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Image Segmentation
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e Separate the image into separate regions




@E& Implicit Level Set Representation
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* Implicitly define a curve on the image with a surface in 3D




@% Implicit Level Set Representation

* |Implicitly specify the curve
 Define a height at every pixel in the image

The Level Sets / Contours
of the Surface

The Surface ¥



Implicit Level Set Representation
dlz

e The zero level set represents the 2D curve




\ﬁ% Implicit Level Set Representation

e Signed Distance Function

1D 2D




@g& Sampling Motivation
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e Segmentation is often formulated as energy minimization
arg 11:%11 F(X.L)

e Exponentiated Mutual Information under some prior is equivalent
to posterior:

exp [—E(X,L)] = exp [I[X; L)— j{ ds} = mw(p|x)

* Why would we want to sample from posterior of curves r (p|z)?
— More robust results
— Multimodal distributions
— Calculating marginal probabilities
e Probability that a pixel is on the boundary
e Probability that a pixel is within a certain region
e Probability that a pixel is in the same region as another pixel
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@% Metropolis-Hastings Sampling

e The space of segmentations is huge: pr/¢
e Use Metropolis-Hastings MCMC to sample
— Sample from a proposal distribution

o (F150)

— Accept the proposal with probability

~(t4+1) Al ] p(E+1)
min( (p ) 4 (wf ¥ ) 1)

( ) q (Lﬁi“rl}' |¢F¢{t}) ’

— Samples will eventually converge if the Markov chain is ergodic
because the Hastings ratio ensures detailed balance.



{]@% Previous Sampling Methods
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Switches between implicit and explicit representations

[4] Fan, A.C., J. W. Fisher lll, W. M. Wells, J. J. Levitt, A. S. Willsky. MCMC curve sampling for image
segmentation. In: MICCAI (2007).



Previous Sampling Methods
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Preserves signed distance function

[3] Chen,S., R.J. Radke. Markov chain monte carlo shape sampling using level sets. Second Workshop on
non-Rigid Shape Analysis and Deformable Image Alignment, in conjunction with ICCV 2009.



@E& Previous Sampling Methods
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e [4] alternates between implicit and explicit domain

e [3] generates small, smooth proposal perturbations that maintain
the signed distance function

* Limitations
— Single simply connected shapes (and no topological changes)
— Only binary segmentation
— Complicated proposals — very slow to sample from and evaluate
— Small proposal perturbations — poor mixing-times

— Unbiased (or curvature biased) proposal perturbations — poor
mixing-times
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e Eliminating signed distance constraint
— Proposal easy to sample from
— Forward-backward ratio simple to evaluate
e Bias proposals with gradient of energy functional
— Increases the posterior-sample ratio and the acceptance ratio



{@}ﬂ% Biased Proposal Distributions
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e Assume proposals are generated with some additive perturbation
it = o + f (X)

e Alook into the forward-backward ratio
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Biased Proposal Distributions
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e Assume proposal is generated from N i.i.d. biased Gaussian RVs
X1, Xg, 0, XN ~ N (p,0°)
 How does the distribution of forward-backward ratios look?
J.M - -
px(—X;) —2Nu? 4ANp?
Zn = log(FBR) =1 ~ :

pz, (2) with N = 75 for varying u/o pzy (2) with p/o = 0.5 for varying N
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Biased proposals produce smaller forward-backward ratios!



@% A Quick Recap
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e Ultimate Goal: Increase Hastings ratio
— Want to bias with gradient to increase the PSR
— Bias decreases FBR a lot
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Our Proposal Distribution




Our Proposal Distribution
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* Biased proposal tradeoff — increased DLR and decreased FBR

— Exploit the fact that nearby pixels tend to have same label

e Qur proposal
Prop S+ = (0 4 §(®

f{t;] : h * (c“} © ﬂ(k

LPF allows sparse points Sparse points only Biased noise tends to
to influence PSR a lot influence the FBR a little increase the PSR

;}S}[l) X exp [—‘Ui' - sign (fp&”ﬂ N; ~ N (vi,0?)

h £ LPF with Random Bandwidth

-&- # + - 5
v; = Gradient Velocity at Pixel ¢



St Results
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e We show segmentation results in 3 ways:

— Histogram image — A count of times pixels are labeled with the
same region across all samples

— Probability of Boundary image — A normalized count of times
pixels are labeled on the edge

— Segmentation Quantiles — Thresholding the histogram image to
provide confidence bounds (e.g. this pixel belongs to the
“inside” region 50% of the time)

— Best Segmentation — The sample path with the highest energy.
This is a proxy for what the best optimization technique could
achieve



ﬁ% Topological Changes
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e Other algorithms either catch the inside or outside (depending on
initialization), but never both

Original Ours Chen et al. [3] Fan et al. [4]
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Fan et al. [4] Chen et al. [3] Ours

Iteration: 000000 Iteration: 000000 Iteration: 000000
Time:  000000. 00 Time:  000000.00 Time:  000000. 00
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Synthetic Results

e Synthetic example with varying SNR

 When images have high SNR (i.e. are very separable), sampling
makes less of a difference

Probability of Best
Original Image Boundary Histogram 50% Quantile Segmentation

S




ﬁ% M-Ary Sampling

 M-ary segmentation typically achieved with multiple level sets
— Have to ensure following conditions do not occur
e Vacuum — pixels are not represented by any region
e Overlap — pixels are represented by multiple regions

Vacuum

Overlap




@g& M-Ary Sampling

 M-ary segmentation typically achieved with multiple level sets
— Have to ensure following conditions do not occur
e Vacuum — pixels are not represented by any region
e Overlap — pixels are represented by multiple regions
e Use (M) level sets to represent (M+1) regions

Ry = m {pe < 0}

fel
Ri={p, >0}, WelL={12.. M}

e Vacuum impossible by construction

Ity




ﬁ% M-Ary Sampling

Choose a random level set, £

e Pixels belong in 3 categories:

1. Belongsto R, and has non-negative height only in g

2. Belongs to R, and has negative height in all level sets

3. Belongsto R, and has non-negative height onlyin o, (I # ¢)
 Only allow moves between pixels of type (1) and (2)
e M-Ary proposal:

~(t41 t t
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@% M-Ary Sampling

e For a pixel to move from R, to R; it must go through R,
* This must be reflected in our bias

) Fa : .
v (£,1) = Gradient velocity between ¢, and

e Proposal only looks at v (£,0)
* Instead of biasing with gradient, bias with minimal gradient

m; (F) = min vi (L. 1
(0 1€{0,1,2,...,M) i (6:1)
-y

e When using mutual information, the minimal gradient is

¢
) Py (j:i) max ;- !
({) =1 ) 1) = max Yy (s
ma( ) 08 ;g?ﬂ{:m) Px ( } :5{{},1,2,...,111}IX[ 1)
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A Natural Image
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Best Sample Path

Histogram Region Label

Original

Probability of
Boundary

Best Sample Path
Boundary

The green line in the plot shows the energy for the
ampIe path that prod]:m,s the optimal energy after
the chain has converged. Clearly, not all samples reach
this extrema; however, the m drsomdl statistics of these
samples provide a much richer characterization of the
probabilistic space of shapes.
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Example Sampling vs. Optimization
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Results on the BSDS

Results from the Berkeley Segmentation Dataset. (X’ on the Precision-Recall curve correspond
to the probability of boundary image. ‘+’ on the curve corresponds to the best sample path)
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Results on the BSDS

CSAIL E—
; F-Measures of Sampling (Image Threshold) vs. Optimization Average F-Measures of Sampling vs. Optimization
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[3] Chang, J. and J.W. Fisher lll. Analysis of Orientation and Scale in Smoothly Varying Textures. ICCV 2009.
[12] Heiler, M. and C. Schnorr. Natural Image Statistics for Natural Image Segmentation. ICCV 2003.
[13] Houhou, N., Jp.P. Thiran, and X. Bresson. Fast Texture Segmentation Model Based on the Shape
Operator and Active Contour. CVPR 2008.
[14] Kim, J., J. W. Fisher Il, A. Yezzi,. M. Cetin, and A. Willsky. A nonparametric statistical method for image

segmentation using information theory and curve evolution. IEEE Trans. on Image Processing 2005.



[@}[& Contributions

o Effortlessly allow for topological changes

e Extension to M-ary sampling

 |Improves convergence speed by orders of magnitude
 Demonstrate versatility of sampling methods for segmentation
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