Analysis of Smoothly Varying Textures

Jason Chang

ntroduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne:

Applications Segmentation Gamma Estimation

Contributions

Analysis of Smoothly Varying Textures with Applications to Segmentation

Jason Chang

CSAIL, MIT jchang7@csail.mit.edu

June 2, 2010

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Analysis of Smoothly Varying Textures

3

Introduction

Problem Statement

ntroduction Problem Statemen

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne

Applications

Segmentation Gamma Estimation Shading Reflectance

Contributions

2 Texture Modelling

- Motivation
- Feature Extraction
- Boundary Effects
- Spatial Smoothness

Applications

- Segmentation
- Gamma Estimation
- Shading Reflectance

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnee

Applications Segmentation

Gamma Estimation Shading Reflectance

Contributions

Introduction

Problem Statement

Texture Modelling

- Motivation
- Feature Extraction
- Boundary Effects
- Spatial Smoothness

Applications

- Segmentation
- Gamma Estimation
- Shading Reflectance

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Image Segmentation

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnee

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- Separate an image into disjoint regions
- Assume regions have common statistical properties

Simple Images with i.i.d. Pixel Intensities [6]

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation

Shading Reflectance

Contributions

When are results good?

Minimal spatial dependencies conditioned on the label

movies/mit-unimodal.mp4

movies/mit-bimodal.mp4

When does this approximation fail?

Strong spatial structures within regions

イロト 不良 とくほ とくほう 二日

Textured Image Segmentation

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Ill-posed nature - Segment the stripes or the zebra

イロン 不得 とくほ とくほ とうほ

Must consider local neighborhoods instead of pixels

Outline

2

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statemen

Texture Modelling

Motivation

Feature Extraction Boundary Effects Spatial Smoothness

Applications

Segmentation Gamma Estimation Shading Reflectanc

Contributions

Introduction

Problem Statement

Texture Modelling

- Motivation
- Feature Extraction
- Boundary Effects
- Spatial Smoothness

Applications

- Segmentation
- Gamma Estimation
- Shading Reflectance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

A Motivating Example

Modelling Goals

Analysis of Smoothly Varying Textures

Jason Chang

ntroduction Problem Statement

Texture Modelling

Motivation

Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation

Contributions

Approach

Find the best scale to represent a texture at each pixel

- Measure a notion of contrast, bias, and orientation at that scale
- Features should be not vary much within a constant texture

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Estimate spatial dependencies in features

Outline

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statemen

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation

Contributions

Introduction

Problem Statement

2 Text

Texture Modelling

- Motivation
- Feature Extraction
- Boundary Effects
- Spatial Smoothness

Applications

- Segmentation
- Gamma Estimation
- Shading Reflectance

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Steerable Pyramids [8]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Steerable Pyramids [8]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Steering the Filters [8]

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Theorem

With bounded error, the output at any orientation can be computed from a linear combination of the basis

$$y_{i}^{s}\left(\theta\right) = \sum_{\phi \in \{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}\}} b_{\phi}\left(\theta\right) y_{i}^{s}\left(\phi\right)$$

$$b_{\phi}\left(heta
ight)=rac{\cos\left(heta-\phi
ight)+\cos\left(3\left(heta-\phi
ight)
ight)}{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Feature Extraction - Local Energy

Analysis of Smoothly Varying Textures Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Observation

Filter outputs go positive and negative, and vary in between modes. To get a location independent measure, consider the local energy of the filter output.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Feature Extraction

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

For each pixel, i, we consider a neighborhood around it, R_i

Analyzing Angular Energy

In scale, *s*, we consider the following local angular energy:

$$E_{i}^{s}\left(heta
ight)=rac{1}{\left|R_{i}^{s}
ight|}\sum_{j\in R_{i}^{s}}y_{j}^{s}\left(heta
ight)^{2}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Local Angular Energy

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

movies/energy-sweep.mp4

Feature Extraction

Analysis of Smoothly Varying Textures

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Feature Set

 η_i

 E_i

 μ_i

Scale

Contrast Energy

Bias

$$= \arg \max_{s} \max_{\theta} E_{i}^{s}(\theta) \quad \text{Orientation } \theta_{i}$$

$$= E_{i}^{\eta_{i}}(\theta_{i}^{\eta_{i}}) \quad \text{Residual} \\ = \frac{1}{|R_{i}^{\eta_{i}}|} \sum_{j \in R_{i}^{\eta_{i}}} x_{j}$$

Private the term
$$heta_i = rg \max_{ heta} E_i^{\eta_i}\left(heta
ight)$$

Visualizing Features

Analysis of Smoothly Varying Textures Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Outline

2

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statemen

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Introduction

Problem Statement

Texture Modelling

- Motivation
- Feature Extraction
- Boundary Effects
- Spatial Smoothness

Applications

- Segmentation
- Gamma Estimation
- Shading Reflectance

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Boundary Effects

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne:

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Object boundaries affect features in two ways:

- Filtered outputs are corrupted near boundaries
- Local neighborhood, R_i, in angular energy can span boundaries

Boundary Effects

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne:

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Object boundaries affect features in two ways:

- Filtered outputs are corrupted near boundaries
- Local neighborhood, R_i, in angular energy can span boundaries

Corrupted Filter Outputs

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- Similar to image boundary effects, zero padding regions creates artifacts
- Conditioned on a segmentation, we reflect each region across the object boundary and re-filter the image

・ コット (雪) (小田) (コット 日)

Local Region in Angular Energy

Smoothly Varying Textures Jason Chanc

Analysis of

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne:

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

$$E_{i}^{s}\left(\theta\right) = \frac{1}{\left|R_{i}^{s}\right|} \sum_{j \in R_{i}^{s}} y_{j}^{s}\left(\theta\right)^{2}$$

Intstead of using R_i , we use $R'_i = R_i \cap R^{\pm}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Boundary Effects

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- We call these steps the border refinement step
- The refinement step is computationally expensive and creates many more local extrema
- We first segment an image without refinement (until convergence) and then perform refinement.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

2

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statemen

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectanc

Contributions

Introduction

Problem Statement

Texture Modelling

- Motivation
- Feature Extraction
- Boundary Effects
- Spatial Smoothness

Applications

- Segmentation
- Gamma Estimation
- Shading Reflectance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Intrinsic Feature Model

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- We want to capture smooth changes in the features
- Model feature as output of intrinsic feature (*) subject to smooth, additive Markov random field
- Intrinsic feature distributions are estimated non-parametrically (using a kernel density estimate[7])

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MRF Estimation

Analysis of Smoothly Varying Textures

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

• Perform MAP estimation of the smooth fields:

$$\underline{\tilde{\phi}} = \arg\max_{\underline{\phi}} p(\underline{\phi}|\underline{\theta})$$

• Using Bayes rule and differentiating:

$$\underline{\tilde{\phi}}^{(k+1)} = F^{-1} \left(\underline{\theta} - w_p^{\theta} \left(\underline{\theta} - \underline{\tilde{\phi}}^{(k)} \right) \right)$$
$$w_p^{\theta} \left(\cdot \right) = \frac{\sum_s \left(\theta_s - \tilde{\phi}_s \right) K \left(\left(\cdot \right) - \theta_s + \tilde{\phi}_s \right)}{\sum_s K \left(\left(\cdot \right) - \theta_s + \tilde{\phi}_s \right)}$$
$$F = \left(\frac{2}{h^2} \Lambda_{\phi} \right)^{-1} + I$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

MRF Estimation

Analysis of Smoothly Varying Textures

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

• We show here that *F* performs highpass filtering with unity DC gain

$$F = \left(\frac{2}{h^2}\Lambda_\phi\right)^{-1} + I$$

• Treat Λ_{ϕ} as lowpass filtered i.i.d. noise

$$F = \left(\frac{2}{h^2}L\sigma_{\phi}^2 I L^T\right)^{-1} + I = \underbrace{\frac{h^2}{2\sigma_{\phi}^2}H^T H}_{F_1} + I$$

- The lowpass filter operator, *L*, has unity DC gain. *H* much be a highpass filter operator with unity DC gain.
- Assuming $h \ll \sigma_{\phi}$, F_1 has a DC gain close to zero

MRF Estimation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Feature-Specific Considerations

Analysis of Smoothly Varying Textures

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- Orientation is periodic
- Gain field (g) assumed to be smooth in log domain
- Gain and bias fields coupled in bias feature
 - Hard to estimate jointly
 - Estimate g via E and treat as point estimate in μ

$$\underline{\mu}/\underline{g} = \underline{b} + \underline{\mu}^*$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Intrinsic Feature Visualization

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Once the smooth fields are estimated, we remove their effects to obtain the intrinsic features.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statemen

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne:

Applications Segmentation Gamma Estimation

Shading Reflectance

3

Contributions

Introduction

Problem Statement

Texture Modelling

- Motivation
- Feature Extraction
- Boundary Effects
- Spatial Smoothness

Applications

- Segmentation
- Gamma Estimation
- Shading Reflectance

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Image Segmentation

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- Maximize $I(E, \mu, \theta, \eta; L)$ [6]
- Treat features as indepedent
- Estimate distributions using kernel density estimate

Algorithm Overview

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Performance Representation Considering boundary effects
- Estimate smooth fields conditioned on segmentation
- Repeat Steps 1-3 until convergence

An Illustrative Example

Our features are invariant to smooth changes, but able to distinguish abrupt changes.

Image Segmentation Examples

Analysis of Smoothly Varying Textures Jason Chang

ntroduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Image Segmentation Examples

Analysis of Smoothly Varying Textures

Segmentation

Model Errors

Our appearance model does not always hold in natural images. Consider the following examples.

Outline

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statemen

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne:

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Introduction

Problem Statement

Texture Modelling

- Motivation
- Feature Extraction
- Boundary Effects
- Spatial Smoothness

3 Applications

- Segmentation
- Gamma Estimation
- Shading Reflectance

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Estimating the Nonlinear Camera Response

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- Cameras typically have a nonlinear intensity response
- Linear imaging is desired for some common computer vision tasks

If there was no γ correction (i.e. γ = 1), the models are equivalent when <u>b</u> = <u>0</u> and <u>S</u> = <u>g</u>.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Gamma Estimation

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Algorithm Overview

• Given a γ , estimate $\underline{g}(\gamma)$, $\underline{b}(\gamma)$, $\underline{\mathcal{R}}(\gamma)$, image:

$$\underline{\mathcal{R}}\left(\gamma\right) = \frac{x^{1/\gamma}}{\underline{g}\left(\gamma\right)} - \underline{b}\left(\gamma\right)$$

Reconstruct the image without a bias field

$$\underline{\hat{x}} = \left(\underline{\mathcal{R}}\left(\gamma\right) \cdot \underline{g}\left(\gamma\right)\right)^{\gamma}$$

 Find the *γ* that minimizes reconstruction error using golden section search [5]

$$\gamma^* = \arg\min_{\gamma} \|\underline{\hat{x}} - \underline{x}\|_1$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Gamma Estimation Results

Various Scenes

Generating the Data

Each scene was photographed using linear imaging ($\gamma = 1$) and post-processed with nine different γ values. One set of γ values is shown below.

・ロット (雪) ・ (日) ・ (日)

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Gamma Estimation Results

Analysis of Smoothly Varying Textures

Gamma Estimation

	Image	Our RMSE	RMSE of [2]	$\operatorname{Our} \left\ \hat{\gamma} - \gamma ight\ _1$	$\left\ \hat{\gamma}-\gamma ight\ _{1}$ of [2]
	Bookshelf	3.673	46.640	0.025	0.431
	Glass Ceiling	4.771	37.468	0.040	0.302
	Bricks & Wood	5.381	39.411	0.053	0.288
	Wood Cabinet	7.753	45.579	0.076	0.448
	Keyboard	8.938	40.228	0.075	0.327
	Floor Squares	13.028	41.607	0.176	0.343
	Chair	17.516	29.170	0.296	0.236
	Railing	18.262	20.401	0.231	0.156
	Mean	9.915	37.563	0.122	0.316

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Gamma Estimation Results

Analysis of Smoothly Varying Textures

Gamma Estimation

Image	Our RMSE	RMSE of [2]	$\operatorname{Our} \left\ \hat{\gamma} - \gamma ight\ _1$	$\left\ \hat{\gamma}-\gamma ight\ _{1}$ of [2]
Bookshelf	3.673	46.640	0.025	0.431
Glass Ceiling	4.771	37.468	0.040	0.302
Bricks & Wood	5.381	39.411	0.053	0.288
Wood Cabinet	7.753	45.579	0.076	0.448
Keyboard	8.938	40.228	0.075	0.327
Floor Squares	13.028	41.607	0.176	0.343
Chair	17.516	29.170	0.296	0.236
Railing	18.262	20.401	0.231	0.156
Mean	9.915	37.563	0.122	0.316

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outline

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statemen

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne:

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Introduction

Problem Statement

Texture Modelling

- Motivation
- Feature Extraction
- Boundary Effects
- Spatial Smoothness

3 Applications

- Segmentation
- Gamma Estimation
- Shading Reflectance

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

3

Shading and Reflectance Decomposition

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- $\mathcal{I} = \mathcal{R} \times \mathcal{S}$
- Smooth MRF estimation of shading
 - No bias field ⇒ shading affects contrast and bias
 - MRF estimation for a set of parameters

$$\underline{f}_{-}^{(k+1)} = \sum_{\theta \in \Theta} F_{\theta}^{-1} \left(\underline{\theta} - w_p^{\theta} \left(\underline{\theta} - \underline{f}_{-}^{(k)} \right) \right)$$

$$\mathsf{DC Gain}\left(F_{\theta}^{-1}\right) = \frac{\prod_{\theta_1 \neq \theta} h_{\theta_1}^2}{\sum_{\theta_1 \in \Theta} \prod_{\theta_2 \neq \theta_1} h_{\theta_2}^2}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣A@

Shading and Reflectance Decomposition

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Algorithm Overview

- Segment the image
- Estimate the γ factor of the camera and obtain the irradiance image
- Estimate the smooth shading image from the irradiance image

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Estimate the shape from shading using [9]

Shading and Reflectance Results

- Analysis of Smoothly Varying Textures Jason Chang
- Introduction Problem Statement
- Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes
- Applications Segmentation Gamma Estimation Shading Reflectance
- Contributions

Shading and Reflectance Results

- Analysis of Smoothly Varying Textures Jason Chang
- Introduction Problem Statement
- Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothness
- Applications Segmentation Gamma Estimation Shading Reflectance
- Contributions

(日)

Shading and Reflectance Results

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

movies/segmentation-shading.mp4

Contributions

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- Developed a texture model that captures scale, orientation, contrast, and bias
- Modelled smooth spatial changes in features
- Achieved robust texture segmentation, estimation of an unknown camera response, and shading/reflectance decomposition

Possible Future Directions

- Better boundary effect handling
- Probabilistic feature measurements
- Using the shading / shape estimation to improve segmentaiton
- Speed improvements

References I

Analysis of Smoothly Varying Textures

Jason Chang

ntroduction Problem Statemen

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothne

Applications

Segmentation Gamma Estimation Shading Reflectanc

Contributions

P. Brodatz.

Textures: A Photographic Album for Artists and Designers. Dover Publications Inc., 1966.

Blind inverse gamma correction. Image Processing, IEEE Transactions on, 10(10):1428–1433, Oct 2001,

M. Heiler and C. Schnorr.

Natural image statistics for natural image segmentation. Computer Vision, 2003. Proceedings Ninth IEEE International Conference

Computer Vision, 2003. Proceedings Ninth IEEE International Conference on, pages 1259–1266 vol.2, Oct. 2003.

N. Houhou, J.-P. Thiran, and X. Bresson.

Fast texture segmentation model based on the shape operator and active contour. In *Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on*, pages 1–8, June 2008.

J. Kiefer.

Sequential minimax search for a maximum.

Proceedings of the American Mathematical Society 4, pages 502-506, 1953.

J. Kim, I. Fisher, J.W., A. Yezzi, M. Cetin, and A. Willsky.

A nonparametric statistical method for image segmentation using information theory and curve evolution.

Image Processing, IEEE Transactions on, 14(10):1486-1502, Oct. 2005.

References II

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extractio Boundary Effects Spatial Smoothne

Applications Segmentation

Shading Reflectance

Contributions

E. Parzen.

On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Shiftable multi-scale transforms.

Information Theory, IEEE transactions on, 38(2), 1992.

P. sing Tsai and M. Shah.

Shape from shading using linear approximation. Image and Vision Computing, 12:487–498, 1994.

Level Set Methods

Analysis of Smoothly Varying Textures

Jason Chang

ntroduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

Implicitly define the curve within a 3D surfacedefine a height at every pixel in the image

Level Set Methods

Analysis of Smoothly Varying Textures

Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- The zero level set of φ implicitly represents the 2D curve
- Variational calculus is used to perform gradient descent on some energy functional

Kernel Density Estimate

Applications Segmentation Gamma Estimation

Contributions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Optimizing Mutual Information

Analysis of Smoothly Varying Textures Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

$$\begin{split} \arg \max_{L} |\Omega| I(E, \mu, \theta, \eta; L) &- \alpha \oint_{\mathcal{C}} ds \\ &= \arg \max_{L} |\Omega| \left[H(E, \mu, \theta, \eta) - H(E, \mu, \theta, \eta | L) \right] - \alpha \oint_{\mathcal{C}} ds \\ &= \arg \max_{L} - |\Omega| H(E, \mu, \theta, \eta | L) - \alpha \oint_{\mathcal{C}} ds \\ &= \arg \max_{L} - |\Omega| \sum_{\ell \in L} p_{L}(\ell) H(E, \mu, \theta, \eta | L = \ell) - \alpha \oint_{\mathcal{C}} ds \\ &\approx \arg \max_{L} - |\Omega| \sum_{\ell \in L} \frac{|R^{\ell}|}{|\Omega|} \frac{1}{|R^{\ell}|} \int_{R^{\ell}} \log p(E_{i}, \mu_{i}, \theta_{i}, \eta_{i} | \ell) di - \alpha \oint_{\mathcal{C}} ds \\ &= \arg \max_{L} - \sum_{\ell \in L} \int_{R^{\ell}} \log p_{E}^{\ell}(E_{i}) p_{\mu}^{\ell}(\mu_{i}) p_{\theta}^{\ell}(\theta_{i}) p_{\eta}^{\ell}(\eta_{i}) di - \alpha \oint_{\mathcal{C}} ds \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Level-set Gradient Descent of I(X; L)

Smoothly Varying Textures Jason Chang

Analysis of

- Introduction Problem Statemen
- Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes
- Applications Segmentation Gamma Estimation Shading Reflectance
- Contributions

$$\frac{\partial \varphi_i}{\partial t} = \log \frac{p_X^+(x_i)}{p_X^-(x_i)} - \alpha \kappa_i, \ \forall i \in \mathcal{C}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Brodatz Classification [1]

Analysis of Smoothly Varying Textures Jason Chang

Introduction Problem Statement

Texture Modelling Motivation Feature Extraction Boundary Effects Spatial Smoothnes

Applications Segmentation Gamma Estimation Shading Reflectance

Contributions

- 100% correct classification on Brodatz textures
- Able to segment Brodatz mosaics

996