Texture Based Image Segmentation

Jason Chang
Massachusetts Institute of Technology
Master’s Degree Candidate
October 15, 2008
Outline

• The Goal
• Level Set Methods
• Previous Work
• Extensions / Improvements
 – Bias Field Estimation
 – Texture Based Segmentation
Image Segmentation

- Separate the image into separate regions
- Focus on Binary Segmentation (two regions, one curve)
• Curve evolution is defined by an energy functional to minimize over
• Allows for easy manipulation
• Implicitly define a curve on the image with a surface in 3D
Level Set Methods

- Define a height at every pixel in the image
Level Set Methods

- The zero level set represents the 2D curve
<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>The pixel location</td>
<td>$j \in {1, 2, \ldots, N}$</td>
</tr>
<tr>
<td>$x(j) \equiv x_j$</td>
<td>The intensity value at pixel j</td>
<td>$x_j \in {0, 1, \ldots, 255}$</td>
</tr>
<tr>
<td>$\phi(j) \equiv \phi_j$</td>
<td>The level set function at pixel j</td>
<td></td>
</tr>
<tr>
<td>$L(j) \equiv L_j = \text{sign}(\phi_j)$</td>
<td>The label assigned to pixel j</td>
<td>$L_j \in {+1, -1}$</td>
</tr>
<tr>
<td>$R_{\pm} = {j \mid L_j = \pm 1}$</td>
<td>The segmented regions</td>
<td></td>
</tr>
<tr>
<td>$C = {j \mid \phi_j = 0}$</td>
<td>The curve that segments the image (zero level set)</td>
<td></td>
</tr>
</tbody>
</table>
Segmentation Criterion

- Maximize mutual information between pixel intensity and labeling
 \[J \sim U\{1, \ldots, N\} \quad I(x_j; L_j) \]

- Approximate MI by using a Kernel Density Estimate to find the PDFs
 \[\hat{p}_{x_j|J \in R_\pm}(x_j) \equiv \hat{p}_x^\pm(x_j) = \frac{1}{h|R_\pm|} \sum_{s \in R_\pm} K\left(\frac{x_j - x_s}{h}\right) \]

- Use the Gaussian Kernel
 \[K(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \]

Junmo’s Algorithm

• Minimize the energy functional

\[E(C) = -N \cdot \hat{I}(x_j; L_j) + \alpha \oint_C ds \]

Curve Length Penalty

• Gradient flow that minimizes the energy \(\forall j \in C \)

\[
\frac{\partial \phi_j}{\partial t} = \left[\log \frac{\hat{p}_x^+(x_j)}{\hat{p}_x^-(x_j)} + \frac{1}{|R_+|} \int_{R_+} K \left(x_i - x_j \right) \frac{\hat{p}_x^+(x_j)}{\hat{p}_x^+(x_j)} di - \frac{1}{|R_-|} \int_{R_-} K \left(x_i - x_j \right) \frac{\hat{p}_x^-(x_j)}{\hat{p}_x^-(x_j)} di \right] \hat{N} - \alpha \kappa \hat{N}
\]

Computationally Intensive

• Approximate Gradient Descent \(\forall j \in C \)

\[
\frac{\partial \phi_j}{\partial t} \approx \log \frac{\hat{p}_x^+(x_j)}{\hat{p}_x^-(x_j)} \hat{N} - \alpha \kappa \hat{N}
\]

Junmo’s Algorithm

• Why is the Scalar Segmentation Algorithm Good?
 – Segmentation based on non-parametric densities
 – No training required
• What needs to be improved?
 – Does not perform well on images with lighting effects
 – Only supports grayscale image segmentation
 – Textured images cannot be segmented
• Assume the observed image is the product of an intrinsic image and a multiplicative gain field.
Bias Field Estimation

• Bias field is the log of the Gain field

\[x_j = b_j \times g_j \]
\[y_j = \log(x_j) = \log(b_j) + \log(g_j) = \log(b_j) + \beta_j \]

• Assume that the intrinsic image pixels, \(b_j \), are i.i.d. conditioned on knowing the regions \(R_{\pm} \)

• Find the MAP estimate of \(\beta \) for a given segmentation

\[\hat{\beta}_{\text{MAP}} = \Lambda_{\beta} f(\beta), \quad [f(\beta)]_j = \sum_i \Pr[L_j = i] \frac{\partial}{\partial \beta_j} \hat{p}_y(y_j | \beta_j, L_j) \]
\[\sum_i \Pr[L_j = i] \hat{p}_y(y_j | \beta_j, L_j) \]

• Use a fixed-point iteration to find \(\beta \)

\[\hat{\beta}^{(k+1)} = \Lambda_{\beta} f(\hat{\beta}^{(k)}) \]

Segmentation Algorithm with Bias Field Estimation

1. Assume that the bias field, β, is zero and the intrinsic image is just the observed image
2. Segment the estimated intrinsic image
3. Estimate the bias field, β, given the current segmentation
4. Find the estimated intrinsic image, b, from the estimated bias field
5. Repeat from Step 2 until convergence
• Alternate between segmentation and bias field estimation
Vector Segmentation

- Extending the formulation to vector values (notice the **bold** vector \mathbf{r}_i, instead of the scalar x_i)

$$
\frac{\partial \phi_j}{\partial t} \approx \left[\log \frac{\hat{p}_x^+(\mathbf{v}_j)}{\hat{p}_x^-(\mathbf{v}_j)} \right] \bar{N} - \alpha \kappa \bar{N}
$$

- Vector-valued images can be segmented
 - Color images are segmented using $\mathbf{v}_j = [R, G, B]$
 - Texture images can be segmented by representing each pixel with a texture vector
Steerable Pyramid

Recursively replace the gray box at the red dot

Steerable Pyramid

Original

High-Pass (v_0)

Low-Pass (v_D)

Varying Orientation

Varying Scale

$(v_1, v_2, v_3, \ldots, v_{D-1})$
Dimensionality Reduction

- Estimating PDFs using the Improved Fast Gauss Transform (Yang et al.) has complexity:

\[O\left(D^c (M + N)\right) \]

- Problems with high dimensionality
 - Takes ~1 hour to do a KDE on 14 dimensions
 - Sparse data in 14 dimensions provide for poor estimate

Dimensionality Reduction

- We can reconstruct the original image from the outputs
 \[\mathbf{x} = \sum_{i=0}^{D} \Theta_i \mathbf{z}_i = \sum_{i=0}^{D} \mathbf{v}_i \]

- Approximately reconstruct \(\mathbf{x} \) by using a subset of the outputs
 \[\hat{\mathbf{x}} = \sum_{i=0}^{D-1} \mathbf{v}_i u_i \quad \mathbf{u} \in \{0, 1\}^D \]

- Define the error of the reconstruction as the MSE
 \[e(\mathbf{x}, \hat{\mathbf{x}}) = \| \mathbf{x} - \hat{\mathbf{x}} \|_2^2 = (\mathbf{x} - \hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}}) \]

- Perform the following optimization
 \[\mathbf{u}^* = \arg\min_{\mathbf{u} \in \{0, 1\}^D} e(\mathbf{x}, \hat{\mathbf{x}}) \]
 \[s.t. \ |\mathbf{u}| = \sum_{i=0}^{D-1} u_i = d \]
Pyramid Subset Results

Oriented Stripes

Scaled Stripes

Scaled Checkerboard

Different Textures

(Using d=3)
Smoothly Varying Textures

- Try to capture a texture that varies smoothly in orientation and scale
Smoothly Varying Textures

Smoothly changing orientation
Smoothly Varying Textures

Outputs at 4 orientations and 1 scale
Smoothly Varying Textures

Junmo’s Scalar Segmentation

Vector Segmentation (Pyramid Subset)

Vector Segmentation (Smoothly Varying Textures)
Thanks!

Questions / Comments?