

Previous Work

Maximize mutual information (MI) of pixel with region labeling

$$I(G(c); L_{\mathcal{C}}(c))$$

Approximate MI by using a Kernel Density Estimate to find the PDFs

$$\hat{p}_{\pm}(c) = \frac{1}{|R_{\pm}|} \int_{R_{\pm}} K(G(c) - G(x)) dx$$

Minimize the energy functional in level set methods

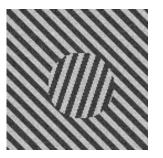
$$E(c) = -|\Omega| \hat{I}(G(c); L_{\mathcal{C}}(c)) + \alpha \oint_{\mathcal{C}} ds \qquad \forall c \in \mathcal{C}$$

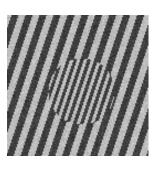
Find the flow for the zero level set curve

$$\overrightarrow{V}(c) = \left[log_{\widehat{p}_{-}(G(c))}^{\widehat{p}_{+}(G(c))} - \alpha \kappa \right] \overrightarrow{N} \qquad \forall c \in \mathcal{C}$$

Previous Work

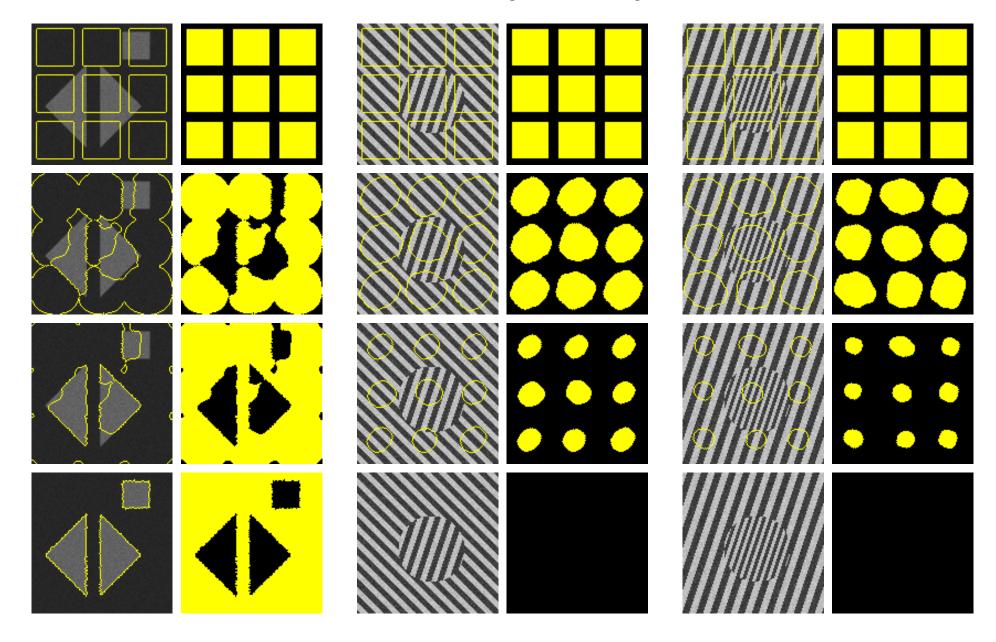
- Why is Junmo Kim's Scalar Segmentation Algorithm Good?
 - Segmentation based on non-parametric statistics
 - No training required
 - Can segment two regions with the same mean and variance
 - Performs very well on a large class of grayscale images
- What needs to be improved?
 - Likelihood depends solely on pixel intensity, no underlying image structure is taken advantage of
 - Only supports grayscale image segmentation
 - Textured images can not be segmented





Previous Work

Junmo Kim's Scalar Segmentation Algorithm



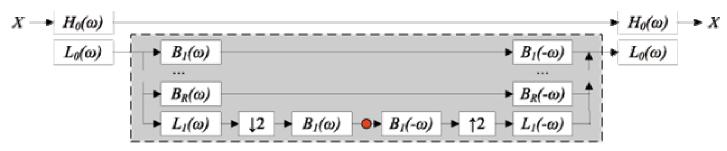
Vector Segmentation

 If each pixel had a vector representation of texture, we could easily extend the formulation... (notice the **bold** vector **c**, instead of the scalar c)

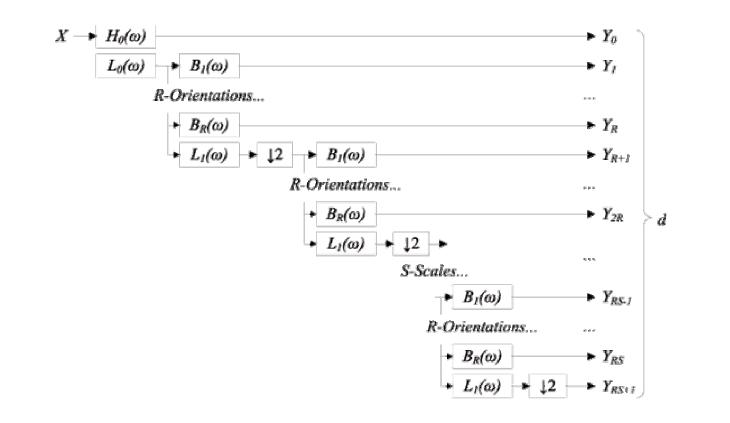
$$\overrightarrow{V}(\mathbf{c}) = \left[log \frac{\hat{p}_{+}(G(\mathbf{c}))}{\hat{p}_{-}(G(\mathbf{c}))} - \alpha \kappa \right] \overrightarrow{N} \qquad \forall \mathbf{c} \in \mathcal{C}$$

- Color images are now easily segmented
- Vector images can be generated using Steerable Pyramids (Simoncelli et al.)

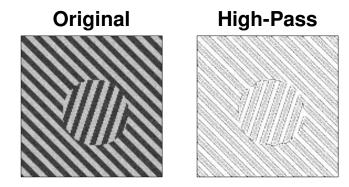
Steerable Pyramid

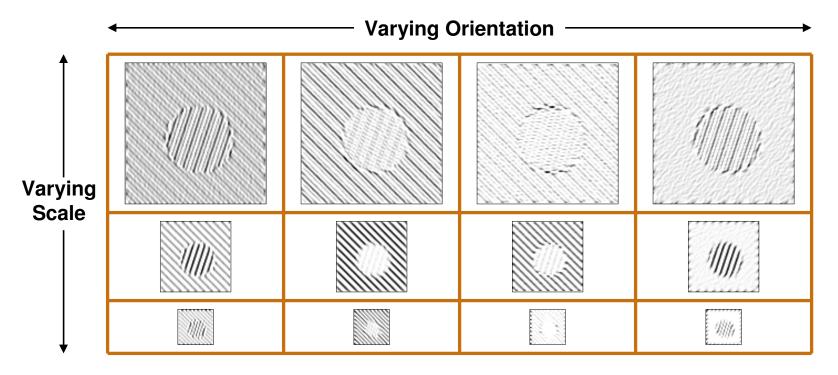


Recursively replace the gray box at the red dot



Steerable Pyramid





New Algorithm

 Estimating PDFs using the Improved Fast Gauss Transform (Duraiswami et al.) has complexity:

$$\mathcal{O}(d^p(M+N))$$

d – dimensionality M - # target points N - # source points

- For high dimensions (like the steerable pyramid output), this computation takes too long to perform
- Perform dimensionality reduction by optimally choosing the K "most contributing" images in the pyramid

Dimensionality Reduction

• By construction of the steerable pyramid, we can reconstruct the original image, x, from the outputs, y_i

$$\mathbf{x} = \sum_{i=0}^{d-1} \Theta_i \mathbf{y}_i$$

• We can approximately reconstruct \mathbf{x} by only using some of the outputs which are chosen by the binary string, \mathbf{u}

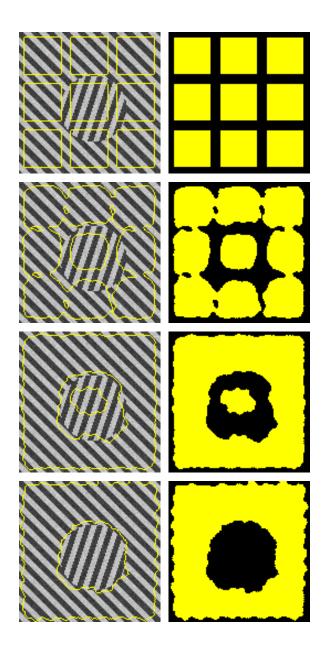
$$\hat{\mathbf{x}} = \sum_{i=0}^{d-1} \Theta_i \mathbf{y}_i u_i$$

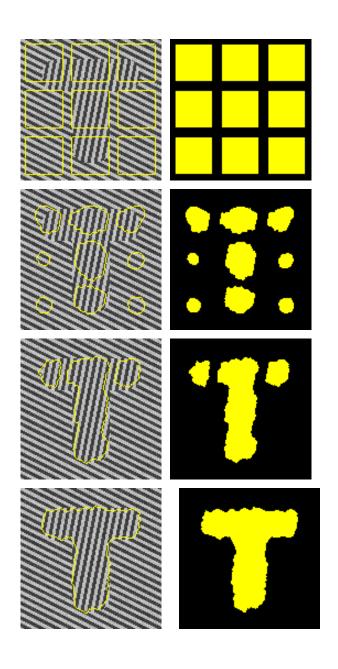
• The error criterion used (not necessarily the best) between $\hat{\mathbf{x}}$ and \mathbf{x} is $e(\hat{\mathbf{x}}, \mathbf{x}) = ||\hat{\mathbf{x}} - \mathbf{x}||_2^2 = (\hat{\mathbf{x}} - \mathbf{x})^T (\hat{\mathbf{x}} - \mathbf{x})$

Perform the following optimization

$$\mathbf{u}^* = \arg\min_{\mathbf{u} \in \{0,1\}^d} \left[(1 - \beta)e(\hat{\mathbf{x}}, \mathbf{x}) + \beta \sum_{i=0}^{d-1} u_i \right]$$

Preliminary Results





Preliminary Results

