology. We show four different topology 
constraints: unconstrained, topology preserving, genus preserving, and foreground 
connected component preserving. A sample from each constraint is shown below. 

Initialization Unconstrained Topology Preserving Genus Preserving FG Connected 
Component Preserving 

Gibbs Sampling Comparison 
The formulation of the energy allows the use of a traditional Gibbs sampler. However, 
the small moves of a typical Gibbs sampler tend to converge to local extrema, such as 
the case below. 
 
 
 
 
 
 
 
GIMH is, however, related to block Gibbs sampling. In block Gibbs, a block of size 
M requires one to evaluate 2M number of different configurations. In GIMH, the level-
set implicitly orders the block of pixels, resulting in only M+1 configurations. 
Ergodicity of the chain is ensured because the ordering varies with time. 

Image Initialization Gibbs Sample GIMH Sample 

Computation Times 
We compare the running time of our GIMH sampler with three other binary shape 
samplers [2], [3], and [4]. The following shows the average energy across samples 
plotted against computation time. GIMH is approximately 100x faster than the next 
fastest algorithm, BFPS. 
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Efficient Topology-Controlled Sampling of Implicit Shapes 
Topology Control 

Metropolis-Hastings (MH) MCMC methods [9] provide a way to sample from a 
distribution as long as the density can be evaluated to a constant scale factor. The use 
of Metropolis-Hastings for sampling curves was first proposed by [4]. This method 
was very slow and was restricted to a single simply connected component. 
 

Given a previous sample,    , one generates a new sample,    , from a proposal 
distribution,                       , and accepts the sample with probability: 
 
 
 
 
 

Given enough time, it is guaranteed that this procedure ultimately produces a single 
sample from the desired distribution as long as the Markov chain is ergodic. However, 
the chain can typically take upwards of 100,000 samples to converge. One must take 
particular care in designing proposal distributions that have high acceptance 
probability and that can be generated and evaluated quickly. 
 

Gibbs sampling is a special case of MH-MCMC where the proposal is chosen to be 
proportional to the target distribution: 
 
 
In this case, the proposal is always accepted because the Hastings ratio evaluates to 1. 
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Metropolis-Hastings & Gibbs 

The level set representation [10] is widely used in image segmentation. A 2D labeling, 
   , is implicitly represented by the sign of the level set of a 3D surface,    . Evolving 
the curve is accomplished by changing the entire surface. This implicit representation 
easily represents topological changes. 

ϕ

Level Set Representation 

Motivation 
Image segmentation is often formulated as an energy minimization problem, where 
one tries to find the labeling,    , that minimizes a surrogate energy functional            . 
Due to the ill-posed nature of the problem, oftentimes multiple solutions exist and the 
optimal energy may not correspond to the best segmentations. 
 
 
 
 
 
 
In this event, statistics over the distribution of segmentations may be more 
informative. Consequently, we look at sampling from the following distribution: 
 
 

The work of [2] illustrates the improvement from sampling algorithms in boundary 
detection on the Berkeley Segmentation Dataset [8]. 
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Topological numbers [5] allow one to identify if changing a single pixel will cause a 
topology change. These numbers count the number of 4- and 8-connected components 
in a 3x3 neighborhood. Topology changes occur unless                    . 
 
 
 
 
 
 
Extended topological numbers [12], can identify the actual topological change that 
occurs. These can be computationally prohibitive in 3D, but are easily found in 2D. 
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‘C’ – Create, ‘D’ – Destroy, ‘S’ – Split, ‘M’ – Merge 
‘H’ – Handle(s), ‘R’ – Region(s), ‘X’ – any value; 

A proposal is generated from the following procedure: 
1) Generate a random mask,   , that selects a subset of pixels 
2) Add a random constant value,    , to all pixels within the mask 

 
 
Because the target distribution only depends on the sign of the height at each pixel, 
any    in a range,    , has the same probability under the target distribution. 
 
 
 
 
 
 
 
The perturbation is chosen by selecting a range followed by uniformly sampling a 
value in that range. 
 
 
 
 
 
Because the value of    within a range does not affect the sign of the resulting level-
set, the proposed labeling can be expressed as 
 
 
The following range proposal distribution results in a Hasting’s ratio of 1: 

Gibbs-Inspired Proposal 
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Code available at  http://people.csail.mit.edu/jchang7/ 
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