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Parallel Sampling of DP Mixture Models using Sub-Cluster Splits 

Code available at  http://people.csail.mit.edu/jchang7/ 
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Overview 
Dirichlet process mixture models (DPMMs) are widely used to model 
grouped data. Current Markov chain Monte Carlo (MCMC) sampling 
algorithms suffer from scalability, slow convergence, and/or require 
approximations. We present a new method that overcomes these issues. 
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Collapsed Weight þ	   ☐	   ☐	   ☐	  
Finite Approx. [3,4] ☐	   ☐	   ☐	   þ	  
Slice Sampling [2,7] þ	   ☐	   ☐	   þ	  
RGSM [5] / SAMS [1] þ	   þ	   ☐	   ☐	  
Super-Clusters [6,8] þ	   ☐	   þ	   ☐	  
Sub-Cluster Method þ	   þ	   þ	   þ	  
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DP Mixture Models 
The graphical model for a DPMM is shown below 
 
 
 
 
Chinese Restaurant Process based sampling methods marginalize over the 
infinite-length cluster weights,     . These methods cannot be parallelized. 
 
 
Finite approximations ([3,4]) and slice-sampling ([2,7]) can be used to 
instantiate weights. Cluster assignments can then be sampled in parallel. 

π ∼ GEM(1,α)

zi ∼ Cat(π)

θk ∼ fθ(θ;λ)

xi ∼ fx(xi; θzi)

.	  .	  .	  
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Split / Merge Methods 
RGSM [5] construct a split by randomly partitioning a cluster and 
running restricted Gibbs iterations on the data points. SAMS [1] 
constructs a split by sequentially assigning points to one of two new 
clusters. Both algorithms then use a Metropolis-Hastings accept/reject 
framework. If a split is rejected, all computation in constructing the split 
is wasted. 
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Fitting Sub-Clusters 
We augment the space with auxiliary variables representing sub-clusters. 

 

 

 

Each regular-cluster is augmented with two sub-clusters, denoted the 
“left” and “right” sub-clusters. Suitable priors are chosen for the sub-
cluster parameters such that their posterior distributions are as follows: 

 

Sub-cluster variables are 
denoted with a bar and 
have similar meaning to 
regular-clusters. 

Restricted Gibbs-Sampler 
Because the restricted Gibbs sampler does not need to consider creating 
new clusters, it can be efficiently and exactly parallelized. The posterior 
cluster weights are then distributed according to 
 

Sampling cluster assignments can be parallelized without approximations 
since the K cluster weights and parameters are instantiated. 

...	  ...	   ...	  ...	  

K = 1 K = 2 K = 3 

Restricted Gibbs Sampler 

...	  

Merge 

Split 

K+1 K 

Split / Merge Moves 

Mixing Non-Ergodic Chains 
MCMC sampling algorithms typically consider the case where the 
induced Markov chain is ergodic and where the transition distribution 
satisifed detailed balance. One key observation of this work is that mixing 
multiple non-ergodic chains can result in a ergodic chain. 

For mixture models, a restricted Gibbs sampler that does not allow the 
introduction of new clusters can be mixed with any split/merge sampler. 

Results 
We consider three new samplers: the basic method (SUBC), with data-
dependent super-cluster (SUBC+SUPC), and an approximate method 
(SUBC+SUPC APPROX). We compare with the Finite Symmetric Dirichlet 
(FSD) of [4], a collapsed Gibbs sampler (GIBBS), the super-clusters 
(GIBBS+SUPC) of [6], and the split/merge (GIBBS+SAMS) work of [1]. 

Synthetic Gaussian Data with and without Parallelization 

Real Gaussian Data Real Multinomial Data 

Random Splits / Merges 
Because a sub-cluster split is constructed deterministically from its sub-
clusters, the reverse merge move is rejected with very high probability. 
We therefore include a set of “random” split/merge moves. A “random” 
split is sampled independent of data from a 2-component Dir-Mult. 

 
 

While a random split is typically meaningless, the random merge is often 
accepted. Thus, the random split/merge moves complement the sub-
cluster split/merge moves. 

Good Splits Good Merges 

Sub-Cluster Split/Merge Moves þ	   ☐	  
Random Split/Merge Moves ☐	   þ	  

Sub-Cluster Splits 
Since sub-clusters contain likely splits, we propose to split a cluster into 
its two sub-clusters. Conditioned on the new cluster assignments, all other 
regular-cluster parameters are proposed from their posterior distributions. 
New auxiliary variables are deferred to the restricted Gibbs sampler. 

Jason Chang & John W. Fisher III 


