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Abstract

The work in this thesis focuses on two main computer visiaeaech topic: image segmentation
and texture modeling. Information theoretic measures Ihaen applied to image segmentation
algorithms for the past decade. In previous work, commorsones such as mutual information or
J divergence have been used. Algorithms typically diffetl®ymeasure they use and the features
they use to segment an image. When both the information measudl the features change, it is
difficult to compare which algorithm actually performs leetand for what reason. Though we
do not provide a solution to this problem, we do compare amdrast three distances under two
different measures.

This thesis considers two forms of information theoretisdzthimage segmentation algorithms
that have previously been considered. We denote them h#relabel methodand theconditional
method Gradient ascent velocities are derived for a general Aieg distance for both methods,
and a unique bijective mapping is shown to exist betweenwlenmethods when the Ali-Silvey
distance takes on a specific form. While the conditional metis more commonly considered,
it is implicitly limited by a two-region segmentation by cstruction. Using the derived mapping,
one can easily extend a binary segmentation algorithm baséte conditional method to a multi-
region segmentation algorithm based on the label method.importance of initializations and
local extrema is also considered, and a method of multiphelom initializations is shown to
produce better results. Additionally, segmentation tssathd methods for comparing the utility of
the different measures are presented.

This thesis also considers a novel texture model for repteggtextured regions with smooth
variations in orientation and scale. By utilizing the std#e pyramid of Simoncelli and Freeman,
the textured regions of natural images are decomposedjiptizciélocal attributes of contrast, bias,
scale, and orientation. Once found, smoothness in thedieuddts are imposed via estimation of
Markov random fields. This combination allows for demonsgamprovements in common scene
analysis applications including segmentation, reflecaarod shading estimation, and estimation
of the radiometric response function from a single grayscahge.
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Chapter 1

Introduction

The focus of this thesis is to provide methods for image segatien using level set methods and
to present a novel texture model that can be used in many concomputer vision problems.
Additionally, we combine these two to represent and segtesihired images. In this chapter, we
motivate the problem of image segmentation and texture himgdeWe then identify why these
problems are difficult, and how our work attempts to solverthe

1.1 Motivation

Both image segmentation and texture modeling are some ahtis fundamental problems in
computer vision. In this section, we will briefly motivate ywthese problems are important in the
field of computer vision.

1.1.1 Image Segmentation

An image segmentation algorithm is a method used to partdio image into meaningful and
distinct regions. For example, in a binary image segmeantatine is challenged to distinguish
pixels in the foreground from background. In Figure 1-1, &areple segmentation of a zebra
done by an expert is shown. In general, images will containentisan just one object, and we

WL il
0L e B S [ s

(a) Original Image (b) Segmented Image

Figure 1-1: An example segmentation done by hand
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are then challenged with an-ary segmentation problem where there areseparate regions to
identify. Image segmentation is not to be confused with @bjecognition, where algorithms
actually recognize that the scene in Figure 1-1 is a picttieezebra. Rather, segmentation is the
process of determining that two regions exist, one of whictihé foreground (which happens to
be the zebra) and one of which is the background (which hapieelne the grass).

One might ask why image segmentation is such an importadat&egmentation is typically the
first process in a computer vision system. In common appbisatsuch as object recognition and
motion analysis, algorithms perform much better when th&vidual objects are first distinguished
from each other. As a trivial example in object recogniticonsider an application of trying to find
and recognize a human. It is much easier to ask if the objethed by a segmentation algorithm
is a human rather than ask if there is a human in the entireemég motion analysis, finding
the optical flow field can be much simpler if objects are firgtrfd instead of dealing with entire
scenes.

1.1.2 Texture Modeling

Prior to segmenting an image one must first choose what typmage model to use. In early

works, pixel intensities were chosen as a very simple mdded.well known Chan and Vese paper
[9] implicitly modeled pixel intensities with a Gaussiarsttibution for purposes of segmentation.
Though this method works well for very simple images, a cocaped intensity distribution does

not fit this model. Later, Kim et al. [26] modeled the pixelansities nonparametrically using
kernel density estimates. While this allowed for a more Bexiappearance model at the pixel
level, it still did not represent textures very well.

The underlying reason why these pixel-based approaches faktured images is because of
an assumption that many of the algorithms make: the obsgixetiintensities are statistically in-
dependent conditioned on their region label. While thisiaggtion does not generally hold, it also
does not greatly impact segmentation of non-textured imagdeere it is common to model spa-
tial correlations only in the region labels. However, suolrelations cannot be discounted when
segmenting textures. Furthermore, additional phenomé@naoatural images (e.g. illumination)
exhibit spatial dependencies which may also violate thssiaption. This motivates incorporating
a texture model in segmentation to aid in segmenting difficodges with strong spatial correla-
tions.

Texture modeling is a widely studied problem in computerorisvith many applications. For
example, when using a generative model, one can replicatexend textures in a random but
visually appealing fashion (e.g. [38]). In a discriminatmodel, a robust texture representation
can aid in segmentation to distinguish different objectg.(§21]). One common approach to
texture modeling is to analyze the outputs of a filter bankhsas a set of Gabor filters [17] or the
steerable pyramid [16]. The details of how we model textisescussed in Chapter 4.

1.2 Previous Work

To someone unfamiliar of computer vision, image segmennatiay seem like a trivial task. After
all, the human visual system is quite skilled at segmentimgde variety of images. One may
ask why a seemingly simple task, one at which the human vstsiem seems so adept, is so

18
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(a) Original Image (b) Two regions (c) Three regions (d) Five Regions (e) Six Regions

Figure 1-2: Example segmentations with different numbeegfons

. .

(a) Original Image (b) Original Image

Figure 1-3: An example segmentation of a section of a zebra

difficult to do using computational methods. Firstly, thekaf image segmentation is an ill-posed
problem [30]. If two people are asked to segment the imagdeftoman in Figure 1-2a, it is
likely that their results will be different. In fact, any di¢ segmentations in Figure 1-2 can be a
plausible solution. More detailed directions on whethenair clothes, hair, or jewelry should be
separated are needed to decide which segmentation is. iettesider another example shown in
Figure 1-3a. When presented with this image, one will tylhycgegment the image into Figure
1-3b. However, this image is just a window of pixels from tiedm image in 1-1. This problem,
sometimes referred to as the aperture problem in compu@rvideals with a limited field of
view. Knowing when to segment the black stripes from the &Biripes and when to combine
them into a single object can be quite difficult. These exasplustrate the ill-posed nature of
the image segmentation problem.

Despite this obstacle, image segmentation algorithms beea fairly successful. Algorithms
over the past decade have proven to perform very well on a&sabsatural images. They typically
address the ill-posed nature of segmentation with one oftethods: supervised and unsupervised
techniques. Supervised segmentation algorithms relyaonitig data from images segmented by
experts in an attempt to gain some prior knowledge on how gonsat images. Unsupervised
algorithms are typically designed to model images (or dbj@dthin the image) based on what
the designer thinks is best. Many recent unsupervised sggtien algorithms have attempted
to maximize an information-theoretic distance to segmeninzage. For example, [21] uses J-
Divergence and [26] uses mutual information. Though thgged of algorithms perform well for
a subset of simple images, we demonstrate in Chapter 5 tblansethods do not perform well on
a large set of textured images.
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When using an unsupervised segmentation method on textusggks, one needs to design a
model to capture elements of the texture. There is extemsedous work on applying texture
models to image segmentation. For example, [34] and [46kBgmt each texture with a constant
measure within a region. In contrast to the method presdmeel these methods either do not
consider variations in scale and orientation or treat themuasance parameters. Other methods
have been developed based on analysis of filter-bank respofRsr example, [10] has looked at
using wavelets and [12] utilizes Gabor filters. The work i6][#resents an approach that uses
a set of Gabor filters, observing that changes in scale aedtation are manifested as shifts in
their feature space. Montoya-Zegarra et al. [34] proposeéthod using steerable pyramids [16]
where they treat each filter output independently. One daawlbf these approaches is the coarse
discretization of scale and orientation.

1.3 Outline of the Thesis

This thesis is organized as follows. Chapter 2 begins witted Biscussion of background material
and previous work essential in understanding the concegsepted in later chapters. Topics in this
chapter include using level set methods for segmentatmmparametric kernel density estimates,
steerable pyramids, and Ali-Silvey distances.

Chapter 3 focuses on generalizing recent algorithms in@sagmentation that use information-
theoretic measures by extending the derivation to the lemedss of Ali-Silvey distances. We
show here that there exists an intimate relationship betwee approaches of using an informa-
tion theoretic measure, and additionally derive the restilgradient ascent velocities for evolving
a level set to maximize these distances. Using three infilomaneasures, we show a set of seg-
mentation results and comment on how to compare algorithms.

Chapter 4 develops the novel texture model. Similar to previwork, we also utilize the
steerable pyramid as a precursor to texture analysis. Hawexe exploit the property that re-
sponses at an arbitrary orientation can be efficiently pakated with bounded error. We suggest
an analysis of the pyramid response and demonstrate thetutately measures the local scale
and orientation of textures. We show that our feature sdbls i@ classify thirteen textures from
the commonly used Brodatz texture dataset [5], and thatigfoeithm can segment many synthetic
images composed of two of these textures. Furthermore, werieally show that because the
space of possible segmentations contains many local eatneenformance gains are possible by
using multiple different initializations for each image fté« measuring the contrast, bias, scale,
and orientation, we impose smoothness in these four fesatisieMarkov random fields to capture
the spatial changes of the texture. As with most measuresitmasfilter outputs, boundary effects
can greatly affect an observed model. We address this isslisteow reasonable performance
gains using our methods.

Chapter 5 shows results of using our texture model in a fewnsomcomputer vision appli-
cations. We begin by presenting a set of segmentation segsilhg our method and compare to
the methods of [26] and [21]. As a consequence of imposed gmess in our feature set, we
obtain a method for estimating a simple model of the nonlinensity response of a camera
from a single grayscale image. We compare to the method ¢fglidwing significantly better
performance. Through this analysis, we are able to obtaiacanrate estimate of the irradiance
image that when combined with the aforementioned smooshaesumptions, enables estimation
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of shading and reflectance for textured objects. We empliricalidate our shading estimates by
inferring the shape of the object using the algorithm of [44]

Finally, we conclude the thesis in Chapter 6 with possiblenges to our development and
future research directions. Appendices A and B provideidetar the derivations of gradient
ascent velocities and nonparametric Markov random fieidhesion.
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Chapter 2

Background Material

In this chapter, we will briefly discuss some background miatéor readers that are not familiar
with the topics. We cover the basics of using level set mettiodimage segmentation, nonpara-
metric kernel density estimation, texture representatging the steerable pyramid, and Ali-Silvey
distances.

2.1 Level Set Methods

Level set methods provide a way to implicitly represent amolvee an N-dimensional (or less)
hyper-surface in aiv-dimensional space. The works of Osher and Fedkiw [36] arki&e[40]
provide the original development of level set methods andealtlv of knowledge on this sub-
ject. When applied to image segmentation, a scalar funcitoms defined by values on a two-
dimensional Cartesian grid. In practice, this functiont@ed as an image, and the height of the
level set function is defined for each pixel in the image. Fs teason, it will be convenient to
refer to the height of the level set at a specific point as theavaf the level set at a particular pixel,
or o(z,y). Oftentimes, it will be more convenient to reference a piaehtion by a single variable

i instead of(z, y), wherei references some pixel location. We will use the notatipwhere the
subscript references the pixel.

The implicit hyper-surface as it pertains to image segntmmtas just a curve that exists in
the two-dimensional support of the image. Any level set (tiiersection of the surface with a
constant height plane) af can be used as the implicit hyper-surface, but the zero kfels
typically chosen for the representation. Throughout thésis, the terms zero level set and curve
will be used interchangeably to mean the same thing. ThaaahplirveC, is defined as the set of
all pixels on the three-dimensional level set function tieate height zero:

C={ilgi=0} (2.1)

The zero level set divides the image into two regioRs,and R~, which consist of the positive
and negative values of the level set function respectively:

R* ={i| g 20} (2.2)
One can often think of a level set function as a terrain, whieeeegionR™ contains the land
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Figure 2-1: Level Set Function Viewed as Terrain

above sea level anf~ contains the land below sea level. An example of a level settion is
given in Figure 2-1, where the green pixels belongito, the red pixels belong t&~, and the
black pixels belong to the zero level set.

Level set methods involve representing a hyper-surfacéigleer dimension, typically leading
to increased memory and computation. However, the utifitygpresenting a curve with level set
methods is that the curve is implicitly represented. Crgpbir removing a new region is a matter of
perturbing the underlying surface. If an explicit repré¢aéion (e.g. snakes [24]) is used, it requires
the user to maintain the explicit set of points on each cuBreating or removing regions with an
explicit representation requires bookkeeping and suffera what is known as reparameterization
of the curve (i.e. resampling points on the curve as it charsfpape). In fact, the overhead of
representing the entire underlying surface with an impiigpresentation typically outweighs the
nuisance of an explicit representation.

2.1.1 Signed Distance Function

In image segmentation algorithms using level set methbdsjser is only concerned with the zero
level set because it is the curve that segments the imageseGoantly, this restricts pixels on the
curve to have zero height, but pixels away from the curve megdhave the same sign. An infinite
number of parameterizations of level set functions exist lfave the same zero level set.

A very common approach is to make the level set function aesiglistance function. A signed
distance function has the property that, in addition to #lee having the correct sign, the absolute
value at each pixel is the minimum distance to the zero letellhe signed distance function looks
more conical, and thus, a level set function using this pitydeoks more like Figure 2-2 rather
than Figure 2-1.

Though a signed distance function is not required for leeehsethods, it does include some
nice properties. It provides for a very confident discretevdéive approximation near the region
boundaries which allows for better numerical stabilitygr&d distanced functions also have the
nice property that, for most pixels,

V| = 1. (2.3)
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Figure 2-2: Level Set Function as Signed Distance Function

The only location where this relation fails to hold is for gig that are equidistant from the zero
level set at more than one point. One can potentially useptfuiperty to simplify the level set
evolution equations (discussed later), but it is generadlyadvised for stability issues. A more in-
depth description of the formulation and benefits of usinmgaesd distance function can be found
in [36]. There are a few different methods for computing tlyged distance function efficiently.
In our implementation, the Fast Marching Method [48] wasiuse

2.1.2 Evolving the Level Set Function

The following is a typical process for curve evolution:

1. Initialize the zero level set with a random guess

2. Reinitialize the level set function to a signed distangection
3. Calculate a velocity at every pixel in the level set

4. Update the level set for a small time interval according to
5. Repeat from Step 2 until convergence B

In level set methods, an energy functional, is chosen for the particular application. The
problem of calculating the evolving velocity field is thenualent to maximizing this energy
functional. Oftentimes, the energy functional will consismultiple terms where one of the terms
imposes some sort of smoothness constraint on the zerodetyahaking the ill-posed nature of
image segmentation more well-posed.

In the algorithms covered in this thesis, the energy fumetiovill consist of two terms. The
first of these F), is an energy functional that is dependent on the imagesstati The specifics of
this term will be covered in later chapters. The other enéuggtional term,Es, is a smoothing,
regularization term that is only dependent on the actugbeiad the curve and not the image.
One commonly used regularization term penalizes longefedengths. Intuitively, a very jagged
curve will have a longer curve length then a smooth curve.r8foee, our energy functional can
be rewritten as

E(C) = EB(C) — Fs(C) = Bi(C) — a ji ds, (2.4)
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whereq is a constant scalar that chooses how much weight to put aredjudarization term.

Given a specific energy functional, one can maximize the tesmg gradient ascent to find
the velocity field by which to evolve the level set. It is imfeont to note that although the energy
functional may depend on the entire image statistics, thienapvelocity is often only defined for
pixels on the zero level sef,. This will be discussed in greater detail in Section 2.118,the
consequence is that the energy functional only gives a valiocity for pixels on the zero level
set. Keeping this in mind, the proof in [19] showed that thadignt ascent velocity due to the
smoothness constraint is just

Vo(l) = N WLeEC (2.5)
wherex, is the mean curvature at pixébiven by
Apy
Kp = —— 2.6
‘= Vo (2.6)

As previously stated, ip is a signed distance function, then the denominater, gimplifies tol.
However, for numerical stability, the norm of the gradiehtie level set function is typically still
calculated.

In the derivation of level set methods in [36], this veloorgctor field must be applied to the
level set function in the following form

P+ V- Vep=0 2.7)

whereg is the partial derivative of the level set function w.r.tmé& indicating how to evolve the
function. Following the steps in [36, p.42], the equation tlee velocity update of the level set
becomes

p=V, \Vf\ (2.8)

whereV = Vnﬁ +Vt7. Note that we differ from the derivation in [36] in one way:r@avolution,

¢ is equal toV,, V|, not—V,, |V|. This is because we define the interior of our curve to be the
positive values op, whereas [36] defines it to be the negative values.dfhe tangential velocities
can be safely ignored because they reparameterize theset/&inction, but do not change the
implicit definition of the curve. Thus, by combining Equatg2.5 and 2.8, the velocity due to the
curve length penalty is

Py = QK }Vg‘ . (2.9)

Given an energy functional, the updating velocity field duthe curve length penalty can now
be calculated. We will discuss many different energy fuorais and their resulting gradient ascent
velocities in Chapter 3.

2.1.3 Velocity Off the Curve

It was noted in Equation 2.4 that gradient ascent on the grfargtional only defines a velocity
for the actual curveC. If we were somehow explicitly representing the curve, th@a curve

velocity would suffice. However, because we are implicitgfiding the curve with a level set
function, the evolution is not as straightforward. Pertogban implicitly represented curve can
not be achieved by changing only one value; the curve vglotitst move a group of pixels in the
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level set representation to move the implied curve. Thezewao popular methods to extend the
curve velocity obtained from gradient ascent to evolve ttaa implicit level set representation:
the smooth Heaviside function and velocity extension.

Smooth Heaviside Function

One method to extend the gradient ascent velocities to exbkr/level set was developed by Chan
and Vese in [9]. They define the level set function using thauigde function, which is a binary
function that assigns labels to pixel regions.

1 ifg; >0
(i) {0 o <0 (2.10)

The derivative of the Heaviside function w.r.t. its argurnemone on the curve, and zero elsewhere.

do(pi) =

H(yp;) = 2.11
0p; (o) {O else ( )

In the continuous case, with an explicit representatioh@turve, one could use this delta function
to describe the velocity on the curve. Chan and Vese use aterHeaviside function which results
in smearing the curve velocity to a neighborhood around tineec

We can derive this smearing more precisely. For any gradisrgnt curve velocity_f , We can
express it with only the velocities of points on the curve:

Ve=—f(ON, WecC (2.12)

wheref(-) is any function. With the previous definitions of the Heasésfunction and its deriva-
tive, we can rewrite this velocity over all points in the ineadomain (2, instead of only on the
curve.

— —

In the ideal Heaviside function, Equations 2.12 and 2.13eaextly the same. However, when
a smooth Heaviside function is used, the velocity in Equefldl3 is smeared across the actual
curve. A commonly used smooth Heaviside function [9] is:

if p; >¢€
if p; < e (2.14)
[14 £ + Lsin (Z22)] if |g <€

€

H(pi) =

o= O =

with a corresponding derivative:

£ [1+cos (Z2)] if |¢;] <e
o) = 4 2 € 2.15
(i) {0 else ( )

wheree is some small constant (we chose to use 1).
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When using a smooth Heaviside function, one can easily exadrnary segmentation into a
multi-region segmentation using the method proposed inTBis method uses multiple level sets,
where each level set represents exactly one region. By rmtisin, the curves are not allowed
to intersect or overlap. Thus, a segmentation usihdevel sets can represent up A6 different
regions.

Velocity Extension

An alternative method to evolve the level set from the cumieeity is called velocity extension.
This method extends the velocity off of the curve such thatwblocity at any point in the level
set has the same value as the closest point on the curve. Tthedr& velocity extension that
was developed by Adalsteinsson and Sethian [1] constriaetextension velocities in such a way
that the signed distance property of the level set funcsgreéserved perfectly after each iteration.
However, this method also requires that the velocity be ddffor the value at the exact zero level
set with sub-pixel accuracy (interpolated through pixedering the zero level set). This velocity
is not always well defined for images if the pixels used torppéate belong to separate objects.

When using velocity extension, the only currently proposezthod to do multi-region seg-
mentation is presented in [8]. This method allows for oygdaongst the level sets, and treats
each level set as a bit in a region label. When using two leats| s region can be inside or outside
of both level sets, resulting in the labelg0, 01, 10, 11}. This results irk* regions when using
M level sets. When an image actually contains a power of twobaurof regions, this method
can perform very well. If an image contained three regiohss, mnethod should allow for three
regions by only using three of the four possible labels. H@axein natural images, this method
will favor using all possible labels because it can explamimage statistics better. This problem
is equivalent to overfitting a model by allowing too many paesers. For this reason, we chose to
implement the smooth Heaviside function instead of usirigors extension.

2.2 Nonparametric Kernel Density Estimation

Oftentimes, we will need to model the distribution of a ramdeariable based on many observed
occurrences. Density estimation can be broadly groupedimee categories: parametric (a fixed
number of parameters), semi-parametric (the number ohpetexs grows sub-linearly with the
number of observations), and nonparamtric (the number @npaters grows linearly with the
number of observations). Parametric models are typica&dwhen the underlying distribution is
known to have some specific form specified by a set of paramaténen the unknown distribution
does in fact come from the parametric family, methods suchasmum likelihood [47] are known
to perform well. However, when the distribution is not fromparametric family or the parametric
family is unknown, semi-parametric (e.g. mixtures of Gaass [32]) or nonparametric methods
(e.g. kernel density estimators [41]) may yield superiafgrenance.

In images, the statistics of pixel intensities or featurestors are rarely known a priori. If
one considers a scene of a zebra on grass, the zebra will baexhat of a bimodal distribution,
whereas the grass may have a unimodal distribution. Legmivdels and estimating the parame-
ters of those models can be quite difficult given the varietyatural image statistics [21]. For this
reason, we choose to model random variables nonparaniigtuseng a Parzen density estimate
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Figure 2-3: Level Set Function as Terrain

[37], or what is also known as a kernel density estimate (KOBg basic concept of the KDE is
to smooth the histogram of observations with a specific Kefkiér), to estimate the value of the
probability distribution at any value. An example resuledkDE is shown in Figure 2-3.

We only consider one-dimensional estimates in this sectiahthe machinery is easily ex-
tended to multi-dimensional estimates. The equation feetstimated PDF using a KDE is

N
p(z) = ﬁZK(fE;x) (2.16)

where N is the number of source points,is the point at which the PDF is estimated,is the
i'" source point, and is the bandwidth of the kernel used to estimate the PDF. A confyrused
kernel and the one we utilize here is a Gaussian kernel:

KC(z) = —=e™"". (2.17)

One important detail of using a KDE is selecting an apprapnalue ofh. If the bandwidth is
selected to be too large, the estimated distribution witidmesmooth and may not capture multiple
modes. However, if the bandwidth is selected to be too smadltfitting may occur with a very
peaky distribution. One method is known as the rule of thuRM®T) bandwidth [41],

4\ 3
h = — 2.1
ROT (3N) g, ( 8)

whereo is the standard deviation (known a priori or estimated fréva samples). The ROT

bandwidth typically oversmooths the density, but we wiill stse this value for our estimates.
The bias of the KDE is the convolution of the kernel with ther®e density, independent of the
number of observations. This would lead one to make the baitkwero (i.e. a delta function).

However, the variance of the estimate depends on the nurhbbservations, leading to the usual
bias/variance tradeoff.
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Though the nonparametric estimate has the benefit of beilegtalrapture a much broader
class of distributions, it comes with a significant compiotal cost. If the probability is needed
at M points, then the summation in Equation 2.16 needs to be letécli\/ times. For each
summation,N points are added together. Therefore, the total computaticomplexity of the
KDE is O(MN). Clearly, this computation could be a bottleneck in an atgor, especially if
the estimation needs to be computed multiple times. In thx¢ section, we will discuss a fast
approximate algorithm to compute the KDE.

2.2.1 The Fast Gauss Transform

In 1991, Greengard and Strain [20] proposed the algoritHiactthe Fast Gauss Transform (FGT),
which approximately evaluates a sum of Gaussians at meipipints in a fast manner

N w2
G(%—)=Zqz-e< ) : (2.19)

wherez; is the j* point at which the sum is calculated; is thei’" source point, and is the
scalar quantity that describes the bandwidth of the kernel.

To achieve a performance gain, the FGT forms a grid by pamiitig the sample space into
non-overlapping boxes. The algorithm uses these boxes hst@ring of the source and target
points. It then uses Hermite and truncated Taylor seriearsipns to quickly approximate the
affect of sources onto the targets. Using this method, th&é &chieves a theoretical computa-
tional complexity ofO(M + N), with a constant factor dependent on the accuracy needethend
bandwidth j.

The FGT greatly improves computation times for calculasaigns of Gaussians at multiple
target points compared to the direct calculation. Therebleas some more recent work on further
improving the FGT. The Improved Fast Gauss Transform (IF@33 proposed in 2003 by Yang,
Duraiswami, Gumerov, and Davis [52]. The improvements @RBT focus on two major points:
a better clustering algorithm and the multivariate Taybpansion. The IFGT uses the farthest-
point clustering algorithm proposed by Gonzalez [18] to enefficiently divide the source and
target points. The multivariate Taylor expansion speedthagHermite expansion by decreasing
the number of terms in the expansion. Though the speed ofGffednd the IFGT are comparable
in one dimension, the improvement gained in using the IFGRfmulti-dimensional estimate are
much more apparent. We use the provided code of the IFGTitilgofor all nonparametric kernel
density estimates.

2.3 Steerable Pyramids

Part of this thesis focuses on developing a new texture mddet novel representation will be
formed upon the basis of the steerable pyramid, which pesval multi-scale, multi-orientation
decomposition of an image (depicted in Figure 2-4). Theradied reader can consult [15, 43,
42] for a more in-depth description and development of stderpyramids. The basics will be
discussed in this section.
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Figure 2-4: Steerable pyramid structure and outputs
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A steerable pyramid uses a polar-separable filter to deceenfe image into a number of
orientation bandspR, at a number of scales. The basic idea of a steerable pyrantichi the
output of the polar-separable filter oriented at any angkeale can be approximated with a small
bounded error by interpolating images in the pyramid. Thius,pyramid provides a complete
representation of the image because any oriented outplié gifdlar-separable filter can be found.
This property allows us to capture the orientation and soidetexture fairly straightforwardly.

We choose to implement the steerable pyramid with four tagons. We use the provided im-
plementation (and their filters) to decompose images irgddbr oriented images;” (0), y” (g)

y" (2),andy” (2r) at each scalg. The filter output at any orientatioé, can then be approximated

by:

) = 3" W OO =0) 30 = 0)] 2.20
é

- H H T 7w 3
wherei is a pixel location and € {0,%,Z, 371

2.3.1 Previous Texture Models based on Steerable Pyramids

Since the development of steerable pyramids, there hasdossiderable work on using this filter
bank for texture modeling. The most rudimentary model ustegrable pyramids is to treat each
filter output as statistically independent from each otlAenong others, [21] has considered this
approach applied to image segmentation. However, thisoapfprexcessively simplifies the filter
bank output for reasons that will be discussed here.

Many authors (e.g. [11] and [7]) have observed that the datptimulti-scale models such
as the steerable pyramid are not independent. Without lacttepturing these dependencies,
one can not develop an accurate representation using tralske pyramid. [11] tries to capture
correlations across scale, implicitly introducing caatens across orientation as well. However,
their method does not easily extend to trying to capture gbain the appearance of textures.

More recently, [34] (among others) has developed a scabriant and orientation-invariant
texture measure. However, these approaches typically thiavehortcomings. Firstly, they usu-
ally do not have a very accurate method to estimate the &xitentation (e.g. t[34] is only
accurate up t¢ radians). More importantly, they treat scale and orieatatis nuisance param-
eters meaning that once they find them, they remove the scatgation and do not consider it
anymore. Our approach differs from these approaches invoayk. We are able to accurately and
precisely measure the orientation and scale of textureditiddally, we wish to exploit changes
in the orientation and scale of textures under the assumfitat these changes provide important
information in understanding images that will ultimateigt am segmentation.

2.4 Ali-Silvey Distances

Though stemming from communications, information theaag fong been used to analyze other
problems such as classification and hypothesis testing.siiea such as the Kullback-Leibler
divergence [27] provide an asymptotically provably-optimhypothesis tester [4]. Additionally,
the design of a classifier is aided by the bounds on the prhiyadfierror provided by the specific
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information measure (e.g. the probability of classificatesror when using mutual information
can be lower bounded with Fano’s inequality [13]).

Information theoretic measures have also shown to perfoethivimage segmentation algo-
rithms. For example, [26] considered using mutual inforora{MI) between the pixel intensities
and their associated labels, and [21] and [23] looked at miakig the J divergence of the den-
sities of the features in the two regions. Both Ml and J digee belong to the broader class of
information theoretic measures called Ali-Silvey diste®§2]. In the next chapter, we consider
segmentation using various Ali-Silvey distances and @eaivinique relationship between various
measures.

An Ali-Silvey distance is categorized as an increasing fismcof the expected value of a
convex function of a likelihood ratio. It can be written as

1 =1 (5 (4)]). (2.21)

wheref(-) is an increasing functiom, andq are two distributions¢’'(-) is a convex function, and
the expectation is taken over the distributi@an\We will only consider cases wherg:) = (-),
which is true for many commonly used distances. Though timésamation measures are referred
to as “distances”, it is important to note that they do noidgfly satisfy the conditions of a true
distance function. For example, KL divergeneg({) = —log(-)), is not typically symmetric
(D (pllq) # D (q||p)), and Chernoff distance((-) = ()*, s € (0,1)) does not satisfy the triangle
inequality @(p, ¢) £ d(p, g) + d(g. q))-

Regardless of this fact, Ali-Silvey distances provide &slaf information measures that help
to distinguish distributions. Their proven usefulnessimikar problems such as hypothesis testing
allude to possible successes when applied to image segimenta
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Chapter 3

Generic Distance Measures

The image segmentation problem can be formulated as afadatisn problem where the classes
are not known a priori. If we define a label at each pixgl,that indicates which class the pixel
belongs to, we can equivalently pose the image segmentataiiem as an inference problem
of the labels. A common method for parameter estimationh(is tase, the labels) is to use a
maximum a posteriori (MAP) estimate. If we assume that tixelpiarei.i.d. conditioned on the
labels, it is easily shown (Appendix A.1) that maximizing fhosterior probability is equivalent to
maximizing the mutual information between a pixel and itsela This should not be surprising,
as we know there is an intimate relationship between muidairation and hypothesis testing.
This method of maximizing the mutual information betweexrepintensities fx (z)) and their
labels p; (L)) for segmentation was considered in [26]. This worked sltbgremising results on
a wide range of grayscale images. Though it fails on comigdctexture images, it was still able
to segment basic textures from non-textured regions (ssitheszebra in Figure 1-1).

They proposed to use nonparametric density estimatesdantinsity distributions and found

that an approximate gradient ascent velocity for maxingzimee mutual information was simply
the log likelihood ratio of the pixels on the boundary. Theiolving velocity field is

+
o, — log p)_( (W)’
Ot Py (z0)

The reason why this velocity field is only approximating thradjent ascent velocity is because
they ignore two terms that contain how the estimated digions and the probability of pixels
within each region change due to the inclusion or exclusiam mixel on the boundary. By using
the assumption that the current segmentation containsga Emount of correct and incorrect
pixels, they showed that these other terms do not have ailaggct on the evolution. By using
the approximations in Equations 3.3 and 3.4 (which will kecdssed later), a similar result can be
obtained without making the assumption in [26].

The work in [26] was relevant because they considered usimupparametric density estimate
and used mutual information as a means for segmenting imdfigsial information is a quantity
that measures the dependence between two random variklde=guivalent to the KL divergence
between the joint distribution and the product of the mabghstributions:

V(e C. (3.1)

I(X;L) =D (pxcllpxpr) - (3.2)
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Here the random variabl& represents the data at a random pixel which could contagamsitty
or, as will be used in later chapters, a texture measure. Kéergence belongs to the broader
class of information theoretic measures, the Ali-Silvestances [2], and it seems only plausible
to consider any distance measure in the set of Ali-Silvetadises as a means for segmentation.

In the realm of information theory based algorithms for imaggmentation, there exists an-
other common approach: maximizing the distance of theidigtons conditioned on each label
(p% (z) for the pixels inside andy (z) for the pixels outside). Although this does not directly re-
late to hypothesis testing, it is still intuitive becausis thethod attempts to separate two regions as
much as possible. [21] and [23] both consider segmentalgmrithms using this method, propos-
ing to maximize another Ali-Silvey distance, J divergenafthe two distributions:/(p%, py ).
Again, one can consider maximizing any Ali-Silvey distat@segment the image.

This chapter focuses on exploring and comparing differestadce measures as a criterion for
segmentation. We consider the case of maximizing somendistaetween the joint distribution
and the product of the marginalé{pxr, pxpr), which we call thelabel method and the case
of maximizing the distance between the conditional distiims,d (p%, py ), which we call the
conditional method We derive the gradient ascent curve velocity for a geneliab#vey dis-
tance in both methods. Additionally, we show that when tstatice measure in the conditional
method takes on a specific form, which we call the symmetrieSiVey distance, there exists a
unique bijective mapping of equivalent distance measuoes the label method to the conditional
method. Finally, we comment on how to compare the differsmmé@ising various measures when
segmenting images and provide some results.

3.1 Approximations for the Gradient Ascent Velocities

Throughout this chapter, we will assume that we have enoagtpkes of a distribution such that
the law of large numbers (LLN) holds. With this assumptiom, @an approximate the expected
value by averaging over samples drawn from the same diitsiband vice versa. This relationship
can be expressed mathematically as

E,. [f()] = / _px (@) (@)~ ﬁ /eRfm)dz; (3.3)

whereX is the support of the distributigny, eachr; is an observation of a random variable drawn
i.i.d. frompy, andR is a set containing all indices,of the observations. This LLN approximation
aids in simplifying gradient ascent velocities by using @mpl expected values.

One additional approximation is needed to obtain the espyas we will derive in the next
section. We claim that for a given smooth functipfr) and a kernelK'(z) that is very narrow
compared to the smoothnessfdf:), the following approximation can be made:

/ F@)K (@ — a)dz ~ f(a). (3.4)

X

This approximation allows for much simpler gradient asoeziocity expressions that are both
more compact and efficient to compute.

In KDEs, consistency of the estimate [37] is achieved wherafidition to other constraints)
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the bandwidth of the kernel satisfies

Nlim h(N) =0, (3.5)
whereN is the number of samples, and/N) is the chosen bandwidth as a function of the number
of pixels. For many typical kernels (such as the Gaussiamkeised here), this constraint implies
that the kernel approaches a delta function as the numbangbles approaches infinity. Thus, in
the limit, the approximation in Equation 3.4 trivially hald

Regardless of the number of samples, this approximatioiwigya first-order accurate. Be-
cause the kernel integrates to one, the entire integralsisnéiglly taking a weighted average of
the functionf(x) around the point = a. When the kernel bandwidth is much smaller than the
changes irf(x), this weighted average is taken over a very small, slowlyngiray neighborhood.
We can approximatg(x) using a first-order Taylor series expansion around the poiata:

f@) = fa)+ f(a)(z —a) + o ((z — a)?) = f(a) + f'(a)(z — a).

Using this Taylor series expansion, the approximation afdfign 3.4 is easily shown to hold:

| @@ =a)

~/X[f( 0) + @)z — &) K — a) d

:f(a)/XK(x—a)dx—l—f/(a)/)(xK(x—a )dx — f /Kx—a
= fa) +af'(a) —af'(a) = [f(a).

Though we do not precisely define the notion of smoothneg49for narrowness of<(-),
we will argue why there is enough of a distinction for the apomation to hold in our situations.
When solving for the gradient ascent velocity of an energgliving nonparametric density esti-
mates, terms similar to those in Equation 3.4 appear wfieyas typically a function of the den-
sities: f (px (-),p% (*),px (-)). As we noted in Section 2.2, the bandwidth of the kernel iseho
to be the rule of thumb bandwidth (Equation 2.18) which ieisely related tov'/®, whereN is
the number of samples. The kernel becomes more narrow assaroq@es are used to estimate the
distribution. Additionally, the underlying assumptionafoosing a good kernel bandwidth is that
the kernel is much narrower than the smoothness of theldision. If this were not true, than a
multi-modal distribution such as a mixture of two Gaussiansild be oversmoothed to look like
a unimodal Gaussian. Thus, whé() takes on the forny (px (). p% (), px (-)), the assump-
tion that the kernel is much narrower than the smoothnegg-pholds, and the approximation of
Equation 3.4 can be used. Principled bandwidth selectidineisubject of much research and is
considered in more detail in [39] and [41].

In the following sections, we will derive the gradient asceglocities and express them with a
speeds (x,;). The speed defines the update of the level set with the fallgwquation:

O

ot = S (we) do (00) , (3.6)
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where/ is a pixel on the level set;, is the feature(s) at pixel, andd,(-) is the derivative to a
smooth Heaviside function discussed in Section 2.1.3.

3.2 The Conditional Method

In this section, we derive the gradient ascent velocitiestfe conditional method. We begin with
a general Ali-Silvey distance between the conditionakitistionsp} (z) andpy (z), weighted by
the number of pixels:

Lo px ()
904 o.%) = Iy € (B3], 3.7)
where('(+) is a convex function. It is important to note that this Aliv@&y distance is a function
of the likelihood ratio and not of the priors on the labets$, and 7. If the priors were indeed
known a priori, then they would just be constants that woudd affect the velocity. However,
we assume that the priors are functions of time and are chimsba the empirical estimate of

. R* . . .
observing a label, OL"Q—“ This does not affect common distance measures such as Ktgence

or J divergence because their convex functia@ns), do not explicitly contain priors. We show in
the appendix (Section A.3) that the speed of gradient asedotity for this Ali-Silvey distance is

oL [e(5) tion] o3
_ {L_Jr Px () }C/ <ZM> (3.8)

T wrpx (o) Pk (0)

whereC’(-) is the derivative of”(-) with respect to its argument.

3.3 The Label Method

In contrast to the previous method, the label method lookketistributions of intensities and
labels. Specifically, we consider the distance betweendim glistribution and the product of
marginals. As stated previously, when the KL divergencesedu(i.e.C(-) = — log(-)), we have
exactly the mutual information between a pixel intensity &s label. We begin this analysis with
a general Ali-Silvey distance between the joint and the pcbdf the marginals, also weighted by
the number of pixels:

9/ (pxs. pxps) = 12Uy, [C (%)}

pPxL
=19 lezﬁ XpXL(:c, 1C (%) dx
e e ()
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whereC(-) is a convex function angl, (-) is the distribution conditioned on the label taking on a
value ofl (equivalentlypx ., (-|L = 1)). Here, we consider the two region case, where {+, —}.

We show in the appendix (Section A.4) that the speed of théigmaascent velocity for this Ali-
Silvey distance is

s = (305 ) + 8 | () - (G0 2
(i) = e G e (i) ey e

One advantage of the label method over the conditional ndeiththat the generalization to
segmentation with more than two regions is slightly moraightforward. For example, when
using J Divergence in the conditional method with more themregions, what energy functional
should be used? It is not as simple as the two region casegwiner maximizes (p},p;(). In
the conditional method, the multiple regions are imphci#presented in the label values. As we
will show in the next section, the conditional method and Idieel method actually have a very
intimate relationship; when the convex function of the adndal method takes on a specific form,
it is equivalent to using a different convex function in tabél method. Through this analysis, one
can extend a two-region energy functional in the conditionathod to a multi-region energy
functional in the label method.

3.4 The Symmetric Ali-Silvey Distance

In the previous two sections, we presented two differergives of Ali-Silvey distances and their
resulting gradient ascent velocities. Interestingly, the methods are related when the convex
function takes on a specific form.

We first consider the label method. As shown previously, weesgress it as

d (pxr,pxpL) ZWZEZ { (Z)X—O)} , (3.10)

px()

whereC(-) is just a convex function and the tilde is used so that we cstingjuish it from another
convex function later. For the two region case, we can explaisdo be

d (pxr,pxpr) = 7 By [C* (pf ('))} + 7B, [(3 <p)f ('))] . (3.11)

px () px ()

Now, we consider the conditional method. If we use a symmelistance measure such as J
divergence in the conditional method, we can express it asradf two Ali-Silvey distances
instead of just a single Ali-Silvey distance:

J (p%.px) =D (pXllpx) + D (px|lpk)
=ds(py.rx) =d(pk.px) +d(px,prX)- (3.12)

We use the subscrigt to denote that the original Ali-Silvey distance can be \entin the sym-
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metric form above. When the original Ali-Silvey distanc&ea on this form, we can directly use
Equation 3.8 to find the gradient ascent velocity of eacltadist in the symmetric form (with the

sign difference taken into account). Thus, the resultireegiof the gradient ascent velocity for an
energy function of the symmetric Ali-Silvey distance istjus

sute =5 |0 () o] zime e ()
-] (i) +
= o M};] = [0 (355)

{ TP (”)} < X m)_ (3.13)
px (0) px (zr)
We can expand this symmetrized distance to be
T moﬂ ] [ (p; <~>)}
d(px,px) + d(px,px) = E,t {C <p}(-) +E, |C )] (3.14)

Notice that Equations 3.11 and 3.14 only differ in three way®re is a prior probability in
front each expectation in Equation 3.11, the convex funetiare different, and the term within
the convex functions are different. The additional pricsk@ability can be included in the convex
function,C(-), while still keeping the correct convexity assumptionshia tistance measure. The
terms within the convex functions are also related, and wevdtere that these two equations are
equivalent when using a specific pair of convex functi@ns) andC'(-).

For Equations 3.11 and 3.14 to be equal, the following camithust hold:

e (px E %) -¢ (ii 8) | (3.15)

It may seem like this only accounts for one of the two termstedpual. However, this relationship
forces both terms to be equal in the two equations. We rewrigecondition in two equivalent
ways:

0 (tgi3) = o (Feferatl) o (L [5g-w])
px()

g O p;}(-)) _ ( —px() +>
C(@()) i C( 5A0) mtO (TR T
Note that these expressions are functions of the prior fibties, =™ and7—. To generalize

this relationship, we add a subscrigb the convex functions that corresponds to the label of the
expectation in the Ali-Silvey distance.

Ci() = ) (ﬁ [() - wl]) (3.17)

C()=rC ((1—7")()+ ) (3.18)

40



This relationship has a very strong meaning. If one choosexptimize a symmetric Ali-
Silvey distance of the form in Equation 3.14 with a spedifi¢ ) based on the conditional method,
Equation 3.17 tells us that there exists a convex funafign that combined with the label method
of Equation 3.11 produces exactly the same result. A simgllationship can be said in the other
direction using Equation 3.18. This implies that as longhasli-Silvey distance in the conditional
method is symmetric and can be written in the form of EquaBdr2, one can find an equivalent
optimization with a different convex function in the labeéthod. Additionally, this relationship
allows one to extend many conditional method segmentatgorithms that are limited to two-
regions to a label method algorithm able to segment imadgesnnltiple regions.

3.5 The Balanced Symmetric Ali-Silvey Distance

We consider one additional form of Ali-Silvey distances,iethwe define as balanced and sym-
metric. Our notion of a symmetric measure is an Ali-Silvegtaince that can be written in the
form of Equation 3.12. As shown in Equations 3.17 and 3.18, afrthe differences between the
label method and the conditional method is the additionaktant factor of the prior probability.
In the label method, we know that the gradient ascent vegl@Equation 3.9) is independent of the
priors. However, as shown in Equation 3.8, the conditionalhod is sensitive to the estimated
label priors. As an example, consider KL divergence (whieeecbnvex function is just log(+)).
When the likelihood ratio is one, the KL divergence is zermwdver, evaluating Equation 3.8
with this convex function when the likelihood ratio is on@wls that the velocity is not necessarily
zero:

px (xr)

A closer examination of the derivation for this velocity sisthat a distance that is multiplied by
a label prior will not have this term. Thus, we define a baldreanmetric Ali-Silvey distance as
a measure that can take on the following form

7T+

ScMKL (W

px (ze) _ 1) _ 1, (" lp7) - (3.19)

dps(pX,px) = nd(pk. px) + 7 d(px, pX). (3.20)

Notice that this form of an Ali-Silvey distance measure igrewnore similar to Equation 3.11.
Additionally, the relationships shown in Equations 3.1d &8 for the balanced symmetric form
of a distance measure do not have the additional prior factatside of the convex functions. This
hints that a distance of this form is inherently more simtitethe distance used in the label method.
In Section A.5 of the appendix, we show the gradient ascdotitg for this balanced symmetric
distance to be

o= () 20 (0] -[£ 28] (42)
() -t o (20)]+ [52] (32) o



Table 3.1: Summary of compared distance measures. Becaclsereasure is just a form of KL
divergence, the convex function used in the equationsdlistehe third column are al’(-) =

—log(-).

Distance Measure Expression % C(")
I(X; L) D (pxil|pxpr) Eqn. 3.9 —log(-)
J (0%, px) D (p%llpx) + D (pxllpx) ~ Eaqn. 3.13 —log(:)
Js (0%.px) 7D (pillpx) + 7D (pxlpk) Ean.3.21 —log()

3.6 Comparison of Measures

As mentioned previously, the derivation of the gradieneaseelocities assumed that the convex
function was only a function of one time-dependent termlitedihood ratio. When true priors are
known and are approximated with empirical estimates, onaagust plug in the convex function
to the gradient ascent velocity expressions derived in fous3.8 and 3.9. Keeping this in mind,
we compare three different measures: the mutual informaifantensities and labels(X; L),
the J divergence of the conditional distributiohép}, py ), and the balanced J divergence of the
conditional distributions/ (p}, p;(). These measures and their relationships to our derivadions
general Ali-Silvey distance measures are shown in Table 3.1

Using the equations listed, it is straightforward to sirfypthe expressions for each specific
measure. We find the speed of the gradient ascent velo@tlas t

St (we) = log (%) , (3.22)
50100 = [es (B3 =2 03 - 55

—7%_ [log (§§ EZD — D (pxllpx) — i§ (Zi + 1] : (3.23)
s (L) 2 (S]]

Each speed is a function of the likelihood rat?é— and the priorsr™ and#~. In addition, the

J divergence term depends on the actual KL dlvergenceshvmeqmll refer to as thendividual
divergencesBy varying these parameters, we can get a sense of what essaha® measure does
differently.

The calculated gradient ascent velocities are only a re$thie information theoretic term and
have not incorporated the regularization term that peeslilae curve length as shown in Equation
2.4. Even though Equation 2.4 shows a constant scalingrfattoe in front of the curve length
penalty, we can equivalently think of it as a constant sgdiactor ofé in front of the information
theoretic term. This tradeoff between separability andaimess gives an additional parameter
that scales the entire speed function depending on the vhlue

We proceed to compare the three speeds of the gradient asbecity by plotting their values
as a function of the likelihood ratio. We show these funditor various values of priorsy’s, and
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Figure 3-1: A synthetic image created such that the areaxefpfromp, is the same as the area
of pixels fromp,, po1, andpas.

50

40 -2

o

30 °°

20 S /
()
°° /
o
10 o S
o°°/ - - = S
T % B —|0 0 0S5,
o
-10 /'40 SJB
o
o
*20/ °°
o

-30 ()

-40F-0

-50 &
(5
-3 -2 -1 0 1 2 3

(.
Figure 3-2: A comparison of the speed of three distance messs a function abg ﬁ?j—E; All

X
parameters are equal (iet = 7~, D (p%|lpx) = D (px|p%). anda; = oy = ayp).

individual divergences. In addition, we will show resuffisegmentations starting from the ground
truth and a random initialization.

We created the synthetic image shown in Figure 3-1 for coatp@ purposes. The image is
constructed such that; andp,, are both subfunctions (properly scaledyef If a pixel is random
drawn fromps; Or pso, then it has an equivalent distribution that is equab4o Additionally, we
have constrained the areas such that the area of pixelsyfrasthe same as the area of pixels
from ps, po1, @ndpsy. The distributionpy; has support over the range of values wharand p,
are comparable in likelihood, while the distributipgy, contains values wherg, is much more
likely thanp,. This difference in likelihoods coupled with the very shatar shape will allow us
to evaluate the tradeoffs between the information theotetm with the regularization term.

3.6.1 Equal Regularization Weights

We first plot, in Figure 3-2, the speeds as a function of thdikadihood ratio when all the param-

eters are equal. This plot shows that mutual informatiomides a gradient ascent that is linearly
proportional to the log likelihood ratio, and that J diverge and balanced J divergence both in-
duce a gradient ascent that is exponentially proportioilhalso implies that each of the distance
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(a) I(X; L) from truth (b) JB pX,pX from truth (c)J pX,pX from truth
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(d) I(X; L) from random (e)Js (p%.py) fromrandom  (f) J (p},py) from random

Figure 3-3: Segmentation using three different measur@gqnal regularization weighting{ =
ay, = ay = 1). Top row is obtained initializing to the correct segmeistatand bottom row is
obtained with a random initialization.

measures puts a different weight on the information theotetms versus the regularization term.
Clearly, J divergence emphasizes the information theotetms the most, followed by balanced J
divergence and mutual information.

Figure 3-3 shows segmentation results obtained using eggalarization weights. From the
ground truth segmentations, the balanced J divergencedimdrgence hold the shape of the stars
better. The shape will only change when the regularizatieigit is high enough. However, from
the segmentations obtained using random initializatidans,clear that the curve length penalty
is not large enough for the balanced J divergence and J éiweegcases. There are many single
pixels regions with very high likelihood that are not eliratad because of the small regularization.
In the mutual information case with random initializatiptiee segmentation is not able to capture
the bottom star, but also does not contain the single pixgbnes of the balanced J divergence and
J divergence. This result indicates that the regularinatieight chosen for the mutual information
case is sufficient for eliminating unrealistically smaljiens.

3.6.2 Equal Slope at Zero

The unbalanced weighting of information theoretic and lagzation terms discussed in the pre-
vious section leads to another comparison of the threemdisteerms. By choosing theés appro-
priately, we can enforce the three speeds to have the sape wleen the log likelihood ratio is
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zero. Assuming equal priors and divergences, we easily fiaddlationship to be

1 1
—Qj, = 05 = C, (325)

A= 5%s =y

where(' is any constant. The plots in Figure 3-4 show the three spebéds this condition is
met (withC' = 1). The first of these plots, Figure 3-4a, shows the speeds wWieepriors and
individual divergences are equal. The gradient ascentitglof the J divergence is then exactly
equal to that of the balanced J divergence. When using thisfsés, the three speeds behave
very similarly for small log likelihood ratios, or equivaigy when there is not very much evidence
that a pixel should belong in one region over another. Howete J divergence and balanced
J divergence terms put much more emphasis on pixels thatahaeey large magnitude of log
likelihood ratios. One would expect that segmentationg differ when there is a large amount of
evidence indicating that a pixel should be in one regiorhdt tegion is very small, then the curve
length penalty in the mutual information case may elimirtageregion because the information
theoretic velocity is not large enough to overcome it. Indltevergence and balanced J divergence
cases, the extra emphasis on the information theoreticstaray overcome the competing effect
of the curve length penalty and allow the small region to grow

Figure 3-4a considers the case when the priors and indiMitivergences are equal (i.el =
7~ and D (pk|lpx) = D (p%llpx)). It is more interesting to consider Figures 3-4b and 3-4c
where the priors are different. Unlike the gradient ascehbaity for mutual information, both J
divergence and balanced J divergence depend on the prisrstafed previously, these priors are
not known a priori so they are estimated by the empiricalsizach region. When™ > 7—, both
J divergence and balanced J divergence weight positiveketinood ratios more than negative
values. This is reasonable because the difference in pnaiges that the label at a random pixel
has a higher probability of belonging #" rather thank~. In addition, when the priors are not
equal, the speed of the J divergence term is nonzero whemghiékelinood ratio is zero. This
could be a self-fulfilling prophecy in that it will tend to grolarger regions, and as those larger
regions grow, the gradient ascent velocity tries to growétremore.

Figures 3-4d and 3-4e consider the case when the individuatgénces are different (i.e.
D (p%lpx) # D (p%llpx)). As expected, the mutual information and balanced J dérere
gradient ascent velocities are unaffected. However, ttierdnce in divergences affects the zero
crossing of the J divergence case. To analyze this differewe consider a case where both
conditional distributions are Gaussian with zero mean dfidrdnt variances, shown in Figure
3-5. If we consider a pixel that has equal probability of lgeiinawn from eithep? or py; (which
takes a value that is the intersection of the blue and redesurvFigure 3-5), there is no evidence
that it was drawn from one distribution over the other. Hogrethe plots show that even when the
probability of the pixel belonging to either region is thersg and the prior on the labels is also
equal, there is still a bias to include the pixel in tRe region. Unlike the different prior case,
there is no reasonable explanation for this biased zersioms

We now consider segmentations of our synthetic image withdqual slope case, shown in
Figure 3-6. From the plot shown in Figure 3-4a, we see that #weugh the slope is equal when
the likelihoods are equal, for every other likelihood valoere weight is put on the divergence
terms as compared to the mutual information terms. In thargidruth segmentations, the lower
star is still captured very well by the divergence terms beeat has more weight on the likeli-
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Figure 3-4: A comparison of the speed of three distance measis a function dbg pr;_ ais

chosen such that each speed has the same slope when theobkefatio is 1. (a) Equal priors
and divergences; (b)-(c) Difference in priors by a facto2pfd)-(e) Difference in divergences by
a factor of 2
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Figure 3-5: Two Gaussian distributions with different waites.o2 < o2 leads toD (p}|jpy) <
D (pxllpx)-

hood. Though there are many less small pixel regions cordgarthe previous section, we still
see some in the divergence terms when we start with a randitial seed. The segmentations
obtained using J divergence and balanced J divergencegnéystifferent, but we have verified
that each segmentation is a local extremum for both distaregsures. As expected, the upper
star is captured more accurately in the divergence casesigethe regularization weight does not
overcome the likelihood terms.

3.6.3 Equal Comparison

The previous section considered the case where we forceddhtarization parameters such that
the speed had equal slope for all distance measures wheongheékélihood was zero. How-
ever, the J divergence and balanced J divergence veloai@es still putting more weight on the
likelihood terms compared to the mutual information caseith\& few tries, we were able to
identify a regularization parameter for each distance oreasuch that their segmentation on our
synthetic image was approximately the same. The segmemtedsults using this relationship
(ay = éaJB = %6@, = 1) are shown in Figure 3-7. Figure 3-8 shows the gradient as@ocity
speeds as a function of the log likelihood ratio.

Using this set of curve length penalty weights, we segmeatset of images with each algo-
rithm. The results are shown in Figure 3-9. In general, thegimeasures produce similar results.
The most notable difference is seen in the zebras of thedasof Figure 3-9. The white stripes
of the zebra are much more likely to be in the background baeqaxel intensity. In the mutual
information case, the curve length penalty is able to ovarcthis likelihood and include some
white stripes with the black stripes. This may explain whybapintensity based segmentation
algorithm (which has no specific consideration of texturalysis) is still able to successfully sep-
arate the textured zebra from the background. Howeverdrdivergence cases, the exponential
curve of the velocity on the likelihood term completely doaties the curve length penalty. We
explore these results further in Figure 3-10. The histograhown in the middle column of Figure
3-10 count the log likelihood ratios (where we have binnegtlzing less than -5 or greater than 5
into the first or last bin respectively. In the divergencessashe likelihood ratios have a very high
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(a) I(X; L) from truth (b) J5 ( pX,pX ) from truth € J( pX,pX ) from truth

(d) I(X; L) from random (e)Js (p%.py) fromrandom  (f) J (p%,py) from random

Figure 3-6: Segmentation using three different measurdsegnal slope in the log likelihood
domain when likelihoods are equal (= —aJB = iO‘J = 1). Top row is obtained initializing to
the correct segmentation and bottom row is obtained witmdam initialization.
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(a) I(X; L) from truth (b) J5 ( pX,pX ) from truth ©J( pX,pX ) from truth
(d) I(X; L) from random (e)JB pX,pX from random (f)J pX,pX from random

Figure 3-7: Segmentation using three different measurdsuapven weightingd; = %oz Jp =
1—16on = 1). Top row is obtained initializing to the correct segmeiatatind bottom row is obtained
with a random initialization.
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Figure 3-8: A comparison of the speed of three distance messs a function dfog px() All

parameters are equal (i®f =7, D (p|lpx) = D (px|pk), ande; = tay, = foy = 1).
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Figure 3-9: Segmentation using three different measurdsuapven weightingd; = %aJB =
1—16on = 1). First column is the original image, second column is atgdiusing mutual informa-
tion, third column is obtained using balanced J divergeand,fourth column is obtained using J
divergence.
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Figure 3-10: Comparing segmentation results using diffeneeasures. The top plot shows the
speeds plotted as a function of the log likelihood ratio{assg equal priors and individual diver-
gences). The left column shows the segmentation resuitsyitthdle column shows the histograms,
and the right column shows the log likelihood ratios mapged tolor (using the colorbar in the
speed plot). The first row is mutual information, the secawl is balanced J divergence, and the
last row is J divergence.
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value for much of the image. The third column maps the loglilked ratio to a color, clearly
showing that the white stripes of the zebra have a high |agilikod ratio. Looking at the plot of
gradient ascent velocity speeds shows that when the loighldal ratio has an absolute value of 5
or more, the speed is so large that it most likely will overedime regularization term.

One can argue about the benefit of using any of the distanceure=a In the zebra case,
mutual information seems to be a better criterion, but omecraate other synthetic images that
favor other distance measures. We typically choose to im@ie our subsequent algorithms with
mutual information for simplicity, keeping in mind that te&tension to balanced J divergence or
J divergence is fairly straightforward to implement.
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Chapter 4

Texture Modeling

In the previous chapter, we considered segmentation usired $et methods based on a variety
of Ali-Silvey distance measures. The results presente@ Wwased on algorithms that considered
pixel intensities and treated the pixels as statisticaltiependent. Though this assumption is often
made, it typically does not hold in natural images. We knoat thixels must have some spatial
correlation because of the underlying scene that they septe In this chapter, we attempt to
model these correlations by considering a new representafithe image that is not based solely
on intensity values.

One patrticular type of image that does not perform well upaexl-based methods are textured
images. These images contain very complex repeating pateenich that cannot be captured in
pixel-based methods. Instead, we present a method to egpréese spatial correlations with a
novel texture feature extraction based on the steerabéapgirepresentation (discussed in Section
2.3). Our features are designed to detect and measure thealdrorientation and scale at each
pixel in an image. We show that our feature set allows us tom@ose an image into separate
contrast, bias, orientation, and scale fields. Becausasfldttomposition, we are able to capture
spatial correlations and model smoothly changing texturesch of our four features. Addition-
ally, our representation allows us to estimate an unknowlionaetric camera response function
and a shading image that can be used to recover shapes ofsoiéaile the measure implicitly
assumes that a dominant orientation and scale exist, we sinpirically that it works well on a
much broader set of textures.

4.1 Texture Descriptors

In this section we describe the machinery used to extracteatures from an image. Once the
features describing contrast, bias, orientation, ancesr@ found, we impose an additional set of
smooth Markov random fields (MRFs) to capture the spatiahgba of each feature.

4.1.1 Extracting the Dominant Scale and Orientation

Within the steerable pyramid representation, the filtepouat any orientation can be well ap-
proximated [16] by interpolating the outputs of the filtenkaat a discrete set of orientations. This
attribute of the steerable pyramid, in addition to its mattale representation, allows for accurate
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Energy for Brodatz Wood
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Figure 4-1: (a) Features at a given scale at the center pixel arientation; (b) A Brodatz image
used in the plot

and efficient estimation of texture orientations. Withickeacale, denoted by, we use the re-
sponse at four orientationg? (0), y” (%), y" (%), andy” (2*). The filter output at an arbitrary
orientation ¢, can the be well approximated by:

Z yz COS (b) + cos (3 (9 - ¢))] (4 1)
5 .
wherei is a pixel location ang € {0, o % . Let
EY(0) 2 7 > Iy (0 (4.2)
JER]

be the angular energy over a local regiBh (typically a 3x3 region) at an angk scalen, and
locationi. Using golden section search [25], we find the orientaticthiwieach scald)!, with the
maximum angular energy. This is defined to be the orientatidhe texture at scale, that is

0] & arg;nax E(0). (4.3)

As E! (9) is periodic with periodr, we only search the rande, 7). As a function of scalg and
locationi, we extract the contrast energy

Ef = B} (0}) (4.4)

and what we refer to as the residual contrast energy

ey (9" 2) (4.5)

The term residual energy is used since, for strongly orcetggtures, the energy of the response
when the filter is orthogonal to the dominant orientationdgeto be small. These features are
depicted graphically in Figure 4-1.

Within a scale, the last feature that we introduce is the bfathe texture,u. This term
captures the low-frequency energy of the image that is netctdy measured by the steerable
pyramid. While nearly any lowpass filter is suitable, we us&eularly symmetric Gaussian blur
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filter.

Summarizing, in each scale and at each pixel, we calculatedhtrast energy{), the resid-
ual energy ¢), the orientationd’), and the biasi(). For each location we then select the set of
features corresponding to the scajg with maximum contrast energy:

n; 2 arg max B (4.6)
7

These become the feature set at each pixel. We drop the stipeds scale for each feature once
we haver,;. This leads us to our final feature set at pike{n;, E;, €;, 0;, 11, }.

Exceptr;,, all features are continuous. We sample scale logaritHiypiceorder to approximate
n as a continuous parameter. Specifically, we use scale $aofounity,27%-2°, 2705 and2-%7.
For each scale factor, we create a separate steerable pyi@nfieature extraction. Sampling at
a finer scale can be accomplished at the cost of memory andutatigm time. Hereatfter, the
detected scale feature is treated as a continuous quantity.

4.1.2 Likelihood Model

Because of the decomposition presented in the previoumsgeute treat each feature as statisti-
cally independent. The model was specifically designedpcesent a texture with one dominant
orientation. Later, it is shown empirically that the modehble to represent other textures as well.
However, the extracted angle and scale are only robust wieetekture contains one dominant
orientation.

If a texture is not strongly oriented or contains multiplerdoant orientations, the angular
energy changes drastically. Instead of containing one denyinant peak as shown in Figure 4-1,
the energy will be much more flat. When noise is present irfiditi€ase, the location of maximum
angular energy (i.e. the orientati@hcan easily be corrupted. Subsequently, the measured scale
eta, can also be corrupted by a small amount of noise.

To address this issue, we introduce an auxiliary Bernoatidom variable7’, that indicates
whether a texture is strongly oriented. Recall that one effdaturesg, is called the residual
energy. The ratio% roughly captures the peakiness of the angular energy cuevenigher ratios
correspond to a more pronounced peak and smaller ratiosspannd to a flatter curve). We define
the PMF ofT to be a function of this ratio%. The function is empirically chosen to have a fairly
sharp transition when the ratio is approximately 15. Thesipdunction chosen is

pr (1]e, E) = max {1% (tan_l (—100 (% - %)) + g)} 4.7)

and is displayed in Figure 4-2, though we note that any sirhilaction would suffice. The residual
energy only plays a role in calculating the probability of texture being strongly oriented. If the
texture is not strongly oriented, we model the scale anchtaten as being drawn from uniform
distributions to represent the uncertainty of the measargsn The likelihood of a given pixel
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Figure 4-2: Probability of a texture being strongly oriehées a function OE.

conditioned on being in regioR! is then

p (Eiaﬂiani>9i|i S Rl)

=y (E) pl, (11:) Z Py (| Ti = ) pr (t|e:, Ey) Z Py (0:1T; = t) pr (te;, E;),  (4.8)
te{0,1} te{0,1}

where the distributiongi; (-), p,(-), pl(-|T = 1), andpp,(-|T = 1) are estimated using a KDE
from the pixels inRk!. All of these nonparametric estimates can use the Fast Gaaissform [20]
to be computed efficiently.

Periodic KDE

The orientation of the texture, representedhyis periodic with periodr. Consequently, the
estimated distribution of should also be periodic. A slight modification to the typi&E is
needed to compute a periodic PDF. In the estimate, the peridF should be estimated af
target points (equally spaced in the rang@er)) from the set ofNV source pointss. Each source
value inS, denoted by, is confined to the rang®, 7). If we assume that the kernel bandwidth
is small enough such that the contribution of a source pwiatderiods away+{2r) is negligible,
then there are two straightforward methods to estimateiagielKDE.

The first method is to replicate every source point twice:eowith a shift by a positive pe-
riod +7, and once with a shift by a negative peried. Thus, the new set of source points has
cardinality3 N, and consists of the set of point§, S + =, S — w}. The KDE is still estimated at
the sameV/ target points. Because of the shifted sets of source p@ntapproximately periodic
distribution will exist in the rangé), 7). The periodic KDE in this case is

g 5 o (15) o () e ().

where/ is a scale factor to make a valid distribution.

Similarly, one can replicate every target point twice: onah a shift by a positive period-,
and once with a shift by a negative peried. In this case, the source points do not change, but
the 3M target points now span the ranger, 27). We refer to this new KDE agy. Oncepy is
estimated, to obtain the periodic distribution at a spet#rget point,/, one combines the new
KDE atpy (), pa(0 +7), andpy(6 — ). This also results in an approximately periodic distribati
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The periodic KDE in this case is
po(0) = B [po(0) + po(0 + ) + po(0 — )], 6 €0,7), (4.10)

where( is a scale factor to make a valid distribution andgh, is estimated as follows

po(0) = ﬁé (KG (#)) , Oe[-m2m). (4.11)

Each non-periodic KDE is estimated using the Fast Gausssiioan [20], which has an ap-
proximate complexity o (M + N), wherel is the number of target points aidis the number
of source points. The method of replicating the source pdiats an approximate complexity of
O(M +3N), whereas the method of replicating the target points happrroaimate complexity of
O(3M + 3N). Either of these methods can be used; however, becausertii®nof target points
is typically much less than the number of source points, tethod of replicating target points is
used in this thesis.

4.1.3 \Verification on Brodatz Images

We apply our feature extraction to the Brodatz textures [Bing the first thirteen images from
[49], we attempt to classify the images based on our feattriwmvalidate our model. The original
images are shown in Figure 4-3. Each Brodatz image is 51212ypixels. For each image, we use
the top-left 256-by-256 corner to train the feature disttiiins, and the top-right 256-by-256 corner
as the test data. Classification results were 100% correatlftests, showing that our features are
able to distinguish these different textures. This resai#sinot mean that our representation is
able to categorize all natural textures perfectly. Howgthex results on a small and widely used
database of textures does encourage the validity of the Iméoleeach of these cases, we estimate
the mutual information between the likelihood of a pixel andur feature set with the label of
that pixel. This number gives us a confidence measure, whegerl numbers correspond to a
more confident classification. Table 4.1 shows the moswikelorrect classification (i.e. the most
similar texture with the lowest confidence measure) and tost mnlikely incorrect classification
(i.e. the most different texture with the highest confidemeaasure).

In addition to classification of the Brodatz textures, weasgment a few synthetic Brodatz
images using our feature set. We overlayed the most sinmthn#ost different textures for each of
the thirteen textures and show the results of the segmentfair mutual information, balanced J
divergence, and J divergence (using= %aJB = %aj = 1) in Figure 4-4. It is important to note
that we are performing a very crude segmentation where welglimeasure the features at every
pixel, and use these as the segmentation features withpdigher consideration. It will later be
shown that a better segmentation algorithm can be achievVédtese results support our intuition
that any Ali-Silvey distance could be a suitable segmemrtatriterion. It is interesting to note
that the most similar textures portrayed in Table 4.1 areneotssarily the hardest to segment.
Segmentation is a much harder problem than classificationaddition to having to learn the
statistics during the process of segmentation, boundé&egtefdue to using a local measure will
also change the result.

The majority of segmentation results using the three diffemeasures in Figure 4-4 are very
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Figure 4-3: Brodatz textures used in classification. Thieoyehumber is the label assigned to it.

Table 4.1: Confidence of Brodatz Classification

e S WS i oo
(%) Texture(75) Texture(73) Le{n L} Le{t 1}
1 2 8 0.264 0.688
2 7 8 0.237 0.687
3 7 8 0.281 0.675
4 7 8 0.182 0.691
5 10 1 0.269 0.657
6 13 8 0.055 0.686
7 4 8 0.182 0.688
8 9 4 0.465 0.691
9 12 1 0.301 0.676
10 11 8 0.184 0.658
11 10 1 0.184 0.672
12 9 1 0.301 0.599
13 6 8 0.055 0.682
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Figure 4-4: Segmentation using three different measuresyothetic Brodatz images. First col-
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Figure 4-5: Segmentation using three different measurea synthetic Brodatz images. First
column is the the initialization used, second column is imleichusing M, third column is obtained
using balanced J divergence, and fourth column is obtaisedyw divergence. The first row’s
initialization was the original segmentation result udifigand a gridded initialization. The second
row’s initialization was the original segmentation resuging J divergence and the same gridded
initialization.

Table 4.2: Distances of local extrema

Initialization Ml Balanced J Divergence J Divergence
MI's segmentation 0.262 1.346 2.446
J Divergence’s segmentation 0.423 2.132 4.620

similar. There are a few surprising cases where J divergeeems to perform much better than
both mutual information and balanced J divergence. We exaimne of these cases (fourth row
of the second page of Figure 4-4) in more detail. It is inténgsto consider how each measure
performs when initialized to the segmentation of anothgo@ihm. Because the segmentations
obtained using MI and balanced J divergence are companabl@itialize each algorithm to the
MI segmentation and the J divergence segmentation. Reg@égmentations with these initial-
izations are shown in Figure 4-5. These segmentations shatgiven either initialization, any
of the distance measures will not drastically perturb theveu In other words, this means that
each of the original segmentations is very close to a locakmum under any of the distance
measures. We can evaluate which local extremum is a betjeresgation under each distance
criterion by evaluating the actual distance. Table 4.2 shihwse values. The distances obtained
when initializing to the J divergence segmentation aretgréhan those obtained when initializing
to the mutual information segmentation under all threeatis¢ measures. Though we found that
both the original Ml and J divergence segmentations ard Bxdeemum, these values show that
the mutual information segmentation was only a local extnenwhereas the one obtained using J
divergence may be the global extremum. We believe our aigitialization (a uniformly spaced
grid of seeds) may have contributed to the result of reachiongal extremum instead of the global
extremum in the MI and balanced J divergence cases.

We proceed to verify this claim by generating a set of randoitielizations and segmenting
based on those seeds. We generate a random initializatibrsbyandomly picking locations of
seeds. Each pixel has approximately 0.1% chance of beingethier of a seed. We then draw
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Figure 4-6: Segmentation using three different measuressymthetic Brodatz images. For each
set of four images, the first shows the random initializatised, the second shows the result
obtained using M, the third shows the result obtained ubelgnced J divergence, and the fourth
shows the result obtained using J divergence.

a circle around that seed having a random radius within soxed fiange. When overlapping

circles occur, we take the exclusive-or of the elementsureig-6 shows the results for twenty
random initializations. Clearly, the results are comphkrab these random initialization cases.
The erroneous result we obtained for this image in Figureséeins to be an error that occurred
only because of the specific initialization we used. To espleven further, we show the best
segmentation results obtained using this random iniiibn scheme in Figure 4-7. The “best”
segmentation is chosen by finding the result among twenfgrdiit initializations that has the

maximum distance (i.e. the ground truth is never used).

In most cases, the non-gridded initialization improvesatgerithm regardless of the distance
measure. We compare our original gridded initializaticuits with our non-gridded initialization
results by looking at the probability of error statisticscasnpared to the ground truth. Although
these empirical probabilities are computed with accessdatound truth, it is important to keep
in mind that none of the actual segmentation results corsidenowing the ground truth. These
results are shown in Figure 4-8. This figure shows that usiagest of eight non-gridded initial-
izations generally performs better than using one gridde@ilization. Additionally, a scatter plot
of the probability of errors using the two initialization theds is shown in Figure 4-9. Because
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Figure 4-7: Segmentation using three different measuresyothetic Brodatz images. First col-

umn is the original image, second column is obtained usingtMid column is obtained using

balanced J divergence, and fourth column is obtained ugilingedgence. Results obtained using a
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Figure 4-7: Segmentation using three different measuresyothetic Brodatz images. First col-
umn is the original image, second column is obtained usingtMid column is obtained using
balanced J divergence, and fourth column is obtained ugiingedgence. Results obtained using a

gridded random initialization.
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Probability of Error for Different Measures and Initializations

Il Gridded
[ Non-gridded

Probability of Error
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Figure 4-8: Plot of labeling error for three measures usigggridded and non-gridded initializa-
tions. The mean of the labeling errors for all synthetic Bxtadmages is plotted with the standard
deviation of the errors shown.
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Figure 4-9: Scatter plot of labeling error for three measwsing the gridded and non-gridded
initializations. The y-axis represents the probabilityesfor for the best of eight non-gridded
initializations and the x-axis represents the probabditgrror for the gridded initialization. The
thick markers represent the mean of the associated infammatteasure.
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most points lie below the diagonal line, this plot also shived the non-gridded method generally
performs better.

When using gradient ascent to find the maximum, we conjedtilnva when searching the en-
ergy manifold, a particular initialization may convergeatéocal maximum instead of the global.
The idea of using multiple non-gridded initializations wasovercome the problem of local ex-
trema. As expected, Figures 4-8 and 4-9 indicate that théipteulnitializations have helped in
some cases. The results also indicate that using only englglizations may not be enough to
globally optimize the complex energy manifold, and moreiatizations may benefit in the fi-
nal segmentation. Regardless, this section shows thasuoiwpthe best energy among multiple
segmentations typically leads to improved results.

Similar to Chapter 3, we have shown that in most cases, tiee #li-Silvey distances produce
very similar results. Attimes, the specific initializatioan produce a different local extremum, but
with the use of many random initializations, we are much nti&egdy to find the global extremum.
As stated previously, in most of our applications hencéfonte will choose to use multiple non-
gridded initializations with mutual information as thetdisce measure for its more simple gradient
ascent velocity.

4.1.4 Smoothness Priors on Extracted Features

Having defined and verified our feature set, we now discusstbovapture spatial correlations
for each feature. By capturing these correlations, we aeetalmodel how the texture changes.
We take each measured feature as the output of a smooth M&dogom Field (MRF) plus
additive noise conditioned on the segmentation label. Todehfor each of these random fields
is similar modulo differing degrees of assumed smoothn®gés.derive the inference procedure
for the orientation field only; the derivation for scale, trast, and bias follow accordingly. One
notable departure from standard MRF methods is that we ntbdeddditive noise term in each
field nonparametrically. This is due to the fact that the $aditerms correspond to quantities of
interest. Effectively, smoothness is utilized as a mearseparate the contributing factors to the
observed feature. We also derive a novel fixed point upddieing the nonparametric model.
Under a standard Gaussian MRF model of smooth variationssweaes the observation model
shown in Figure 4-10a, whereis typically Gaussian and is a smooth MRF. However, in the
types of images we consider, the fields within a commonlyl&tbeegion may be locally smooth
while exhibiting a small number of abrupt changes. One wagctmunt for this is to decompose
¢ into a completely smooth componentand a piecewise constant componéntas depicted in
Figure 4-10b. Under the assumption that the abrupt changésare large relative to the standard
deviation ofn, this is equivalent to an MRF where the additive noise termmased of both”'
andn is equivalent to a mixture of Gaussians or, more generakgrael density estimate (KDE).
In total we infer four different smooth fields: an orientatiteld onf, a scale field om, a gain
field onE, and a bias field op. It is important to note that the piecewise constant compbokthe
noise,C, captures relevant information about the intrinsic préipsrof the observed image. This
is most apparent when looking at the estimated smooth gaim@s fields whose specific details
are covered later. These two fields aim to capture a slowlpgihg contrast and bias caused by
lighting effects. The piecewise constant fi€lds an image with a uniformly contrasted and biased
texture. Consequently, the observed image after removwiageftfects of the gain and bias field
(i.,e. C + n) is essentially a noisy approximation of the intrinsic retifence image. Likewise, the
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Figure 4-10: Smooth Field Model: (ai) is smooth with abrupt changes; @)is completely
smooth; (c) Intrinsic Image)}*

Figure 4-11: Graphical model for the MRF estimation of otaion. Eacly; is measured directly
from the observed image amngl is estimated through the fixed-point iteration.

residual terms associated with the orientation and scdtsfggovide what we call the intrinsic
texture image. Accounting for all of the smooth fields givesam image with a uniform texture
oriented in the same direction and with constant scale.

Ultimately, we iterate between estimation of these fieldsditioned on a given segmentation
and segmentation based upon the estimated intrinsic textuages. Figure 4-10c depicts the
observation model incorporating the intrinsic unorientedure imageg@* where the superscript,
%, denotes the intrinsic feature.

We formulate MAP estimation of the various fields in a simfiaghion to [51]. The primary
difference is the incorporation of nonparametric noise ehoBurthermore, as a consequence of the
nonparametric model, we derive a fixed point iteration inghsence of an analytic solution. A key
assumption is that eac¢his i.i.d. conditioned onp;. This relationship is depicted in the graphical
model of Figure 4-11. A full derivation is given in the appen@Section B.1). Though this
derivation follows from the smooth field only affecting orerameter, we also show the derivation
and the resulting fixed-point update for a field affecting tiple independent parameters in the
appendix (Section B.3). We assume that A (0, A,) andf « L S K¢ (50r).

¢ = argmax P (¢|0) (4.12)
@ 5 @
Using Bayes rule and differentiating w.rd, we arrive at the following equality
. - h2 -
0—¢—uf (Q . g) - SA78 =0, (4.13)
whereh is the bandwidth used in the KDE, and(-) is the ratio of a weighted KDE to the KDE
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defined as follows

) ZN ( ¢s> (0= eﬁm)

0
wp( N _ ((')*eer(bs) (414)
Zs:l e n?
Rearranging this equation results in a fixed-point iterat@osolve foré
7(k+1) (k)
é F(o-wi(0-4")). (4.15)
where the matrixF’, is defined as follows
-1
F = <h2 A¢) +I=F1'4+1. (4.16)

As in [51], by treating), as the result of filtered i.i.d. noise, the fixed-point updzia be com-
puting efficiently using FFT methods. Consequently, weenttite matrix,F7, in Equation 4.16 as
follows 02

h22 Ay = ; hj’ HH", (4.17)
where H is the matrix that performs a convolution with a unity DC glowpass filter andri is
the variance ofp;. This implies that multiplying by the covariance matrik,, is equivalent to
applying two lowpass filters. In general, the bandwidth useestimate the PDH, is very small
because it is chosen to be inversely proportionaNtd®. With this assumption, the matrik !
equivalently performs a lowpass filtering operation witlp@gximately unity DC gain. This will
be shown here.

F = HojIH" =

By construction H (or equivalentlyT) is the matrix that performs a lowpass filtering opera-
tion with unity DC gain. Thus? H” must equivalently perform a lowpass filtering operatiog.(e.
Figure 4-12a). If we assume thiat< < 035, then the matrixt; performs a lowpass filtering oper-
ation with a very large DC gain (e.g. Figure 4-12b). The iseematrix,F;* must then perform
a highpass filter operation with a very small DC gain (e.g.uregd-12c). The identity matrix
does not alter the signal and consequently must be an alfiias¢e.g. Figure 4-12d).

Now we consider the matri¥ in Equation 4.16. Summing the two matrices ' and [ is
equivalent to summing their frequency responses. ThusiltkeF" must perform a highpass filter
operation with near unity DC gain (e.g. Figure 4-12e). Wherinwvert this operation, the resultant
F~1 must then perform a lowpass filter operation also with apipnaiely unity DC gain (e.qg.
Figure 4-12f). This shows that the fixed-point update of 448 be efficiently computed using a
unity DC gain lowpass filter.

While each of the separate smooth fields is modeled similtrére are differences between
them which we briefly explain now. For the orientation featdy we assume there is an underlying
smooth, additive orientation fieldp, We cannot use a conventional lowpass filter in (4.15) bexaus
the orientation is periodic (with period). Instead, we double each angle and convert it into the
sine and cosine components (i.e. mapping it onto the urdtegir We lowpass these X and Y
coordinates, take the inverse tangent, and then halve tijile &mfind the equivalent lowpassed
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Figure 4-12: Equivalent Fourier operations to matriceslusdixed-point update

angle. To find the intrinsic angle, we simply subtract the sthdield from our measurement:

As mentioned, we treat the discrete scale measurement asiaLemus quantity. The bandwidth
of the KDE is chosen to be large enough to sufficiently smowetr adjacent scales. The additive
term is denoted by the symbpland the intrinsic scale is computed as

77: =N — V. (4.19)

The treatment of the remaining fields is somewhat more camglae gain fieldg, is a mul-
tiplicative field accounting for contrast changes. The fiiglgl, b, is an additive field that corrects
the low-frequency component of the texture. We impose shmass on the log of the gain field
allowing us to treat it as an additive field. Having accourftadthese fields, we are left with an
estimate of the intrinsic reflectance imag, Figure 5-11b depicts this relationship.

In contrast to the orientation and scale fields, the gain aaslifields both operate directly on
the pixel intensities. To find the reflectance image, we @wdr observed image by the gain field
and then subtract the bias field. As the steerable pyramidngpadsed of linear filters, dividing
the image by a value implies that the filter outputs are dwilg the same value. Thus, both
the energy and bias features of our texture are affected doygain field. The contrast energy
captures the filter response at some bandpass frequenagasitee bias captures low frequency
components. Consequently, adding a constant value shatiicchange the low frequency bias
and not the contrast energy. If we assume that the bias field@aect for any changes that the
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Table 4.3: Empirically Chosen Smoothness Constants

Field hmin hscale

Orientation Field¢) 0.8 2
Scale Field ©) 0.2 2
Gain Field @) - 2
Bias Field B) - 4

gain field has made to the bias term, then we can estimate teskelds independently. The
gain field is first estimated assuming that it only affectsdbmetrast energy, and then the bias field
is estimated only based on the bias term. If we assume thsg firdds are sufficiently smooth
within a small neighborhood, then we can approximate thecefif them on the intrinsic features

as follows )
L1 y (01" _ Ei
B=mm 2 | | © (4.20)
7 jER?i J 1
* X i i
uizz(—?—j)-fjw“—_—bizszi—bi, (4.21)
jerm 77 g JERM 9i

fii fii

whereR;j‘Z. is the support of the lowpass filter around pixelnd in scale);, and f; is a lowpass
filter coefficient. Note that the last equality in (4.21) isdgsign since our filter has constant DC
gain.

The lastimplementation detail for field estimation is thewased degree of smoothness. This is
determined by the properties of the covariance matricescaged with each field, which is in our
case is determined by the structure of the filter used in §41h%ur experiments, we use a 15x15
averaging filter for each field, noting that the segmentagamot overly sensitive to the window
size. Another parameter that we can tune is the bandwidthioKBE. Larger bandwidths equate
to grouping more regions into the same intrinsic textureesgntation. This is advantageous
because it allows us to capture more extreme lighting andnget effects. However, if the
bandwidth is too large, textures that belong to two diffeiatrinsic textures will look the same.
We chose a minimum bandwidth for each smooth field and setddleng factor to the “rule of
thumb” bandwidth [41] so that they provided pleasing resuibting that the segmentation is not
very sensitive to a fairly large range of these values. Tal8econtains the values we used in our
final algorithm.

4.2 Boundary Effects

When segmentation of synthetic Brodatz images was doneeiprdvious section, it was noted

that the most similar textures were not necessarily thedsatd segment. The main reason for this
anomaly is that we have yet to consider boundary effectshignsiection, we discuss the different
boundary effects that are encountered and our solutiontsetm.t This nuisance surfaces in two
different ways: feature extraction and smooth field estiomat
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Figure 4-13: A toy example of extending an object: (a) thgioal image; (b) the segmentation
mask provided for the extension algorithm; (c) the red pig@there we would like to extend the
object to and the yellow region is the texture patch we extéhdhe resulting extended object.

4.2.1 Boundary Effects with Feature Extraction

Our originally proposed method for feature extraction waslvays look at a fixed size local
window around each pixel. When segmenting an image, obmatdbaries indicate places where
the texture we measure should abruptly change. When useragitiinal feature extraction method,
a local window around a pixel near a boundary will includegtsXrom two separate objects. This
method provides for a smooth change in our features acrossiredary that is a mixture of the
two different objects. Ideally, we desire to have an abringinge at an object boundary. Thus, we
define a new region?;, which is similar to our original regiornz;, but is confined to the segmented
region,R*.
R, = R, N R* (4.22)

A more subtle effect from boundaries originates from theualcsteerable pyramid output.
Each output is due to a 9-by-9 filter. When we convolve therfiltith the image, boundaries will
again contain mixtures of both objects. To address thislpnopwe can extend each object past
its boundary and calculate the steerable pyramid for thenebed object. Note that an extension
needs to be performed for each object (e.g. if there are tyects) there will be two resulting
extended images). Algorithm 1 gives pseudo-code on howtenéxtheR™ region into theR~
region, Figure 4-13 portrays how the extension is perforgraghically for one region, and Figure
4-14 shows the extension performed on a natural image. Figord=4-14 it’s clear that this

Algorithm 1 Object Extension
1: for each pixel in R~ that needs to be extended®y do
2. Draw a line fromi to the closest point il "
3: Repeat the pattern of the line from the object boundary to
4: end for

method to reproduce textures seems fairly accurate, atreas boundaries. The center of what
used to be the zebra in Figure 4-14b shows some glaring discdies. However, since level set
velocities for segmentation are typically only concernathwhe pixels near the boundary, this
error can be tolerated.

The second row in Figure 4-15 shows three of our features Broaatz image when the
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Figure 4-14: An example of extending a natural image (givendorrect segmentation): (a) the
original image; (b) the first extended image; (c) the seconerneled image.

boundary effects are ignored. The third row in Figure 4-1&shthe same three features after our
refinement to incorporate boundary effects.

We would like to use the new local region described in Equatid22 when extracting our
feature set combined with the object extension to elimittadilter boundary effects. We call the
combination of these two solutions to be the refinement oatgorithm. Using these two solutions
are problematic for a few reasons. The new region requiefetiitures to be calculated any time
the curve changes, or essentially at every iteration in segation. In addition to this, the steerable
pyramid must also be calculated any time a new extended ilmageated. These computations can
take a considerable amount of time, and is not somethinggipatticularly feasible. Additionally,
the refinement creates many more local extremum which isgiiglattributed to the difficulty
of distinguishing an object boundary from an edge withinxduee. For these reasons, using this
refinement needs to be treated with special care.

In our segmentation algorithm, our solution to these boune@#fects was to first segment
based on our original feature extraction (ignoring boupa@dfiects) so that we would reach a local
extremum near the global extremum. Then, we refine our segt@mby using the newly defined
region in Equation 4.22, extending the object boundaried racalculating the steerable pyramid.
This prevents the segmentation from falling into a locatexium that is very different than the
global, and will decrease the computation time. The resefibde and after the refinement are
shown for a sample image in Figure 4-16.

4.2.2 Boundary Effects with Smooth Field Estimation

As stated previously, we estimate a smooth field for eaclufeainder each label. The smooth
field is only valid for pixels corresponding to the same labelt it is still necessary to define it for
other pixels. One reason for this is because when we lowpassalues with the matri¥'—! in
Equation 4.15, we would like to have values defined everye/Berthat this can be done in a faster
way. However, the more important reason that the smoothsfiedetd to be defined everywhere
is because of the gradient ascent velocity used to updatevbksets. We need the smooth field
under each label to be well defined for pixels near the boynstawe can evaluate the likelihood
of the intrinsic feature. The values far from the border asslimportant, similar to the boundary
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Figure 4-15: An example of our originally proposed featuteaction with and without consider-
ing boundaries. (a) The original image; (b)-(d) feature®iing boundary effects; (e)-(g) features
accounting for boundary effects

Figure 4-16: Zoomed in portion of segmentation. Green dwolais before refinement, red dotted
line is after refinement
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effect solution in the feature extraction.

As a result of this issue, we use a similar method as beforeaeeshd the smooth field before
applying the lowpass filter. The extension is done by simpljirsg the values for pixels outside
of a region to be the same value as the nearest pixel insideetfien. Our final algorithm for
estimating the smooth orientation field is described wittug®code in Algorithm 2.

Algorithm 2 Estimating Smooth Orientation Field iR™
1: while Fixed point iteration has not convergedd
2: for each pixel € R do
3 Estimate the smooth field as if there was no spatial coroeldiy

Q;Z(_Hl) —0—w, (Q _ é(@)

4: end for

5. for each pixel ¢ R* do

6: Extend the smooth field* ™ to be the same value a& ™, wherej is the nearest point
in R*

7. end for

8:  Finish applying Equation 4.15 by lowpass filteridiigfﬂ)

9: end while B
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Chapter 5

Texture Modeling Applications and Results

Prior to this chapter, we have discussed various distanesunes for segmentation purposes and
feature extraction for textures. We have chosen a very@kpiodel for textures, namely one that
tries to capture a strongly oriented texture. Though theldg@ment of our model was for a fairly
specific type of texture, we show here why our modeling cloiwa/e advantages. In addition to
being able to segment natural images fairly well, we are alde to extend our texture features to
estimate the radiometric response of a camera and estintatsic shading images.

5.1 Segmentation

We begin with image segmentation, which has already beetiomexl throughout previous chap-
ters. We use mutual information [26] to segment the imagerjpparating our estimation of smooth
random fields and our solution to the boundary effects. Aal#ly, we utilize the multi-region
segmentation presented in [6]. We assume that the numbegiois in the image is known, noting
that this quantity could be estimated in various ways. Owl fatlgorithm for image segmentation
is summarized in the flowcharts of Figures 5-1 and 5-2.
In this section, we will compare segmentation results ofalgorithm with the algorithms of
[26] and [21]. The algorithm in [26] is a mutual informatiomded label method on the pixel

Read the number
Begin Read the of regions to
Segmentation image X segment tl

he

image into, numR

%

Define the support of each
level set (where it can evolve)
to be the entire image domain

—» set, one for each

Define one level

region (|L|=1)

Choose the segmented Jointly evolve all curves on the
region with the highest |L|=|L|+1 » support of the entire image
energy in energies[R] domain for a global extremum

Define the support
of each level set to

its region

Temporarily segment Segment Calculate the energy of
region R on its Region segmenting region R, and —»
defined support store it in energies[R]

Yes

R=R+1

|L|<numR?

End
Segmentation

Figure 5-1: Flowchart for segmenting an image with multiggions.
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Figure 5-2: Flowchart for segmenting a region within an imag
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intensities. However, the combination of a curve lengthattgrand nonparametric estimates on
the intensity distributions enables the segmentationropha textures without an explicit texture
representation. The algorithm in [21] uses steerable pgsnbut differs from the method in
that here because they use these filter outputs directlyafisrés. They treat each filter output as
statistically independent and segment based on this asgumphe exact algorithms of [26] and
[21] produce very poor results in our experiments due to &lce they do not model changes due
to illumination and other physical phenomenon. To make r@faiomparison, we incorporate our
gain field into the approach of [21] and the gain and bias field ihe approach of [26]. The bias
field is excluded from [21] because it does not fit their modellwand should have little or no
effect on the features. This allows us to compare the difileeyained in using our texture model
by removing lighting effects from all algorithms.

5.1.1 Sensitivity to Parameters

We begin our comparison by looking at the sensitivity of segtation results to the algorithm
parameters. We show the sensitivity to three user-speeifile@s: the local region siz&;| around
pixel i, the initialization for the segmentation, and the curveytbrpenalty weightqy.

Local Region Size

The first parameter we consider is the local region Si&g, This term is not used in the other
algorithms so the sensitivity is only considered for thehmoétpresented here. We note that this
region size was used in the calculation of angular energyquakon 4.2. If|R;| is too small,
the measure may not accurately capture the local angulagyenklowever, if|R;| is too large,
we oversmooth our feature set which may lead to problems allsegions. We show the results
of segmenting an image based on varyjRg within the range 3-by-3 to 9-by-9 in two different
ways. Figure 5-3a shows the regions for the various segme@msawhere the closer a pixel is to
white or black, the more often it was labeled into the samé@reg/hen varying values dfR;|.
Pixels that are gray are more sensitive to change. We als® shoresults in Figure 5-3b, where
pixels that changed between segmentations are red. Therateepixel is, the more sensitive it
is to varying|R;|. These figures show that our feature set typically captinredody of the zebra
very well. As expected, thin regions (e.g. the legs and fdihe zebra) are most sensitive to this
parameter. When a larger region size is used, the contragg\eis oversmoothed for these small
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Figure 5-3: Sensitivity to local region size: (a) Regionsmtped when varyingR;| (gray pixels
are more sensitive); (b) Pixels changed when varyig (red pixels are more sensitive)

regions. Our algorithm is fairly sensitive to this paramgbeit we show empirically that using the
small, 3-by-3 region size typically allows for enough snong) while still being able to capture
small regions.

Initialization

The next parameter we consider is the initialization usestaot the segmentation. We showed
extensively in Section 4.1.3 that segmentation algoritbhars converge to a local extremum (in-
stead of a global) if given a poor initialization. Here, wensimler multiple gridded initializations,
where the size of each seed in the grid changes. If the seetisctesmall, the curve length penalty
may dominate the evolution and not capture all parts of aeaibjf the seeds are too large, then
smaller regions in the image may not be captured. In gentiallandom seeds to initialize the
segmentation should contain a mixture of the region stegisf the final segmentation. In the case
of the zebra, when considering pixel intensities, if théi@hseeds only contain pixels in the black
stripes of the zebra, then there is no driving force in théwgian to include the white stripes. Thus,
especially for regions that have a a multi-modal featuréribigtion, the initialization can produce
very different results. Figure 5-4 shows a comparison ofs#esitivity of the three algorithms to
this parameter.

The middle image obtained using [21] is clearly the most isigado the initialization. Their
texture model discriminates textures at different scatelsomientation even if the textures look very
similar or if they smoothly change into each other. Consatiyethe stripes in the midsection of
the zebra are represented as a different texture as thessiniphe hindquarters of the zebra. This
discrimination creates many more local extrema which, asvehin Section 4.1.3, increases the
sensitivity to the initialization.

The left image obtained using [26] performs fairly well fbietset of initializations used. The
few stripes that are occasionally not captured in this casebe corrected with a stronger curve
length penalty weight. Without using any texture analysisjr pixel measure is oblivious to the
actual structure of the pixels. In fact, if one were to ranfjopermute the pixels in the zebra
so that stripes no longer existed, this algorithm would pldyp still segment the image correctly.
While this algorithm works well for simple textured imagése empirical results in Section 5.1.2
will show why utilizing an explicit texture representatioan aid in segmentation.

The right image obtained using the method presented hevesghat it is not very susceptible
to changes in the initialization. Unlike the method of [2t]is most likely indicates that there
are very few local extrema. Additionally, this method alwapaptures all of the zebra stripes and
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Figure 5-4: Sensitivity to random initializations*Zolumn shows algorithm from [26]"2 column
shows algorithm from [21];3 column shows our algorithmrow shows regions changed when
varying initial seed size (gray pixels are more sensiti&Y, row shows pixels changed when
varying initial seed size (red pixels are more sensitive)

excludes the shadow because it models the texture appearanc

Curve Length Penalty Weight

The last parameter we consider is the weight of curve lengttalpy, «. This has a significant
impact on the segmentation when there are small regionsce tire sharp corners. The compar-
ison is shown in Figure 5-5. Note that the region betweendftddgs of the zebra in the method
presented here is not captured well wheis too large because this region is already small due to
boundary effects. However, it is always able to capture thigeebody of the zebra in one region,
unlike the other methods.

The method of [21] shown in the middle image is again fairlpseve to the curve length
penalty weight. This is not surprising because as statedqugly, this method creates many local
extrema. By altering any segmentation parameter, we caacéxpis specific segmentation to
change due to the gradient ascent approach used in levettabas.

As expected, the method of [26] shown in the left image idyfaensitive to the curve length
penalty weight. When this weighting is too small, the cosassigning neighboring stripes differ-
ent labels is not large enough to overcome the likelihoodsisTthe thicker white stripes some-
times are grouped with the background when smaller cungthgpenalty weights are chosen.

5.1.2 Segmentation Results

In this section, we show empirical results for image segateént. In each case, we compare the
results obtained using the algorithms of [26] with an estedagain and bias field, [21] with an
estimated gain field, and the algorithm presented here. \&/¢hesmultiple random initialization
method described in Section 4.1.3 to provide a more robssitréor each of these methods that
is less sensitive to local extrema. The best result amohgstultiple random initializations are
chosen as our segmentation, where ranking is determinely £yl the energy associated with the
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Figure 5-5: Sensitivity to curve length penalty weight! ¢olumn shows algorithm from [26];
2" column shows algorithm from [21];"3 column shows our algorithm;*lrow shows regions
changed when varying curve length penalty weight (graylpiaee more sensitive) "2 row shows
pixels changed when varying curve length penalty weigltt fri@els are more sensitive)

segmentation without having access to the ground truth.

We first consider the segmentation shown in Figure 5-6. Thégge was segmented into both
two and four regions for each of the algorithms. In the twaoegase, the scalar algorithm of [26]
and the algorithm presented here both do very well in disigtgng the shirt from the background.
Because the method of [21] does not capture dependencigsdiebrientation, the sleeve of the
shirt is categorized as a different texture from the bodyefghirt.

In the four region case, the algorithm presented here istabfierther distinguish the sleeve
of the shirt and some of the folds in the body of the shirt. b®tiow the other two algorithms
fail in predictable ways. In a sense, the algorithm of [26§igroximately orientation and scale
invariant for textures because it ignores those attribotéise texture. Thus, because the sleeve is
only a different orientation from the body of the shirt, thi®thod is not able to differentiate the
two regions. On the other hand, the method of [21] is not daiion or scale invariant because
each pyramid output is considered to be independent. Thie|s in grouping the sleeve with
the body of the shirt in the two region case. The texture nregstesented here is only partially
invariant in scale and orientation, in that it is only invari to smooth changes in these features.
Consequently it performs well in both the two region and fagion cases.

We now present additional segmentation results on images the Berkeley Segmentation
Dataset (BSD) [31] and others found on the internet. Agamgcampare to the same algorithms
as before and comment on a the segmentations in 5-7. Thediaseld is separated fairly well
in both the scalar algorithm and out algorithm whereas thiependent steerable pyramid case
did not perform very well. The scalar algorithm groups sorhthe background with the grass,
while our algorithm does not. However, our algorithm is aisbable to capture the grass between
the mound and second base which is most likely due to usingad teeasure combined with the
boundary effects. We have verified that excluding this smalbrrect region has a higher energy
(and thus a better segmentation), meaning that this segti@nimust be a local extremum and not
a global one.

In the second image of Figure 5-7 containing pillows, théedé@nce between the algorithms is
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Figure 5-6: Segmentation Results: first column contain®tiggnal images, second column con-
tains results from scalar algorithm [26] with estimatedhgand bias fields, third column contains
results from independent steerable pyramid algorithm {21 estimated gain field, and fourth
column contains results from our algorithm. First row ismeegted into two regions, and sec-
ond row is segmented into four regions. Notice how our athoriis able to segment the shirt
from the background in the two region case, and upon furtbg@mgnting into four regions, it can
distinguish the sleeve and folds of the shirt.

more pronounced. The scalar algorithm groups only basedxehiptensities. Thus, most of the
two pillows have similar intensities and are grouped togetHowever, some of the background is
also grouped with the pillows due to the similar intensitigsthe independent steerable pyramid
case, only part of the left pillow is separated from the rdghe image. Because the texture is
somewhat similar (modulo orientation and scale), we canktbf the actual distributions within a
scale and orientation to be fairly similar. The part of thikopi that is segmented has a different
orientation from the other stripes resulting in the pyrafmading high response at this orientation
only in this region of the image. Consequently, this aldonitseems to segment the image based
highly on orientation. Our algorithm is able to represemttiéxtures of this image well and group
the two pillows in one region. There is a slight error in thi f@llow which is due to a rapidly
changing texture in scale, gain, and bias fields. Our smpaetnlying field is not able to capture
this abrupt change well, and therefore the image is not plppegmented.

The third image of Figure 5-7 differs from other images beeait does not contain a strong
texture. One would think that the method of [26] (i.e. usinglar pixel intensities) would be best
suited for this type of image. Though it is able to capture moicthe image, it misses the corners
that have a vignetting effect. Ideally, the gain and biagi§@ould have solved this issue; however
the smoothness assumptions were not able to completelgmwerthe strong vignetting present
in the picture (though it did help). The independent stderpgramid method of [21] is able to
capture a rough outline on the segmentation, but suffersfgigntly from border effects. Also,
note how the body of the bird is not segmented properly. Ouhatkis able to capture most of the
image well, though it does have some errors near the imagedaoies.

We chose to segment the fourth image in Figure 5-7 of zebtashree regions. We hoped that
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Figure 5-7: Segmentation Results: first column contain®tiggnal images, second column con-
tains results from scalar algorithm [26] with estimatedhgand bias fields, third column contains
results from independent steerable pyramid algorithm {21 estimated gain field, and fourth
column contains results from our algorithm.
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the zebras would be well described by a homogeneous texithhesame smooth orientation and
scale variations. Furthermore, we anticipated that almiganges in these features on boundaries
between zebras would help distinguish the zebras. In tHarszase, the zebras are mainly grouped
into one region, and the background is split into two basethein pixel intensities. The indepen-
dent steerable pyramid method also does a good job in grgatlinf the zebras in one region, but
it is not able to differentiate between the zebras. The tlegilon created by this method, which
may be hard to see, captures the noses of two of the zebrassanallearea between the legs. As
shown previously, our algorithm is able to identify objeouindaries based on abrupt changes in
orientation or scale of a texture. However, these parameter actually fairly smooth across the
boundaries of the zebras. Yet, the legs of the zebras havieraptahange in orientation, and the
necks or chests of the zebras have an abrupt change in seal@lgorithm therefore predictably
segments under this model to distinguish these changesohsf separating the zebras.

The last image of Figure 5-7, similar to others, is taken frine BSD. For the algorithms
compared in the dataset, this image is THehardest image out of the 100 images. Additional
segmentation results are shown in Figure 5-8.

5.2 Feature Visualization and Intrinsic Texture Image

Once a segmentation is computed, we can use our featurersetrious other computer vision
problems. A common useful decomposition of an image is to éedain intrinsic images. An
intrinsic image is a representation of the image that castane intrinsic characteristic of the scene
[3]. One pair of useful intrinsic images contains the indrreflectance and shading images. An
intrinsic reflectance image represents what the objectslike without any lighting effects. Each
pixel is represented with the color attributes (or how iteet light) of the object it belongs to. An
intrinsic shading image represents the exact oppositentains only the lighting effects presentin
the image and describes how they interact with the specifimgéries of the objects. The problem
of finding intrinsic images can be quite difficult, espegiallith only one observed image. The
problem becomes even harder when considering texturedesniagcause changes in intensities
can be an effect of changes from either the reflectance €ixeure appearance) or shading.

The decomposition into shading and reflectance images rasdiadied by many scientists
and remains to be a difficult problem. [50] considered a stemmawhich multiple images of the
same scene are obtained where the illumination changeséetimages. Though the problem
is still ill-posed, they are able to obtain fairly good rdsubn grayscale images. Recently, [28]
developed a fairly robust algorithm to decompose the imatgeshading and reflectance from one
color image. Their method uses the changing colors and &q@ireed gray-scale pattern identifier
to classify whether changes are due to a reflectance chasgpading change. While their method
does perform very well, it is limited to color images and riegsi training data.

Though we have never explicitly represented these intrinsages, we show that we can pro-
duce visually appealing results. We will discuss how thanstc reflectance image and what we
call the intrinsic texture image are obtained in this sectibhe shading image recovery procedure
will be discussed in Section 5.4.

The estimated gain and bias fields represent the changes witémsities due to lighting con-
ditions. Thus, if we remove these fields, then we have an agtifat least to a scale factor) of the
intrinsic reflectance image. If we extend the same reasdnitige estimated scale and orientation
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Figure 5-8: Additional Segmentation Results: first colunontains the original images, second
column contains results from scalar algorithm [26] withrested gain and bias fields, third column
contains results from independent steerable pyramid ithgo(21] with estimated gain field, and
fourth column contains results from our algorithm.
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Figure 5-9: Calculated feature set: (a) Original image;bptrast energy; (c) Bias; (d) Scale
(brighter is coarser scale); (e) Orientation; (f) Estindaterinsic reflectance image; (g) Visualiza-
tion of the estimated intrinsic texture image

fields, removing these effects should provide us with an grthgt is uniformly illuminated with
textures that are at uniform scales and orientations. Welsaltype of image the intrinsic texture
image. In Figure 5-9, we show our measured features, ounat&d intrinsic reflectance image,
and a visualization of our estimated intrinsic texture imaghe blocky artifacts in Figure 5-9g are
a result of how we created the image. This visualization tsioled by rotating and scaling small
regions of the estimated reflectance image with the estorstale and orientation fields. This
image is for illustrative purposes only; it is never actyaised in the segmentation.

5.3 Nonlinear Camera Model Estimation

In the previous section, we estimated the intrinsic reflez@amage by removing the effects of the
gain and bias field. However, to formalize a more precisereg@ of the reflectance image, we
need to first consider the process a camera follows to outputage. We use a very simple model
of the camera where the raw data from the camera sensor (asmilas the irradiance imadg) is
passed through some nonlinear mapping function (calledattiemetric response functioyf(-))
to get to the observed image)( This process is illustrated in Figure 5-10. The radiomdtmc-
tion was first introduced to correct thefactor, (), that is in most computer monitors. Today’s
cameras use more advanced functions to provide more wsaglealing photographs. We sim-
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Figure 5-10: Model of the radiometric response functiorhef¢camerd (-) acting on the irradiance
imageZ to get to the observed image
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Figure 5-11: Model for the intrinsic reflectance image: (apAe parametery model for an
unknown camera; (b) Our feature model of the image with a (jgiand bias &) field

plify this by approximating the radiometric response witkimple one-parameter power function:

=0 (5.1)

The intrinsic reflectanceR) and shadingq) images discussed previously have an intimate
relationship with the irradiance image. Under certain canrassumptions, the product of the
reflectance and shading images is exactly the irradiancganf28]. We show this model with our
assumptions in Figure 5-11a juxtaposed to our feature modegure 5-11b.

Here, we see that the two models in Figure 5-11 are very sini&described previously, we
first estimate the gain field and then the bias field. If thereeww radiometric response function
(v = 1), then the lighting effects could be completely explaingalmultiplicative gain field, and
our estimate of the bias field should have very little enefdnus, in the absence of our gain field
is approximately our shading image. We exploit this obseraao find the optimaly estimate in
our camera model.

Given a value ofy, we can estimate the gain and bias fields as stated in Sectigh Assuming
a noiseless model, the reflectance image is simply

x}/”f _
Ri(v) = we) bi(v), Vi€ (5.2)

Setting the bias field to be zero everywhere, which would adgur if the camera model was
correct, we reconstruct the observed image using only fiectance image and the gain field for
a giveny value. The reconstruction error energy under the zero l@sdssumption is

e =(R(M)-g(7) g

where all operations are done element-wise. We find the aptinvalue by minimizing (5.3)
within the rangg0.2, 1] using golden section search [25].

(5.3)

2 Y
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Figure 5-12: Two scenes taken at different exposures usedlitarate the radiometric response
function of a camera

5.3.1 \Verification with Multiple Exposed Images

We used a Canon A430 to take two different scenes at multyjesaires in order to capture the
entire radiometric function. There are many reliable wayddtermine the function from this set
of multiple photos. The method of [33] has shown to providebde results on a wide variety of
functions by using a polynomial parameterization. We eatéd the radiometric response using
this method on two sets of photos (displayed in Figure 5-h#)averaged the response.

Once the calibration was done, we took photographs usingdime camera of various scenes.
Those images are shown in Figure 5-13. We segmented eacle im&ggure 5-13 into two re-
gions, and then found the besturve for the segmented image using our method and the method
described in [14]. Because the method presented here finasieve, we first obtain the optimal
~ curve by finding they value to produce the closest curve in the L2 sense to theratdi poly-
nomial curve. We compare the estimated curves witmtleeirve closest to the calibrated curve
and show the results in Figure 5-14. The results obtainatjukie texture model presented here
are superior to the results obtained using [14] in everyiteage, and were obtained using a single
grayscale image.

5.4 Shading Estimation

Given the camera model (i.ey), it is straightforward to determine the shading image. One
could use the estimated gain field as the shading image, bimawe empirically observed that
re-estimating the gain field assuming the bias field is zeodyces better results. Here, we take
into account that the bias featuye,is also affected by the gain field. As we assume that these two
values are independent, it is straightforward to make tghtsmodification. The details of the
modification are shown in the Appendix (Section B.2).
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Figure 5-13: Various scenes photographed to test the anycafahe radiometric response estima-

tion procedure

Single Parameter (Y ) Camera Estimation

250 -

200

150

O Closest Y curvein L2 to WebHDR
Our method

— — — Blind Inverse Gamma Correction
% Respective Means of Algorithms

100

Scaled Intensity

0 50 100 150 200 250
Scaled Irradiance

Figure 5-14: Camera model estimation comparing the metheskepted here with the method of
[14]. The method presented here outperforms the methodpbjievery test image.
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Once the shading is estimated (given that the camera respokisown), the reflectance can be
easily estimated by dividing the shading image from thedieace image. Additionally, the shape
of the object in the image can be estimated using common dnapeshading techniques [22].
We visually verify our shading results by inspecting theéreated shape using the algorithm pre-
sented in [44] with post Gaussian smoothing. The resultseéhtire segmentation and estimation
process is shown in Figure 5-15.

In the segmentation of the zebra, the method presenteddwainéei to segment the three regions
better than [26] and [21], even with incorporating the srhofélds. In each subsequent step,
all algorithms are given the advantage of having the segamientand the estimated radiometric
response obtained using the algorithm presented here. ebdoad row of Figure 5-15 shows the
intrinsic reflectance and shading estimates for each dhgorrespectively estimated using the
same smoothness assumptions. The intensities of the ghatige within each region have been
scaled td0, 255] for illustrative purposes. When using the measure of [26],reflectance seems
to have some of the desired attributes (e.g. very minimatilig or shading effects). However,
the estimated shading image contains many indications af slould be in the reflectance image
(e.g. the stripes of the zebra). The estimated reflectandeslzeding using the measure of [21]
performs even worse. In fact, the decomposition makes tighter patches in the reflectance
even brighter and the darker patches even darker. The thiudho of estimates using the method
presented here produces good results for both the reflectartshading. The reflectance image
seems to have minimal lighting or shading effects, and tlaelisly image does not contain an
overwhelming evidence of the reflectance image. Note thaskiading of the nose of the zebra
is incorrectly estimated because the texture of the noskagkrthereof) is very different from the
rest of the zebra.

As expected, the shape estimates reflect what was seen ihatlimmg estimates. The stripes
near the hindquarters of the zebra using [26] ripple withkensity which is evidence of an incor-
rect shading estimate. When using [21], the shape of thexzghrost seems to be inverted, which
indicates a very bad estimate of the shading and reflectamoentposition. The third column
seems to provide a fairly good estimate of shape.

There has been extensive work (e.g. [45] and [29]) on esimgahape from texture cues such
as changes in orientation and scale. The work presentedréizes that these cues could be
due to the texture itself and not the geometric propertigb®bbject. Where typical shape from
texture or shape from shading algorithms may fail, the siiape shading from textures presented
here does fairly well.
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Figure 5-15: Segmentation, intrinsic shading estimatém shape from shading shown for three
texture measures. The first column is the scalar algoritiom {26] with estimated gain and bias
fields, the second column is the independent steerable myedgorithm from [21] with estimated
gain field, and the third column is from the method presentehlis thesis. In each column, the first
row shows the three-region segmentation, the second rowssthe estimated intrinsic reflectance
and shading images respectively, and the last three rows tteoshape estimated using [44]. In
each step of the process, the algorithm presented hererfmutpe the other two methods. The
algorithms of [26] and [21], in addition to incorporatingramooth fields, is also given the benefit
of our segmentation and camera response curve for the egftaxtshading, and shape estimation.
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Chapter 6

Conclusion

Two main topics were discussed in this thesis: using infeionaneasures (specifically Ali-Silvey
distances) for an energy criterion in image segmentatiah randeling smoothly varying tex-
tures. Previous use of information measures for segmentaiis categorized into either the label
method (i.ed (px 1, pxp1)) or the conditional method (i.el (p%, py )). Gradient ascent velocities
were derived for general Ali-Silvey distances for both noelh. More importantly, in the binary
segmentation case, a simple relationship between the twlmoekewas found that maps a distance
taking on a specific form from one method to the other. Thishmatsm allows one to extend the
limited binary segmentation of the conditional method towdtiple region segmentation using the
label method.

This thesis has also presented a novel texture measuredbatgoses a local image patch
into the contrast, bias, scale, and orientation of a localite patch. We incorporated smoothness,
via Markov random fields, which, to our knowledge, has notnbeensidered previously. This
combination of texture features and imposed smoothnesbioerto segment images with various
textures more robustly than other measures. Additiontlig, representation easily extends to
estimate the radiometric response of a camera fremgleimage more accurately than previously
proposed methods. Lastly, it also allows for an accurateest of the irradiance, reflectance, and
shading image, which have been empirically validated bgwvedng the shape of the object.

6.1 Possible Changes

Some very explicit choices were made in the work of this theBhough these decisions aided in
the derivations, they are not the only possibilities. Hare conjecture on aspects of our work that
could be changed or improved.

The model (i.e. the features) we designed was chosen to xeficily represent a texture
with a dominant orientation. Empirically, we have validhtaat the model still seems to hold for
textures that are not necessarily dominated by a singlatatien (e.g. the spots of the leopard
or the non-textured bird in Figure 5-7). Regardless of thecess, one can potentially increase
performance by considering a model that is not designedaithpfor strongly oriented textures.

One possible way to capture more textures is related to tgelanenergy defined in Section
4.1. The angular energy is defined for the range of angl€8,in), yet we only chose to use
the maximum energy and the energy orthogonal to the maxinWiile this lends itself well to
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the incorporation of the MRF estimation, one could consmteer aspects of the distribution of
angular energy.

Additionally, while the contrast energy and residual egeatjempted to capture correlations
amongst the various orientations of the steerable pyravoidnethod for extracting the scale does
not elegantly capture correlations across scales of thanuyr (a simple maximum operator is
used). The steerable pyramid is an invertible represemtatneaning that any scale and orienta-
tion can be computed from the basis. However, the processeiting the pyramid and computing
a new response is fairly inefficient. In the work presente@ hee took advantage of the efficient
interpolation that can be achieved in orientation for tleesdble pyramid. If a particular transform
could be interpolated in scale and orientation, corretet@mong both of these attributes would be
more easily captured. Although [43] showed that a pyramad ith shiftable (i.e. can be interpo-
lated) in scale can also be designed, they also argued thyamgl that is shiftable in scale and
orientation is not possible (without further approximas®. One could possible consider using a
pair of pyramids, one that is shiftable in scale and anothertbat is shiftable in orientation, but
further efforts are needed to develop the idea.

Another possible change is relevant to the function chosettescribe the probability of a
texture being strongly oriented in Section 4.1.2. It waseddhat a strong change in the function
should occur when the ratio of the contrast energy to theluasienergy was approximately 15.
This value was chosen because it empirically gave goodtgedilie analysis would benefit from a
more thorough experiment where, for example, humans avalicasked at what threshold in the
ratio does a texture appear oriented.

6.2 Future Work

There are still many open areas of research and unanswesestians in the topics covered in this
thesis. The following describes potential future reseagtdted to the work presented.

6.2.1 Information Measures

In Chapter 3, we considered the gradient ascent velocity fgeneral Ali-Silvey distance. The
segmentation comparisons were computed with three specdfasures: mutual information in
the label method, J divergence in the conditional method letanced J divergence in the condi-
tional method. A more comprehensive comparison of inforomatneasures would be beneficial
to understand when particular measures are more suitegéaifie images. Additionally, one
may consider incorporating the work of [35] which links infeation measures to surrogate loss
functions.

6.2.2 Intelligent Initializations

As shown in Sections 4.1.3 and 5.1.1, image segmentatiaritdms (especially those involv-
ing more complicated models) tend to have numerous locatmet and are fairly sensitive to
the initialization. We have presented two approaches tomdam initialization: the gridded and
non-gridded method. We have shown that the using the bagdt mdsmultiple non-gridded ini-

tializations typically outperforms the single griddedtialization. However, this method requires
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segmenting an image multiple times which increases cortipatdme. A more intelligent ini-
tialization that analyzes the model measurements couldebelobed and used to overcome the
local extrema issue without increasing the computatioretimdditionally, one could consider
perturbations to the level set function to avoid fallingoiatlocal extremum.

6.2.3 Experimental Validation

Methods for image segmentation and intrinsic reflectanckeséiading estimation are difficult to
evaluate. We have presented a small set of results that @ieging for our model; however,
more extensive experimental validation is needed to deterinow effective our model is. In
segmentation, we have visually compared our results withatluer algorithms. These algorithms
were chosen because they fit into our framework fairly shtfogwardly. Comparison to more
recent algorithms would be beneficial, but is typically haedause of the lack of publicly available
source code.

One possibility is to compare to a large segmentation datalike the Berkeley Segmentation
Database (BSD) [31]. This has not been done here for a fewmsagirstly, this database typically
reports the probability that a pixel is declared to be on anldawy, rather than the results of region-
based segmentation methods. The method that the BSD usesduate the success of an algorithm
favors a soft boundary detector. Ground truth segmentatawa combined from multiple hand
segmentations where each typically is segmented into erdiff number of regions. Because the
algorithm presented here considers segmenting an image ispecified number of regions, the
goodness criterion of [31] may penalize this algorithm mitwen boundary detection algorithms.
Thus, for a more accurate comparison, an extension usintggxiiere model presented here to a
boundary detection algorithm could be developed for a betimparison.

Additionally, large image databases like [31] inevitabbntain a wide variety of natural im-
ages. Though we have tried to show results for various scénesimportant to realize that
our algorithm is specifically designed for textured imagBisus, a more suitable image database
would contain only images that fit our model. To our knowledbere is no database that is solely
composed of natural textured images.
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Appendix A

Derivations of Distance Measures

A.1 Equivalence of MAP and Maximizing Ml

In this section we will show that finding the MAP estimate o tabeling is equivalent to finding
the labeling that maximizes the mutual information of a @ndabel and its likelihood. We denote
the region,R', as the set of all pixels that have the labeling

R ={i|lL; =1} (A.1)

We start with the typical MAP estimate on the labéls,

L' = argmax P (L|X) (A2)
L
= argmaxlog P (X|L) + log P (L) (A.3)
L
= arg max Z log P (X;|L;) 4+ log P (L) (A.4)
L e

= arg max E
L

l

> log P (Xi|Li = 1)

i€ER!

+1log P (L) (A.5)

where we have assumed in Equation A.4 that the pixadse i.i.d. conditioned on the labeling. The
inner summation in Equation A.5 is proportional to the eniegirexpected value dbg P (z;|L;).

If we assume that each region is fairly large, we can appraterthe empirical expected value with
the actual expected value. Thus, we have the following.

L* ~ arg maxz ‘Rl} E [log P (X;|L; =1)] +log P (L) (A.6)

L ]

= argmax— » |R'| H (X;|L; =1) +log P (L) (A.7)
L
= l

Rl

:aggmx—ﬁﬂ}j%a%H(XﬂL::D+kgPWL) (A.8)

= l
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Here, we note that the rau% is the empirical prior on the labél; taking on valué. We can
then relate this expression to mutual information by thiofaing.

L* ~ arg max — Q) P (L; =1)H (X;|L; = 1) +log P (L) (A.9)
= arginax — 19| HI(XZ-|LZ-) +log P (L) (A.10)
= arg%nax Q| (I (X;; L)) — H (X;)) 4 log P (L) (A.11)
= arg%nax 1 I (X;; L;) +log P (L) (A.12)

This result shows the equivalence of finding the MAP labeliagsus finding the labeling that
maximizes the MI. The prior term on the labelifigg P (L) can be thought of as a regularization
term to ensure that the labeling tends to group neighborixgjgptogether. When using level-set
methods, this term is related to the curve length penaltysTiwve have shown that finding the
MAP estimate is equivalent to maximizing the mutual infotima of a pixel and its label under
certain commonly made assumptions.

A.2 General Formulas and Derivatives

Two approximations will be used throughout the derivatibiney were stated originally in Chapter
3, but will be reproduced here for convenience:

E,. [f()] = / _px (@) (@)~ ﬁ / F(as)di (A.13)

\RI Jicr f(x:) K (z; — a)di,

W) ~ aola Epy [f(2) K (2; — a)],
pOR g VR EN @) @)K (e - a)de,

px (a) f(a)

Two formulas will be used throughout the derivation. Thet fafsthese appears when we have
an equation of the following form:

OF :7{<v S () N >d€ (A.15)

(A.14)

ot

where the vectorz_\f), is a unit normal vector pointing outwards from the positerel set values.
If we can take the partial derivative of an energy w.r.t. tiraed write it in this form, then the
gradient ascent velocity to maximiZefor the level set at pixél is the following [53]:

G
ot

We typically use the smooth Heaviside function in impleraéinh to smead,(,) over the curve
as discussed in Section 2.1.3.

=5 (xz) 50(805)- (A.16)
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The other formula we will be using is the multidimensionaildrez Integral rule (also known
as the Reynolds Transport Theorem in two dimensions). Tatesthe following:

) P . B
a/R(t)F(xA,t) dA_/R(t) aF(Q:A,t) dA+j£<V,F(xg,t)N>d€, (A.17)

where the vector.l_\f> is a unit normal vector pointing outwards frafh Because we are considering
the same velocity for one level set, we will indicate a nagatelocity for this equation when we
integrate overR .
In addition to these two formulas, we will also often needtthree derivative of a few terms.
0 o[ 1

()= = | — K*(r: —
7% 0= 3 1 [, 1o

0 1 e_(wi;;S) J
— | == ———ds
ot ‘Ri| SERT \/7Th2

(2i—ws)?

_ _ _(zi—ws)?
0 1 e h2 1 0 e n2
S e ds+ —— €T s
ot _‘R ‘ sER* V wh? |R | ot SERT mh?

(2

+ +
_ = px(Ti)% — Kz, —x)—=
—f<V,:F R N>d€+7{<v,:l:—|Ri| N Yd
c c

Thus, the time derivative to our nonparametric conditiahstributions are

0 — —
api (z;) = fé <v, :I:|Rl—i| [K* (2 — z0) — py (24)] N> dl. (A.18)

We will also need the time derivative of the size of a region:

0 L 0 . — —
&‘R }_a/iERidz_j£<V,iN>d€. (A.19)

A.3 Gradient Ascent for Conditional Method

We will now derive the gradient ascent velocity for the caiotial method described in Section
3.2. We begin with an energy functional based on a generabilliey distance between the two
distributions conditioned on the labeling:

Fo = 1904 (o.05) = 9] [ p @€ (B ) d (A.20)

where|Q| is the number of pixels in the image and-) is a convex function not to be confused
with C, the curve. As stated previously, tji¢ term is used so that the velocities can be accurately
compared with the label method. This term only contributesrastant scaling on the velocity and
does not affect the majority of the derivation. We proceedakyng the partial derivative of this
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energy w.r.t. time.

S (R 242 (30 (525

where(C’(-) is the derivative of”(-) w.r.t. to(-):

C'() = %Ci(_()') (A.21)
We now use Equation A.18 to obtain the following:
%ECM - ]é <\7’, %/X [K* (2 — 20) — p} (2)] C (g 8) dxﬁ> de
+7£<77Ti_/x [~ K~ (i — ) + py (2)] €' (g 8 AN ) de
-V [ e e (G

it = (Vo5 |¢ (3 1] W)
+fi:<v’wi- {__Cl ? EZ%_) +/XP)} (2:) C' (g 8) d:c} 7\7> de
(7= [

Thus, the gradient ascent velocity at a pdirg

et e () ] s Lo [ (3] n
e ()

A.4 Gradient Ascent for Label Method

We will now derive the gradient ascent velocity for the labethod. We begin with a general
Ali-Silvey distance between the joint distribution and gireduct of the marginal distributions.

Bur = 190 d pxs.psin) = 190 Ep, [ (222) | 012 [ pwatane (220 d

leL pXL(
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By conditioning on the labelg, we can rewrite this expression as

s e ()

lel

where the notatiop', (+) is the distribution conditioned on the label taking on a eadil (equiva-
lently px|z, (-|L = 1)). We proceed by using the LLN approximation in Equation A.13

202 ‘|Q| TR S (iﬁ;) v

lel

—Z/Rl ()

lel

For simplicity, we now consider the two region case:

Epn :/ c (pf (Um) dz’—i—/ C (p)f @) di.
Rt px (i) - px (i)
We proceed by taking the partial derivative w.r.t. time a$tbnergy functional:
0 0 Px (l‘l) 0 / Px (ZL’Z) .
ZEry = — ) A.24
ot "M o /R+ ¢ <p; (z;) R px (2;) di (A.24)

We consider these two terms separately, noting that theoalisa sign difference due to the
opposite normal directions:

i [ () o
o A ) R L e O B L
The second term in this equation can be simplified as follows:
[ GEcs) sy
- [0 (B6) o (7 [ ]

_p)i( (xz)z

= f(7 o oo Crs) o (- ey ™) 4] %)
(

)
~ fff; <7, iiEpX {C/ <%) FC <§§ EZ%) g EZ%] ﬁ> dt, (A.26)
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where we have used the approximation in Equations A.13 ahd.ACombining Equations A.24 -
A.26, we find that the gradient ascent velocity for pikes

sted =0 () oo [ GO -0 Gen)
(B e (@) () 2E wm

A.5 Gradient Ascent for a Balanced Symmetric Ali-Silvey Dis
tance

We begin with an energy functional of the form of a balancedmsetric Ali-Silvey distance mea-
sure as described in Section 3.5

Eps = |Qdps (pk,px) = Q] [v1d (p%. py%) + 7 d (p, p%)] -

We now derive the gradient ascent velocity of the left terh @xtend it to find the overall velocity.
Taking the partial derivative w.r.t. time of the left ternatis us to

0
~EBs,e
g LBSest

a + a

Sl |Q|d(pX7pX) + [|Q|d (p)opx)]
3R+ 0

T ot (pX,pX)—l—ﬂ‘ aECM

+

_ 75 <7, [C (r (20)) + 7T1—_pr C (r ()] - E—_ +r (xg)] ' (r (w))} ﬁ> d.

Thus, the total gradient ascent velocity for a balanced sgtriodistance is

swste) = |0 (B29) + 7m0 (5 - |2+ i) o ()
o (5) ~wm o (B0 + [F i eg) o (B6s) |

(A.28)
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Appendix B
Smooth MRF Estimation

In this chapter of the appendix, derivations for Markov ramdield (MRF) estimation are shown.
First, the fixed-point update for a field affecting a singlegmaeter is shown. Then, we extend
this derivation to a field that affects two parameters (dmadly, the shading image estimation
affecting both contrast energy and bias). Finally, we dedweneralized MRF estimation for a
field that affects a set of independent parameters.

B.1 Single Parameter MRF Estimation
We start with a smooth additive Markov random field ca@edNe use the model shown in Figure
4-10c where our intrinsic parametér, is estimated using a kernel density estimate. We assume

that our MRF isé ~ N (0,A4). Our goal is to find the MAP estimate éf Starting from Equation
4.12, we have:

é: arg max [P (@QH
¢

= arg;nax [log P (0]¢) + log P (¢)]
[

N
= arg max [Z logP (9z|¢1) + IOgP (¢)
¢ i=1 -

where we have assumed that the element$" afrei.i.d. conditioned on knowing_E. We then
differentiate the expression and set it to zero to find theimam.

=0 (B.1)
é

9 [
3% [Z log P (6;]¢:) +log P (¢)
i—1

We first look at the derivative of the left term. Because ea&tmtin the summation is only a
function of¢;, we can bring the derivative inside the sum.

2P (6]6,)
P (6,6,

O \og P (6,]6r) = (B.2)
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The numerator in (B.2) can be found by the following:

0 0
2 5, Poe: (B0)] =

0 M
[WZ |

(09 e+¢ (0; — ¢y — 05 + ¢s)
Nh\/_ Z ( h2 )

106~ 60 (6~ ) — wo (6 — 60

0
I

[P (il¢)] = [po (0 — ¢3)]

where the termgy, (0; — ¢;) andwy, (6; — ¢;) are the estimated PDF and weighted PDF defined
as follows

(994 e+¢)
po (0; @—MMZ e

wo (0; — ¢;) = Z M(@ — ¢s)

Nhf

Defining the ratio;wg(-), as the weighted PDF over the PDF, Equation B.2 becomes ithesiiog:

0
We note that the derivative of a zero mean multivariate nbdis#ribution is the following:
) -
557 () =0716P (0) B.4)

Using Equations B.3 and B.4, we can rewrite Equation B.1 a$dlowing:

o:i[g—g wf (0-0)] - a;'

= 0—¢—uf(0-0) - SA;'9=0

which is exactly the expression in Equation 4.13 of Sectidn/4

B.2 Shading Estimation

When estimating the shading image, we look at its effectsath the contrast energy and the bias
term. It is important to note that this is only for estimatithg shading image§, and not the gain
field, g, or the bias field. This is only a slight modification, but should be mentionedétheless.

The derivation for this field follows straightforwardly frothe previous derivation. From Equa-
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tion 4.12, we simply replace the first conditional distribatwith the product of our two features

S = argmax [log (P (EIS) P (ulS)) +log P (S)] -

We assume the shading image is smooth in the log domain whamblisaus to treat it as an
additive field. The contrast energy was a sum of squared diligputs, thus the log of the shading
image is additive on the log of the square root of the contastgy. We define our fields in the
log domain as follows

Qlog = lOg (é)
Elog = log <\/E)
Py, = l0g (12) -

Because of the independence assumption, we can propagathamge through most of the
proof and arrive at the following

# [E log Slog 5 (Elog - élog)}

log J— -1

- AS Qlo :
+h22 |:Hlog - §10g - w;; <Hlog - §10g>:| e ¢

Hlog

Now we rearrange the equation as follows
2 E
h%, [El‘)g — W (Elog - §10g)]
og

P [t = % (2~ S

where the matrix\/ is introduced for notational purposes. Continuing, we hheegollowing

[+ 1

Hlog

§log =M §log7

-1
Ash,+ 5
Elog

2 4 2
2 [E log ~ 1]73 (Elog o §10g)] + M7 h2 |:’ulog — Wy <Hlog o §10g>}
log

§log = §log,1 + §log,2'

§log M~ ——

Now we consider only one of these terms, as it is straighthodvto find the other one.

2
h% (E log ~ 5 (Elog B élog))
log

2
hElog Hlog

- -1
2
Siog1 = |As), + I+ = I]

-1

B2 h?
[Pt r ) - - 50

L Hlog
—1
2 h2 + 2
o Elog 1 Hlog Elog E
- AS10 2 I (Elog — Wy (Elog o §10g))
2 ¢ hulog

= Fbjl [Elog - wf ( log Slog)]
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whereF;! is a lowpass filter. However, instead of having unity DC gé#e same reasoning as
in the paper reveals th&t;' has a DC gain otﬂ% A similar filter, F; ! can be found for

+h
Hlog Elog

Sog2 10 have a DC gain o{b% Thus, our fixed point iteration becomes the following

Mlog Elo

Sffgl - FE_l [Elog (Elog - Slog>:| + Fu_l |:Hlog - w]}j <Hlog - él(fg)):| . (BS)

B.3 Generalized Multiple Parameter MRF Estimation

We can easily generalize the formulation in the previous@eto estimate the MRF based on it
affecting a set of parameter®, Defining the smooth fieldf, to be additive on th¢o| different
independent parameters, we can write a set of relationshi$4.2 as follows:

i_argmax logHP 01f) +1log P (f) |,
9o

noting that if the field were multiplicative, the log domaioutd be used. Again, this propagates
through most of the proof to the following

S oo i ule- ] =a's

gco 0

We extract the field term from the left side of the equation sintplify as follows:

Z;Q[Q wl (0 f)] = 1f+zh2f ATy o ]

0c® 0cO 06@

wherel is the identity matrix. Solving fof, we have

A Iy 2 ] > -l @~ 1)]

0,€0 91 )
- (A 1) 7 ] hQ[Q w? (0 — f)})
IEC) 0,€0 91
[ 12 1]
— ( AL +I+Ih(,zh9] [0 —w’ (6 f)})
0co L 0140 Y1
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We then expand the inner summation as follows

2 h2 2\
T oY (LT (B, LA | m)
6cO L 1 1
2 B2 4 p2 2 -1
_ h(,A LT Hel;ﬁe o +H99§:1h;%9n92¢9,91 92>] [9 ! (8 f)})
6co L 1 1
2 h2 -t
o LIve Zncolloye )] 6! (6 f)})
oo \ L 0170 701

Thus, for a field that affects the parameters in thexdhe fixed point update is

=N TF - wp[0- )] (B.6)

0cO

whereF,; ! is a lowpass filter with DC gain

110, 20 &,
29169 H927591 hg2

We note that all of the DC filter gains sum to 1:

29169 H92#91 hgz

DC Gain(F, ") = (B.7)
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