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Abstract

The work in this thesis focuses on two main computer vision research topic: image segmentation
and texture modeling. Information theoretic measures havebeen applied to image segmentation
algorithms for the past decade. In previous work, common measures such as mutual information or
J divergence have been used. Algorithms typically differ bythe measure they use and the features
they use to segment an image. When both the information measure and the features change, it is
difficult to compare which algorithm actually performs better and for what reason. Though we
do not provide a solution to this problem, we do compare and contrast three distances under two
different measures.

This thesis considers two forms of information theoretic based image segmentation algorithms
that have previously been considered. We denote them here asthelabel methodand theconditional
method. Gradient ascent velocities are derived for a general Ali-Silvey distance for both methods,
and a unique bijective mapping is shown to exist between the two methods when the Ali-Silvey
distance takes on a specific form. While the conditional method is more commonly considered,
it is implicitly limited by a two-region segmentation by construction. Using the derived mapping,
one can easily extend a binary segmentation algorithm basedon the conditional method to a multi-
region segmentation algorithm based on the label method. The importance of initializations and
local extrema is also considered, and a method of multiple random initializations is shown to
produce better results. Additionally, segmentation results and methods for comparing the utility of
the different measures are presented.

This thesis also considers a novel texture model for representing textured regions with smooth
variations in orientation and scale. By utilizing the steerable pyramid of Simoncelli and Freeman,
the textured regions of natural images are decomposed into explicit local attributes of contrast, bias,
scale, and orientation. Once found, smoothness in these attributes are imposed via estimation of
Markov random fields. This combination allows for demonstrable improvements in common scene
analysis applications including segmentation, reflectance and shading estimation, and estimation
of the radiometric response function from a single grayscale image.

Thesis Supervisor: John W. Fisher III
Title: Principal Research Scientist
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Chapter 1

Introduction

The focus of this thesis is to provide methods for image segmentation using level set methods and
to present a novel texture model that can be used in many common computer vision problems.
Additionally, we combine these two to represent and segmenttextured images. In this chapter, we
motivate the problem of image segmentation and texture modeling. We then identify why these
problems are difficult, and how our work attempts to solve them.

1.1 Motivation

Both image segmentation and texture modeling are some of themost fundamental problems in
computer vision. In this section, we will briefly motivate why these problems are important in the
field of computer vision.

1.1.1 Image Segmentation

An image segmentation algorithm is a method used to partition an image into meaningful and
distinct regions. For example, in a binary image segmentation, one is challenged to distinguish
pixels in the foreground from background. In Figure 1-1, an example segmentation of a zebra
done by an expert is shown. In general, images will contain more than just one object, and we

(a) Original Image (b) Segmented Image

Figure 1-1: An example segmentation done by hand
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are then challenged with anm-ary segmentation problem where there arem separate regions to
identify. Image segmentation is not to be confused with object recognition, where algorithms
actually recognize that the scene in Figure 1-1 is a picture of a zebra. Rather, segmentation is the
process of determining that two regions exist, one of which is the foreground (which happens to
be the zebra) and one of which is the background (which happens to be the grass).

One might ask why image segmentation is such an important task. Segmentation is typically the
first process in a computer vision system. In common applications such as object recognition and
motion analysis, algorithms perform much better when the individual objects are first distinguished
from each other. As a trivial example in object recognition,consider an application of trying to find
and recognize a human. It is much easier to ask if the object outlined by a segmentation algorithm
is a human rather than ask if there is a human in the entire image. In motion analysis, finding
the optical flow field can be much simpler if objects are first found instead of dealing with entire
scenes.

1.1.2 Texture Modeling

Prior to segmenting an image one must first choose what type ofimage model to use. In early
works, pixel intensities were chosen as a very simple model.The well known Chan and Vese paper
[9] implicitly modeled pixel intensities with a Gaussian distribution for purposes of segmentation.
Though this method works well for very simple images, a complicated intensity distribution does
not fit this model. Later, Kim et al. [26] modeled the pixel intensities nonparametrically using
kernel density estimates. While this allowed for a more flexible appearance model at the pixel
level, it still did not represent textures very well.

The underlying reason why these pixel-based approaches fail in textured images is because of
an assumption that many of the algorithms make: the observedpixel intensities are statistically in-
dependent conditioned on their region label. While this assumption does not generally hold, it also
does not greatly impact segmentation of non-textured images where it is common to model spa-
tial correlations only in the region labels. However, such correlations cannot be discounted when
segmenting textures. Furthermore, additional phenomenonin natural images (e.g. illumination)
exhibit spatial dependencies which may also violate this assumption. This motivates incorporating
a texture model in segmentation to aid in segmenting difficult images with strong spatial correla-
tions.

Texture modeling is a widely studied problem in computer vision with many applications. For
example, when using a generative model, one can replicate and extend textures in a random but
visually appealing fashion (e.g. [38]). In a discriminative model, a robust texture representation
can aid in segmentation to distinguish different objects (e.g. [21]). One common approach to
texture modeling is to analyze the outputs of a filter bank, such as a set of Gabor filters [17] or the
steerable pyramid [16]. The details of how we model texturesis discussed in Chapter 4.

1.2 Previous Work

To someone unfamiliar of computer vision, image segmentation may seem like a trivial task. After
all, the human visual system is quite skilled at segmenting awide variety of images. One may
ask why a seemingly simple task, one at which the human visualsystem seems so adept, is so
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(a) Original Image (b) Two regions (c) Three regions (d) Five Regions (e) Six Regions

Figure 1-2: Example segmentations with different number ofregions

(a) Original Image (b) Original Image

Figure 1-3: An example segmentation of a section of a zebra

difficult to do using computational methods. Firstly, the task of image segmentation is an ill-posed
problem [30]. If two people are asked to segment the image of the woman in Figure 1-2a, it is
likely that their results will be different. In fact, any of the segmentations in Figure 1-2 can be a
plausible solution. More detailed directions on whether ornot clothes, hair, or jewelry should be
separated are needed to decide which segmentation is better. Consider another example shown in
Figure 1-3a. When presented with this image, one will typically segment the image into Figure
1-3b. However, this image is just a window of pixels from the zebra image in 1-1. This problem,
sometimes referred to as the aperture problem in computer vision, deals with a limited field of
view. Knowing when to segment the black stripes from the white stripes and when to combine
them into a single object can be quite difficult. These examples illustrate the ill-posed nature of
the image segmentation problem.

Despite this obstacle, image segmentation algorithms havebeen fairly successful. Algorithms
over the past decade have proven to perform very well on a subset of natural images. They typically
address the ill-posed nature of segmentation with one of twomethods: supervised and unsupervised
techniques. Supervised segmentation algorithms rely on training data from images segmented by
experts in an attempt to gain some prior knowledge on how to segment images. Unsupervised
algorithms are typically designed to model images (or objects within the image) based on what
the designer thinks is best. Many recent unsupervised segmentation algorithms have attempted
to maximize an information-theoretic distance to segment an image. For example, [21] uses J-
Divergence and [26] uses mutual information. Though these types of algorithms perform well for
a subset of simple images, we demonstrate in Chapter 5 that such methods do not perform well on
a large set of textured images.
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When using an unsupervised segmentation method on texturedimages, one needs to design a
model to capture elements of the texture. There is extensiveprevious work on applying texture
models to image segmentation. For example, [34] and [46] represent each texture with a constant
measure within a region. In contrast to the method presentedhere, these methods either do not
consider variations in scale and orientation or treat them as nuisance parameters. Other methods
have been developed based on analysis of filter-bank responses. For example, [10] has looked at
using wavelets and [12] utilizes Gabor filters. The work in [46] presents an approach that uses
a set of Gabor filters, observing that changes in scale and orientation are manifested as shifts in
their feature space. Montoya-Zegarra et al. [34] proposed amethod using steerable pyramids [16]
where they treat each filter output independently. One drawback of these approaches is the coarse
discretization of scale and orientation.

1.3 Outline of the Thesis

This thesis is organized as follows. Chapter 2 begins with a brief discussion of background material
and previous work essential in understanding the concepts presented in later chapters. Topics in this
chapter include using level set methods for segmentation, nonparametric kernel density estimates,
steerable pyramids, and Ali-Silvey distances.

Chapter 3 focuses on generalizing recent algorithms in image segmentation that use information-
theoretic measures by extending the derivation to the broader class of Ali-Silvey distances. We
show here that there exists an intimate relationship between two approaches of using an informa-
tion theoretic measure, and additionally derive the resultant gradient ascent velocities for evolving
a level set to maximize these distances. Using three information measures, we show a set of seg-
mentation results and comment on how to compare algorithms.

Chapter 4 develops the novel texture model. Similar to previous work, we also utilize the
steerable pyramid as a precursor to texture analysis. However, we exploit the property that re-
sponses at an arbitrary orientation can be efficiently interpolated with bounded error. We suggest
an analysis of the pyramid response and demonstrate that it accurately measures the local scale
and orientation of textures. We show that our feature set is able to classify thirteen textures from
the commonly used Brodatz texture dataset [5], and that the algorithm can segment many synthetic
images composed of two of these textures. Furthermore, we empirically show that because the
space of possible segmentations contains many local extrema, performance gains are possible by
using multiple different initializations for each image. After measuring the contrast, bias, scale,
and orientation, we impose smoothness in these four features via Markov random fields to capture
the spatial changes of the texture. As with most measures based on filter outputs, boundary effects
can greatly affect an observed model. We address this issue and show reasonable performance
gains using our methods.

Chapter 5 shows results of using our texture model in a few common computer vision appli-
cations. We begin by presenting a set of segmentation results using our method and compare to
the methods of [26] and [21]. As a consequence of imposed smoothness in our feature set, we
obtain a method for estimating a simple model of the nonlinear intensity response of a camera
from a single grayscale image. We compare to the method of [14] showing significantly better
performance. Through this analysis, we are able to obtain anaccurate estimate of the irradiance
image that when combined with the aforementioned smoothness assumptions, enables estimation
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of shading and reflectance for textured objects. We empirically validate our shading estimates by
inferring the shape of the object using the algorithm of [44].

Finally, we conclude the thesis in Chapter 6 with possible changes to our development and
future research directions. Appendices A and B provide details for the derivations of gradient
ascent velocities and nonparametric Markov random field estimation.
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Chapter 2

Background Material

In this chapter, we will briefly discuss some background material for readers that are not familiar
with the topics. We cover the basics of using level set methods for image segmentation, nonpara-
metric kernel density estimation, texture representationusing the steerable pyramid, and Ali-Silvey
distances.

2.1 Level Set Methods

Level set methods provide a way to implicitly represent and evolve anN-dimensional (or less)
hyper-surface in anN-dimensional space. The works of Osher and Fedkiw [36] and Sethian [40]
provide the original development of level set methods and a wealth of knowledge on this sub-
ject. When applied to image segmentation, a scalar function, ϕ, is defined by values on a two-
dimensional Cartesian grid. In practice, this function is stored as an image, and the height of the
level set function is defined for each pixel in the image. For this reason, it will be convenient to
refer to the height of the level set at a specific point as the value of the level set at a particular pixel,
or ϕ(x, y). Oftentimes, it will be more convenient to reference a pixellocation by a single variable
i instead of(x, y), wherei references some pixel location. We will use the notationϕi where the
subscript references the pixel.

The implicit hyper-surface as it pertains to image segmentation is just a curve that exists in
the two-dimensional support of the image. Any level set (theintersection of the surface with a
constant height plane) ofϕ can be used as the implicit hyper-surface, but the zero levelset is
typically chosen for the representation. Throughout this thesis, the terms zero level set and curve
will be used interchangeably to mean the same thing. The implied curve,C, is defined as the set of
all pixels on the three-dimensional level set function thathave height zero:

C = {i | ϕi = 0}. (2.1)

The zero level set divides the image into two regions,R+ andR−, which consist of the positive
and negative values of the level set function respectively:

R± = {i | ϕi ≷ 0}. (2.2)

One can often think of a level set function as a terrain, wherethe regionR+ contains the land
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(a) Plotted in 3 Dimensions (b) Viewed as an Image

Figure 2-1: Level Set Function Viewed as Terrain

above sea level andR− contains the land below sea level. An example of a level set function is
given in Figure 2-1, where the green pixels belong toR+, the red pixels belong toR−, and the
black pixels belong to the zero level set.

Level set methods involve representing a hyper-surface in ahigher dimension, typically leading
to increased memory and computation. However, the utility of representing a curve with level set
methods is that the curve is implicitly represented. Creating or removing a new region is a matter of
perturbing the underlying surface. If an explicit representation (e.g. snakes [24]) is used, it requires
the user to maintain the explicit set of points on each curve.Creating or removing regions with an
explicit representation requires bookkeeping and suffersfrom what is known as reparameterization
of the curve (i.e. resampling points on the curve as it changes shape). In fact, the overhead of
representing the entire underlying surface with an implicit representation typically outweighs the
nuisance of an explicit representation.

2.1.1 Signed Distance Function

In image segmentation algorithms using level set methods, the user is only concerned with the zero
level set because it is the curve that segments the image. Consequently, this restricts pixels on the
curve to have zero height, but pixels away from the curve needonly have the same sign. An infinite
number of parameterizations of level set functions exist that have the same zero level set.

A very common approach is to make the level set function a signed distance function. A signed
distance function has the property that, in addition to the value having the correct sign, the absolute
value at each pixel is the minimum distance to the zero level set. The signed distance function looks
more conical, and thus, a level set function using this property looks more like Figure 2-2 rather
than Figure 2-1.

Though a signed distance function is not required for level set methods, it does include some
nice properties. It provides for a very confident discrete derivative approximation near the region
boundaries which allows for better numerical stability. Signed distanced functions also have the
nice property that, for most pixels,

|∇ϕ| = 1. (2.3)
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(a) Plotted in 3 Dimensions (b) Viewed as an Image

Figure 2-2: Level Set Function as Signed Distance Function

The only location where this relation fails to hold is for pixels that are equidistant from the zero
level set at more than one point. One can potentially use thisproperty to simplify the level set
evolution equations (discussed later), but it is generallynot advised for stability issues. A more in-
depth description of the formulation and benefits of using a signed distance function can be found
in [36]. There are a few different methods for computing the signed distance function efficiently.
In our implementation, the Fast Marching Method [48] was used.

2.1.2 Evolving the Level Set Function

The following is a typical process for curve evolution:

1. Initialize the zero level set with a random guess
2. Reinitialize the level set function to a signed distance function
3. Calculate a velocitẏϕ at every pixel in the level set
4. Update the level set for a small time interval according toϕ̇

5. Repeat from Step 2 until convergence

In level set methods, an energy functional,E, is chosen for the particular application. The
problem of calculating the evolving velocity field is then equivalent to maximizing this energy
functional. Oftentimes, the energy functional will consist of multiple terms where one of the terms
imposes some sort of smoothness constraint on the zero levelset, making the ill-posed nature of
image segmentation more well-posed.

In the algorithms covered in this thesis, the energy functional will consist of two terms. The
first of these,EI , is an energy functional that is dependent on the image statistics. The specifics of
this term will be covered in later chapters. The other energyfunctional term,ES, is a smoothing,
regularization term that is only dependent on the actual shape of the curve and not the image.
One commonly used regularization term penalizes longer curve lengths. Intuitively, a very jagged
curve will have a longer curve length then a smooth curve. Therefore, our energy functional can
be rewritten as

E(C) = EI(C) − ES(C) = EI(C) − α

∮

C

ds, (2.4)
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whereα is a constant scalar that chooses how much weight to put on theregularization term.
Given a specific energy functional, one can maximize the termusing gradient ascent to find

the velocity field by which to evolve the level set. It is important to note that although the energy
functional may depend on the entire image statistics, the optimal velocity is often only defined for
pixels on the zero level set,C. This will be discussed in greater detail in Section 2.1.3, but the
consequence is that the energy functional only gives a validvelocity for pixels on the zero level
set. Keeping this in mind, the proof in [19] showed that the gradient ascent velocity due to the
smoothness constraint is just −→

VS(ℓ) = ακℓ
−→
N ∀ℓ ∈ C (2.5)

whereκℓ is the mean curvature at pixelℓ given by

κℓ =
∆ϕℓ

|∇ϕℓ|
(2.6)

As previously stated, ifϕ is a signed distance function, then the denominator ofκℓ simplifies to1.
However, for numerical stability, the norm of the gradient of the level set function is typically still
calculated.

In the derivation of level set methods in [36], this velocityvector field must be applied to the
level set function in the following form

ϕ̇ +
−→
V · ∇ϕ = 0 (2.7)

whereϕ̇ is the partial derivative of the level set function w.r.t. time indicating how to evolve the
function. Following the steps in [36, p.42], the equation for the velocity update of the level set
becomes

ϕ̇ = Vn

∣

∣∇ϕ
∣

∣ (2.8)

where
−→
V = Vn

−→
N +Vt

−→
T . Note that we differ from the derivation in [36] in one way: our evolution,

ϕ̇ is equal toVn |∇ϕ|, not−Vn |∇ϕ|. This is because we define the interior of our curve to be the
positive values ofϕ, whereas [36] defines it to be the negative values ofϕ. The tangential velocities
can be safely ignored because they reparameterize the levelset function, but do not change the
implicit definition of the curve. Thus, by combining Equations 2.5 and 2.8, the velocity due to the
curve length penalty is

ϕ̇
S

= ακ
∣

∣∇ϕ
∣

∣ . (2.9)

Given an energy functional, the updating velocity field due to the curve length penalty can now
be calculated. We will discuss many different energy functionals and their resulting gradient ascent
velocities in Chapter 3.

2.1.3 Velocity Off the Curve

It was noted in Equation 2.4 that gradient ascent on the energy functional only defines a velocity
for the actual curve,C. If we were somehow explicitly representing the curve, thenthis curve
velocity would suffice. However, because we are implicitly defining the curve with a level set
function, the evolution is not as straightforward. Perturbing an implicitly represented curve can
not be achieved by changing only one value; the curve velocity must move a group of pixels in the
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level set representation to move the implied curve. There are two popular methods to extend the
curve velocity obtained from gradient ascent to evolve the actual implicit level set representation:
the smooth Heaviside function and velocity extension.

Smooth Heaviside Function

One method to extend the gradient ascent velocities to evolve the level set was developed by Chan
and Vese in [9]. They define the level set function using the Heaviside function, which is a binary
function that assigns labels to pixel regions.

H(ϕi) =

{

1 if ϕi ≥ 0

0 if ϕi < 0
(2.10)

The derivative of the Heaviside function w.r.t. its argument is one on the curve, and zero elsewhere.

δ0(ϕi) =
∂

∂ϕi

H(ϕi) =

{

1 if ϕi = 0

0 else
(2.11)

In the continuous case, with an explicit representation of the curve, one could use this delta function
to describe the velocity on the curve. Chan and Vese use a smooth Heaviside function which results
in smearing the curve velocity to a neighborhood around the curve.

We can derive this smearing more precisely. For any gradientascent curve velocity,
−→
V , we can

express it with only the velocities of points on the curve:

−→
V ℓ = −f(ℓ)

−→
N ℓ ∀ℓ ∈ C (2.12)

wheref(·) is any function. With the previous definitions of the Heaviside function and its deriva-
tive, we can rewrite this velocity over all points in the image domain,Ω, instead of only on the
curve. −→

V i = −f(i)
−→
N iδ0(ϕi) ∀i ∈ Ω. (2.13)

In the ideal Heaviside function, Equations 2.12 and 2.13 areexactly the same. However, when
a smooth Heaviside function is used, the velocity in Equation 2.13 is smeared across the actual
curve. A commonly used smooth Heaviside function [9] is:

H(ϕi) =











1 if ϕi ≥ ǫ

0 if ϕi < ǫ
1
2

[

1 + ϕi

ǫ
+ 1

π
sin
(

πϕi

ǫ

)]

if |ϕi| ≤ ǫ

(2.14)

with a corresponding derivative:

δ0(ϕi) =

{

1
2ǫ

[

1 + cos
(

πϕi

ǫ

)]

if |ϕi| ≤ ǫ

0 else
(2.15)

whereǫ is some small constant (we chose to useǫ = 1).
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When using a smooth Heaviside function, one can easily extend a binary segmentation into a
multi-region segmentation using the method proposed in [6]. This method uses multiple level sets,
where each level set represents exactly one region. By construction, the curves are not allowed
to intersect or overlap. Thus, a segmentation usingM level sets can represent up toM different
regions.

Velocity Extension

An alternative method to evolve the level set from the curve velocity is called velocity extension.
This method extends the velocity off of the curve such that the velocity at any point in the level
set has the same value as the closest point on the curve. The method of velocity extension that
was developed by Adalsteinsson and Sethian [1] constructs the extension velocities in such a way
that the signed distance property of the level set function is preserved perfectly after each iteration.
However, this method also requires that the velocity be defined for the value at the exact zero level
set with sub-pixel accuracy (interpolated through pixels bordering the zero level set). This velocity
is not always well defined for images if the pixels used to interpolate belong to separate objects.

When using velocity extension, the only currently proposedmethod to do multi-region seg-
mentation is presented in [8]. This method allows for overlap amongst the level sets, and treats
each level set as a bit in a region label. When using two level sets, a region can be inside or outside
of both level sets, resulting in the labels:{00, 01, 10, 11}. This results in2M regions when using
M level sets. When an image actually contains a power of two number of regions, this method
can perform very well. If an image contained three regions, this method should allow for three
regions by only using three of the four possible labels. However, in natural images, this method
will favor using all possible labels because it can explain the image statistics better. This problem
is equivalent to overfitting a model by allowing too many parameters. For this reason, we chose to
implement the smooth Heaviside function instead of using velocity extension.

2.2 Nonparametric Kernel Density Estimation

Oftentimes, we will need to model the distribution of a random variable based on many observed
occurrences. Density estimation can be broadly grouped into three categories: parametric (a fixed
number of parameters), semi-parametric (the number of parameters grows sub-linearly with the
number of observations), and nonparamtric (the number of parameters grows linearly with the
number of observations). Parametric models are typically used when the underlying distribution is
known to have some specific form specified by a set of parameters. When the unknown distribution
does in fact come from the parametric family, methods such asmaximum likelihood [47] are known
to perform well. However, when the distribution is not from aparametric family or the parametric
family is unknown, semi-parametric (e.g. mixtures of Gaussians [32]) or nonparametric methods
(e.g. kernel density estimators [41]) may yield superior performance.

In images, the statistics of pixel intensities or features vectors are rarely known a priori. If
one considers a scene of a zebra on grass, the zebra will have somewhat of a bimodal distribution,
whereas the grass may have a unimodal distribution. Learning models and estimating the parame-
ters of those models can be quite difficult given the variety in natural image statistics [21]. For this
reason, we choose to model random variables nonparametrically using a Parzen density estimate
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Figure 2-3: Level Set Function as Terrain

[37], or what is also known as a kernel density estimate (KDE). The basic concept of the KDE is
to smooth the histogram of observations with a specific kernel, K(x), to estimate the value of the
probability distribution at any value. An example result ofa KDE is shown in Figure 2-3.

We only consider one-dimensional estimates in this section, but the machinery is easily ex-
tended to multi-dimensional estimates. The equation for the estimated PDF using a KDE is

p̂X(x) =
1

Nh

N
∑

i=1

K

(

x − xi

h

)

, (2.16)

whereN is the number of source points,x is the point at which the PDF is estimated,xi is the
ith source point, andh is the bandwidth of the kernel used to estimate the PDF. A commonly used
kernel and the one we utilize here is a Gaussian kernel:

KG(x) =
1√
π

e−x2

. (2.17)

One important detail of using a KDE is selecting an appropriate value ofh. If the bandwidth is
selected to be too large, the estimated distribution will betoo smooth and may not capture multiple
modes. However, if the bandwidth is selected to be too small,overfitting may occur with a very
peaky distribution. One method is known as the rule of thumb (ROT) bandwidth [41],

hROT =

(

4

3N

) 1
5

σ, (2.18)

whereσ is the standard deviation (known a priori or estimated from the samples). The ROT
bandwidth typically oversmooths the density, but we will still use this value for our estimates.
The bias of the KDE is the convolution of the kernel with the source density, independent of the
number of observations. This would lead one to make the bandwidth zero (i.e. a delta function).
However, the variance of the estimate depends on the number of observations, leading to the usual
bias/variance tradeoff.
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Though the nonparametric estimate has the benefit of being able to capture a much broader
class of distributions, it comes with a significant computational cost. If the probability is needed
at M points, then the summation in Equation 2.16 needs to be calculated M times. For each
summation,N points are added together. Therefore, the total computational complexity of the
KDE is O(MN). Clearly, this computation could be a bottleneck in an algorithm, especially if
the estimation needs to be computed multiple times. In the next section, we will discuss a fast
approximate algorithm to compute the KDE.

2.2.1 The Fast Gauss Transform

In 1991, Greengard and Strain [20] proposed the algorithm called the Fast Gauss Transform (FGT),
which approximately evaluates a sum of Gaussians at multiple points in a fast manner

G(xj) =
N
∑

i=1

qie

“

xj−xi
h

”2

, (2.19)

wherexj is thejth point at which the sum is calculated,xi is the ith source point, andh is the
scalar quantity that describes the bandwidth of the kernel.

To achieve a performance gain, the FGT forms a grid by partitioning the sample space into
non-overlapping boxes. The algorithm uses these boxes as a clustering of the source and target
points. It then uses Hermite and truncated Taylor series expansions to quickly approximate the
affect of sources onto the targets. Using this method, the FGT achieves a theoretical computa-
tional complexity ofO(M + N), with a constant factor dependent on the accuracy needed andthe
bandwidth,h.

The FGT greatly improves computation times for calculatingsums of Gaussians at multiple
target points compared to the direct calculation. There hasbeen some more recent work on further
improving the FGT. The Improved Fast Gauss Transform (IFGT)was proposed in 2003 by Yang,
Duraiswami, Gumerov, and Davis [52]. The improvements on the FGT focus on two major points:
a better clustering algorithm and the multivariate Taylor expansion. The IFGT uses the farthest-
point clustering algorithm proposed by Gonzalez [18] to more efficiently divide the source and
target points. The multivariate Taylor expansion speeds upthe Hermite expansion by decreasing
the number of terms in the expansion. Though the speed of the FGT and the IFGT are comparable
in one dimension, the improvement gained in using the IFGT for a multi-dimensional estimate are
much more apparent. We use the provided code of the IFGT algorithm for all nonparametric kernel
density estimates.

2.3 Steerable Pyramids

Part of this thesis focuses on developing a new texture model. Our novel representation will be
formed upon the basis of the steerable pyramid, which provides a multi-scale, multi-orientation
decomposition of an image (depicted in Figure 2-4). The interested reader can consult [15, 43,
42] for a more in-depth description and development of steerable pyramids. The basics will be
discussed in this section.
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(a) Steerable pyramid recursive structure: replace the reddot with an instance of the gray
box, and recursively do this until no more down sampling can be done

(b) Steerable pyramid outputs at orientations (φ) and scales (η)

Figure 2-4: Steerable pyramid structure and outputs
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A steerable pyramid uses a polar-separable filter to decompose the image into a number of
orientation bands,R, at a number of scales. The basic idea of a steerable pyramid is that the
output of the polar-separable filter oriented at any angle orscale can be approximated with a small
bounded error by interpolating images in the pyramid. Thus,the pyramid provides a complete
representation of the image because any oriented output of the polar-separable filter can be found.
This property allows us to capture the orientation and scaleof a texture fairly straightforwardly.

We choose to implement the steerable pyramid with four orientations. We use the provided im-
plementation (and their filters) to decompose images into the four oriented images,yη (0), yη

(

π
4

)

,
yη
(

π
2

)

, andyη
(

3π
4

)

at each scaleη. The filter output at any orientation,θ, can then be approximated
by:

y
η
i (θ) =

∑

φ

y
η
i (φ) [cos (θ − φ) + cos (3 (θ − φ))]

2
, (2.20)

wherei is a pixel location andφ ∈
{

0, π
4
, π

2
, 3π

4

}

.

2.3.1 Previous Texture Models based on Steerable Pyramids

Since the development of steerable pyramids, there has beenconsiderable work on using this filter
bank for texture modeling. The most rudimentary model usingsteerable pyramids is to treat each
filter output as statistically independent from each other.Among others, [21] has considered this
approach applied to image segmentation. However, this approach excessively simplifies the filter
bank output for reasons that will be discussed here.

Many authors (e.g. [11] and [7]) have observed that the outputs of multi-scale models such
as the steerable pyramid are not independent. Without actually capturing these dependencies,
one can not develop an accurate representation using the steerable pyramid. [11] tries to capture
correlations across scale, implicitly introducing correlations across orientation as well. However,
their method does not easily extend to trying to capture changes in the appearance of textures.

More recently, [34] (among others) has developed a scale-invariant and orientation-invariant
texture measure. However, these approaches typically havetwo shortcomings. Firstly, they usu-
ally do not have a very accurate method to estimate the texture orientation (e.g. t[34] is only
accurate up toπ

4
radians). More importantly, they treat scale and orientation as nuisance param-

eters meaning that once they find them, they remove the scale or rotation and do not consider it
anymore. Our approach differs from these approaches in bothways. We are able to accurately and
precisely measure the orientation and scale of textures. Additionally, we wish to exploit changes
in the orientation and scale of textures under the assumption that these changes provide important
information in understanding images that will ultimately aid in segmentation.

2.4 Ali-Silvey Distances

Though stemming from communications, information theory has long been used to analyze other
problems such as classification and hypothesis testing. Measures such as the Kullback-Leibler
divergence [27] provide an asymptotically provably-optimum hypothesis tester [4]. Additionally,
the design of a classifier is aided by the bounds on the probability of error provided by the specific
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information measure (e.g. the probability of classification error when using mutual information
can be lower bounded with Fano’s inequality [13]).

Information theoretic measures have also shown to perform well in image segmentation algo-
rithms. For example, [26] considered using mutual information (MI) between the pixel intensities
and their associated labels, and [21] and [23] looked at maximizing the J divergence of the den-
sities of the features in the two regions. Both MI and J divergence belong to the broader class of
information theoretic measures called Ali-Silvey distances [2]. In the next chapter, we consider
segmentation using various Ali-Silvey distances and derive a unique relationship between various
measures.

An Ali-Silvey distance is categorized as an increasing function of the expected value of a
convex function of a likelihood ratio. It can be written as

d (p, q) = f

(

Ep

[

C

(

q (·)
p (·)

)])

, (2.21)

wheref(·) is an increasing function,p andq are two distributions,C(·) is a convex function, and
the expectation is taken over the distributionp. We will only consider cases wheref(·) = (·),
which is true for many commonly used distances. Though theseinformation measures are referred
to as “distances”, it is important to note that they do not typically satisfy the conditions of a true
distance function. For example, KL divergence (C(·) = − log(·)), is not typically symmetric
(D (p‖q) 6= D (q‖p)), and Chernoff distance (C(·) = (·)s, s ∈ (0, 1)) does not satisfy the triangle
inequality (d(p, q) 6≤ d(p, g) + d(g, q)).

Regardless of this fact, Ali-Silvey distances provide a class of information measures that help
to distinguish distributions. Their proven usefulness in similar problems such as hypothesis testing
allude to possible successes when applied to image segmentation.
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Chapter 3

Generic Distance Measures

The image segmentation problem can be formulated as a classification problem where the classes
are not known a priori. If we define a label at each pixel,Li, that indicates which class the pixel
belongs to, we can equivalently pose the image segmentationproblem as an inference problem
of the labels. A common method for parameter estimation (in this case, the labels) is to use a
maximum a posteriori (MAP) estimate. If we assume that the pixels arei.i.d. conditioned on the
labels, it is easily shown (Appendix A.1) that maximizing the posterior probability is equivalent to
maximizing the mutual information between a pixel and its label. This should not be surprising,
as we know there is an intimate relationship between mutual information and hypothesis testing.
This method of maximizing the mutual information between pixel intensities (pX (x)) and their
labels (pL (L)) for segmentation was considered in [26]. This worked showed promising results on
a wide range of grayscale images. Though it fails on complicated texture images, it was still able
to segment basic textures from non-textured regions (such as the zebra in Figure 1-1).

They proposed to use nonparametric density estimates for the intensity distributions and found
that an approximate gradient ascent velocity for maximizing the mutual information was simply
the log likelihood ratio of the pixels on the boundary. Theirevolving velocity field is

∂ϕℓ

∂t
= log

p+
X (xℓ)

p−X (xℓ)
, ∀ℓ ∈ C. (3.1)

The reason why this velocity field is only approximating the gradient ascent velocity is because
they ignore two terms that contain how the estimated distributions and the probability of pixels
within each region change due to the inclusion or exclusion of a pixel on the boundary. By using
the assumption that the current segmentation contains a large amount of correct and incorrect
pixels, they showed that these other terms do not have a largeimpact on the evolution. By using
the approximations in Equations 3.3 and 3.4 (which will be discussed later), a similar result can be
obtained without making the assumption in [26].

The work in [26] was relevant because they considered using anonparametric density estimate
and used mutual information as a means for segmenting images. Mutual information is a quantity
that measures the dependence between two random variables.It is equivalent to the KL divergence
between the joint distribution and the product of the marginal distributions:

I (X; L) = D (pXL‖pXpL) . (3.2)
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Here the random variableX represents the data at a random pixel which could contain intensity
or, as will be used in later chapters, a texture measure. KL divergence belongs to the broader
class of information theoretic measures, the Ali-Silvey distances [2], and it seems only plausible
to consider any distance measure in the set of Ali-Silvey distances as a means for segmentation.

In the realm of information theory based algorithms for image segmentation, there exists an-
other common approach: maximizing the distance of the distributions conditioned on each label
(p+

X (x) for the pixels inside andp−X (x) for the pixels outside). Although this does not directly re-
late to hypothesis testing, it is still intuitive because this method attempts to separate two regions as
much as possible. [21] and [23] both consider segmentation algorithms using this method, propos-
ing to maximize another Ali-Silvey distance, J divergence,of the two distributions:J(p+

X , p−X).
Again, one can consider maximizing any Ali-Silvey distanceto segment the image.

This chapter focuses on exploring and comparing different distance measures as a criterion for
segmentation. We consider the case of maximizing some distance between the joint distribution
and the product of the marginals,d (pXL, pXpL), which we call thelabel method, and the case
of maximizing the distance between the conditional distributions,d

(

p+
X , p−X

)

, which we call the
conditional method. We derive the gradient ascent curve velocity for a general Ali-Silvey dis-
tance in both methods. Additionally, we show that when the distance measure in the conditional
method takes on a specific form, which we call the symmetric Ali-Silvey distance, there exists a
unique bijective mapping of equivalent distance measures from the label method to the conditional
method. Finally, we comment on how to compare the differences of using various measures when
segmenting images and provide some results.

3.1 Approximations for the Gradient Ascent Velocities

Throughout this chapter, we will assume that we have enough samples of a distribution such that
the law of large numbers (LLN) holds. With this assumption, we can approximate the expected
value by averaging over samples drawn from the same distribution and vice versa. This relationship
can be expressed mathematically as

EpX
[f(·)] =

∫

x∈X

pX (x) f(x)dx ≈ 1

|R|

∫

i∈R

f(xi)di, (3.3)

whereX is the support of the distributionpX , eachxi is an observation of a random variable drawn
i.i.d. frompX , andR is a set containing all indices,i, of the observations. This LLN approximation
aids in simplifying gradient ascent velocities by using empirical expected values.

One additional approximation is needed to obtain the expressions we will derive in the next
section. We claim that for a given smooth functionf(x) and a kernelK(x) that is very narrow
compared to the smoothness off(x), the following approximation can be made:

∫

X

f(x)K(x − a) dx ≈ f(a). (3.4)

This approximation allows for much simpler gradient ascentvelocity expressions that are both
more compact and efficient to compute.

In KDEs, consistency of the estimate [37] is achieved when (in addition to other constraints)
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the bandwidth of the kernel satisfies

lim
N→∞

h(N) = 0, (3.5)

whereN is the number of samples, andh(N) is the chosen bandwidth as a function of the number
of pixels. For many typical kernels (such as the Gaussian kernel used here), this constraint implies
that the kernel approaches a delta function as the number of samples approaches infinity. Thus, in
the limit, the approximation in Equation 3.4 trivially holds.

Regardless of the number of samples, this approximation is always first-order accurate. Be-
cause the kernel integrates to one, the entire integral is essentially taking a weighted average of
the functionf(x) around the pointx = a. When the kernel bandwidth is much smaller than the
changes inf(x), this weighted average is taken over a very small, slowly changing neighborhood.
We can approximatef(x) using a first-order Taylor series expansion around the pointx = a:

f(x) = f(a) + f ′(a)(x − a) + o
(

(x − a)2
)

≈ f(a) + f ′(a)(x − a).

Using this Taylor series expansion, the approximation of Equation 3.4 is easily shown to hold:
∫

X

f(x)K(x − a) dx

≈
∫

X

[f(a) + f ′(a)(x − a)]K(x − a) dx

= f(a)

∫

X

K(x − a) dx + f ′(a)

∫

X

xK(x − a) dx − f ′(a)a

∫

X

K(x − a) dx

= f(a) + af ′(a) − af ′(a) = f(a).

Though we do not precisely define the notion of smoothness off(·) or narrowness ofK(·),
we will argue why there is enough of a distinction for the approximation to hold in our situations.
When solving for the gradient ascent velocity of an energy involving nonparametric density esti-
mates, terms similar to those in Equation 3.4 appear wheref(·) is typically a function of the den-
sities:f

(

pX (·) , p+
X (·) , p−X (·)

)

. As we noted in Section 2.2, the bandwidth of the kernel is chosen
to be the rule of thumb bandwidth (Equation 2.18) which is inversely related toN1/5, whereN is
the number of samples. The kernel becomes more narrow as moresamples are used to estimate the
distribution. Additionally, the underlying assumption ofchoosing a good kernel bandwidth is that
the kernel is much narrower than the smoothness of the distribution. If this were not true, than a
multi-modal distribution such as a mixture of two Gaussianswould be oversmoothed to look like
a unimodal Gaussian. Thus, whenf(·) takes on the formf

(

pX (·) , p+
X (·) , p−X (·)

)

, the assump-
tion that the kernel is much narrower than the smoothness off(·) holds, and the approximation of
Equation 3.4 can be used. Principled bandwidth selection isthe subject of much research and is
considered in more detail in [39] and [41].

In the following sections, we will derive the gradient ascent velocities and express them with a
speedS (xℓ). The speed defines the update of the level set with the following equation:

∂ϕℓ

∂t
= S (xℓ) δ0 (ϕℓ) , (3.6)
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whereℓ is a pixel on the level set,xℓ is the feature(s) at pixelℓ, andδ0(·) is the derivative to a
smooth Heaviside function discussed in Section 2.1.3.

3.2 The Conditional Method

In this section, we derive the gradient ascent velocities for the conditional method. We begin with
a general Ali-Silvey distance between the conditional distributionsp+

X (x) andp−X (x), weighted by
the number of pixels:

|Ω| d
(

p+
X , p−X

)

= |Ω|Ep+
X

[

C

(

p−X (x)

p+
X (x)

)]

, (3.7)

whereC(·) is a convex function. It is important to note that this Ali-Silvey distance is a function
of the likelihood ratio and not of the priors on the labels,π+ andπ−. If the priors were indeed
known a priori, then they would just be constants that would not affect the velocity. However,
we assume that the priors are functions of time and are chosento be the empirical estimate of

observing a label, or
|R±|
|Ω|

. This does not affect common distance measures such as KL divergence
or J divergence because their convex functions,C(·), do not explicitly contain priors. We show in
the appendix (Section A.3) that the speed of gradient ascentvelocity for this Ali-Silvey distance is

SCM (xℓ) =
1

π+

[

C

(

p−X (xℓ)

p+
X (xℓ)

)

− d
(

p+
X , p−X

)

]

+
1

π+π−
Ep−

X

[

C ′

(

p−X (·)
p+

X (·)

)]

−
[

1

π−
+

p−X (xℓ)

π+p+
X (xℓ)

]

C ′

(

p−X (xℓ)

p+
X (xℓ)

)

, (3.8)

whereC ′(·) is the derivative ofC(·) with respect to its argument.

3.3 The Label Method

In contrast to the previous method, the label method looks atthe distributions of intensities and
labels. Specifically, we consider the distance between the joint distribution and the product of
marginals. As stated previously, when the KL divergence is used (i.e.C(·) = − log(·)), we have
exactly the mutual information between a pixel intensity and its label. We begin this analysis with
a general Ali-Silvey distance between the joint and the product of the marginals, also weighted by
the number of pixels:

|Ω| d (pXL, pXpL) = |Ω|EpXL

[

C

(

pXpL

pXL

)]

= |Ω|
∑

l∈L

∫

X

pXL(x, l)C

(

pX(x)pL(l)

pXL(x, l)

)

dx

= |Ω|
∑

l∈L

πl

∫

X

pl
X(x)C

(

pX(x)

pl
X(x)

)

dx,
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whereC(·) is a convex function andpl
X(·) is the distribution conditioned on the label taking on a

value ofl (equivalentlypX|L (·|L = l)). Here, we consider the two region case, whereL ∈ {+,−}.
We show in the appendix (Section A.4) that the speed of the gradient ascent velocity for this Ali-
Silvey distance is

SLM (xℓ) = C

(

pX (xℓ)

p+
X (xℓ)

)

+ EpX

[

C ′

(

pX

p+
X

)]

− C ′

(

pX (xℓ)

p+
X (xℓ)

)

pX (xℓ)

p+
X (xℓ)

−C

(

pX (xℓ)

p−X (xℓ)

)

− EpX

[

C ′

(

pX

p−X

)]

+ C ′

(

pX (xℓ)

p−X (xℓ)

)

pX (xℓ)

p−X (xℓ)
. (3.9)

One advantage of the label method over the conditional method is that the generalization to
segmentation with more than two regions is slightly more straightforward. For example, when
using J Divergence in the conditional method with more than two regions, what energy functional
should be used? It is not as simple as the two region case, where one maximizesJ

(

p+
X , p−X

)

. In
the conditional method, the multiple regions are implicitly represented in the label values. As we
will show in the next section, the conditional method and thelabel method actually have a very
intimate relationship; when the convex function of the conditional method takes on a specific form,
it is equivalent to using a different convex function in the label method. Through this analysis, one
can extend a two-region energy functional in the conditional method to a multi-region energy
functional in the label method.

3.4 The Symmetric Ali-Silvey Distance

In the previous two sections, we presented two different versions of Ali-Silvey distances and their
resulting gradient ascent velocities. Interestingly, thetwo methods are related when the convex
function takes on a specific form.

We first consider the label method. As shown previously, we can express it as

d (pXL, pXpL) =
∑

l

πl
Epl

X

[

C̃

(

pX (·)
pl

X (·)

)]

, (3.10)

whereC̃(·) is just a convex function and the tilde is used so that we can distinguish it from another
convex function later. For the two region case, we can expandthis to be

d (pXL, pXpL) = π+
Ep+

X

[

C̃

(

pX (·)
p+

X (·)

)]

+ π−
Ep−

X

[

C̃

(

pX (·)
p−X (·)

)]

. (3.11)

Now, we consider the conditional method. If we use a symmetric distance measure such as J
divergence in the conditional method, we can express it as a sum of two Ali-Silvey distances
instead of just a single Ali-Silvey distance:

J
(

p+
X , p−X

)

= D
(

p+
X‖p−X

)

+D
(

p−X‖p+
X

)

⇒ dS(p+
X , p−X)= d(p+

X , p−X) + d(p−X , p+
X). (3.12)

We use the subscriptS to denote that the original Ali-Silvey distance can be written in the sym-
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metric form above. When the original Ali-Silvey distance takes on this form, we can directly use
Equation 3.8 to find the gradient ascent velocity of each distance in the symmetric form (with the
sign difference taken into account). Thus, the resulting speed of the gradient ascent velocity for an
energy function of the symmetric Ali-Silvey distance is just

SS (xℓ) =
1

π+

[

C

(

p−X (xℓ)

p+
X (xℓ)

)

− d
(

p+
X , p−X

)

]

+
1

π+π−
Ep−

X

[

C ′

(

p−X (·)
p+

X (·)

)]

−
[

1

π−
+

p−X (xℓ)

π+p+
X (xℓ)

]

C ′

(

p−X (xℓ)

p+
X (xℓ)

)

− 1

π−

[

C

(

p+
X (xℓ)

p−X (xℓ)

)

− d
(

p−X , p+
X

)

]

− 1

π+π−
Ep+

X

[

C ′

(

p+
X (·)

p−X (·)

)]

+

[

1

π+
+

π+p+
X (xℓ)

p−X (xℓ)

]

C ′

(

p+
X (xℓ)

p−X (xℓ)

)

. (3.13)

We can expand this symmetrized distance to be

d(p+
X , p−X) + d(p−X , p+

X) = Ep+
X

[

C

(

p−X (·)
p+

X (·)

)]

+ Ep−
X

[

C

(

p+
X (·)

p−X (·)

)]

. (3.14)

Notice that Equations 3.11 and 3.14 only differ in three ways: there is a prior probability in
front each expectation in Equation 3.11, the convex functions are different, and the term within
the convex functions are different. The additional prior probability can be included in the convex
function,C̃(·), while still keeping the correct convexity assumptions in the distance measure. The
terms within the convex functions are also related, and we show here that these two equations are
equivalent when using a specific pair of convex functions,C(·) andC̃(·).

For Equations 3.11 and 3.14 to be equal, the following condition must hold:

π+C̃

(

pX (·)
p+

X (·)

)

= C

(

p−X (·)
p+

X (·)

)

. (3.15)

It may seem like this only accounts for one of the two terms to be equal. However, this relationship
forces both terms to be equal in the two equations. We rewritethis condition in two equivalent
ways:











C̃
(

pX(·)

p+
X

(·)

)

= 1
π+C

(

1
π− [pX(·)−π+p+

X
(·)]

p+
X

(·)

)

= 1
π+ C

(

1
π−

[

pX(·)

p+
X

(·)
− π+

])

C
(

p−
X

(·)

p+
X

(·)

)

= π+C̃
(

π+p+
X

(·)+π−p−
X

(·)

p+
X

(·)

)

= π+C̃
(

π− p−
X

(·)

p+
X

(·)
+ π+

)
. (3.16)

Note that these expressions are functions of the prior probabilities, π+ andπ−. To generalize
this relationship, we add a subscriptl to the convex functions that corresponds to the label of the
expectation in the Ali-Silvey distance.

C̃l(·) =
1

πl
Cl

(

1

1 − πl

[

(·) − πl
]

)

(3.17)

Cl(·) = πlC̃l

((

1 − πl
)

(·) + πl
)

(3.18)
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This relationship has a very strong meaning. If one chooses to optimize a symmetric Ali-
Silvey distance of the form in Equation 3.14 with a specificCl(·) based on the conditional method,
Equation 3.17 tells us that there exists a convex functionC̃l(·) that combined with the label method
of Equation 3.11 produces exactly the same result. A similarrelationship can be said in the other
direction using Equation 3.18. This implies that as long as the Ali-Silvey distance in the conditional
method is symmetric and can be written in the form of Equation3.12, one can find an equivalent
optimization with a different convex function in the label method. Additionally, this relationship
allows one to extend many conditional method segmentation algorithms that are limited to two-
regions to a label method algorithm able to segment images into multiple regions.

3.5 The Balanced Symmetric Ali-Silvey Distance

We consider one additional form of Ali-Silvey distances, which we define as balanced and sym-
metric. Our notion of a symmetric measure is an Ali-Silvey distance that can be written in the
form of Equation 3.12. As shown in Equations 3.17 and 3.18, one of the differences between the
label method and the conditional method is the additional constant factor of the prior probability.
In the label method, we know that the gradient ascent velocity (Equation 3.9) is independent of the
priors. However, as shown in Equation 3.8, the conditional method is sensitive to the estimated
label priors. As an example, consider KL divergence (where the convex function is just− log(·)).
When the likelihood ratio is one, the KL divergence is zero. However, evaluating Equation 3.8
with this convex function when the likelihood ratio is one shows that the velocity is not necessarily
zero:

SCM,KL

(

xℓ

∣

∣

∣

∣

∣

p+
X (xℓ)

p−X (xℓ)
= 1

)

=
1

π+
D
(

p+‖p−
)

. (3.19)

A closer examination of the derivation for this velocity shows that a distance that is multiplied by
a label prior will not have this term. Thus, we define a balanced symmetric Ali-Silvey distance as
a measure that can take on the following form

dBS(p+
X , p−X) = π+d(p+

X , p−X) + π−d(p−X , p+
X). (3.20)

Notice that this form of an Ali-Silvey distance measure is even more similar to Equation 3.11.
Additionally, the relationships shown in Equations 3.17 and 3.18 for the balanced symmetric form
of a distance measure do not have the additional prior factors outside of the convex functions. This
hints that a distance of this form is inherently more similarto the distance used in the label method.
In Section A.5 of the appendix, we show the gradient ascent velocity for this balanced symmetric
distance to be

SBS (xℓ) = C

(

p−X (xℓ)

p+
X (xℓ)

)

+
1

π−
Ep−

X

[

C ′

(

p−X (·)
p+

X (·)

)]

−
[

π+

π−
+

p−X (xℓ)

p+
X (xℓ)

]

C ′

(

p−X (xℓ)

p+
X (xℓ)

)

−C

(

p+
X (xℓ)

p−X (xℓ)

)

− 1

π+
Ep+

X

[

C ′

(

p+
X (·)

p−X (·)

)]

+

[

π−

π+
+

p+
X (xℓ)

p−X (xℓ)

]

C ′

(

p+
X (xℓ)

p−X (xℓ)

)

. (3.21)
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Table 3.1: Summary of compared distance measures. Because each measure is just a form of KL
divergence, the convex function used in the equations listed in the third column are allC(·) =
− log(·).

Distance Measure Expression ∂ϕℓ

∂t
C(·)

I(X; L) D (pXL‖pXpL) Eqn. 3.9 − log(·)
J
(

p+
X , p−X

)

D
(

p+
X‖p−X

)

+ D
(

p−X‖p+
X

)

Eqn. 3.13 − log(·)
JB

(

p+
X , p−X

)

π+D
(

p+
X‖p−X

)

+ π−D
(

p−X‖p+
X

)

Eqn. 3.21 − log(·)

3.6 Comparison of Measures

As mentioned previously, the derivation of the gradient ascent velocities assumed that the convex
function was only a function of one time-dependent term: thelikelihood ratio. When true priors are
known and are approximated with empirical estimates, one cannot just plug in the convex function
to the gradient ascent velocity expressions derived in Equations 3.8 and 3.9. Keeping this in mind,
we compare three different measures: the mutual information of intensities and labelsI(X; L),
the J divergence of the conditional distributionsJ

(

p+
X , p−X

)

, and the balanced J divergence of the
conditional distributionsJB

(

p+
X , p−X

)

. These measures and their relationships to our derivationsof
general Ali-Silvey distance measures are shown in Table 3.1.

Using the equations listed, it is straightforward to simplify the expressions for each specific
measure. We find the speed of the gradient ascent velocities to be

SI (xℓ) = log

(

p+
X (xℓ)

p−X (xℓ)

)

, (3.22)

SJ (xℓ) =
1

π+

[

log

(

p+
X (xℓ)

p−X (xℓ)

)

− D
(

p+
X‖p−X

)

− p−X (xℓ)

p+
X (xℓ)

+ 1

]

− 1

π−

[

log

(

p−X (xℓ)

p+
X (xℓ)

)

− D
(

p−X‖p+
X

)

− p+
X (xℓ)

p−X (xℓ)
+ 1

]

, (3.23)

SJB
(xℓ) = 2 log

(

p+
X (xℓ)

p−X (xℓ)

)

+
π+

π−

[

p+
X (xℓ)

p−X (xℓ)
− 1

]

− π−

π+

[

p−X (xℓ)

p+
X (xℓ)

− 1

]

. (3.24)

Each speed is a function of the likelihood ratio,p+
X

(xℓ)

p−
X

(xℓ)
, and the priorsπ+ andπ−. In addition, the

J divergence term depends on the actual KL divergences, which we will refer to as theindividual
divergences. By varying these parameters, we can get a sense of what each distance measure does
differently.

The calculated gradient ascent velocities are only a resultof the information theoretic term and
have not incorporated the regularization term that penalizes the curve length as shown in Equation
2.4. Even though Equation 2.4 shows a constant scaling factor of α in front of the curve length
penalty, we can equivalently think of it as a constant scaling factor of 1

α
in front of the information

theoretic term. This tradeoff between separability and smoothness gives an additional parameter
that scales the entire speed function depending on the valueof α.

We proceed to compare the three speeds of the gradient ascentvelocity by plotting their values
as a function of the likelihood ratio. We show these functions for various values of priors,α’s, and

42



(a) Mask

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(b) Probability Distributions (c) Synthetic Image

Figure 3-1: A synthetic image created such that the area of pixels fromp1 is the same as the area
of pixels fromp2, p21, andp22.

−3 -2 -1 0 1 2 3

-50

-40

-30

-20

-10

0

10

20

30

40

50

Figure 3-2: A comparison of the speed of three distance measures as a function oflog
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, andαI = αJ = αJB).

individual divergences. In addition, we will show resulting segmentations starting from the ground
truth and a random initialization.

We created the synthetic image shown in Figure 3-1 for comparative purposes. The image is
constructed such thatp21 andp22 are both subfunctions (properly scaled) ofp2. If a pixel is random
drawn fromp21 or p22, then it has an equivalent distribution that is equal top2. Additionally, we
have constrained the areas such that the area of pixels fromp1 is the same as the area of pixels
from p2, p21, andp22. The distributionp21 has support over the range of values wherep1 andp2

are comparable in likelihood, while the distributionp22 contains values wherep2 is much more
likely thanp1. This difference in likelihoods coupled with the very sharpstar shape will allow us
to evaluate the tradeoffs between the information theoretic term with the regularization term.

3.6.1 Equal Regularization Weights

We first plot, in Figure 3-2, the speeds as a function of the loglikelihood ratio when all the param-
eters are equal. This plot shows that mutual information induces a gradient ascent that is linearly
proportional to the log likelihood ratio, and that J divergence and balanced J divergence both in-
duce a gradient ascent that is exponentially proportional.It also implies that each of the distance
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Figure 3-3: Segmentation using three different measures and equal regularization weighting (αI =
αJB

= αJ = 1). Top row is obtained initializing to the correct segmentation and bottom row is
obtained with a random initialization.

measures puts a different weight on the information theoretic terms versus the regularization term.
Clearly, J divergence emphasizes the information theoretic terms the most, followed by balanced J
divergence and mutual information.

Figure 3-3 shows segmentation results obtained using equalregularization weights. From the
ground truth segmentations, the balanced J divergence and Jdivergence hold the shape of the stars
better. The shape will only change when the regularization weight is high enough. However, from
the segmentations obtained using random initializations,it is clear that the curve length penalty
is not large enough for the balanced J divergence and J divergence cases. There are many single
pixels regions with very high likelihood that are not eliminated because of the small regularization.
In the mutual information case with random initializations, the segmentation is not able to capture
the bottom star, but also does not contain the single pixel regions of the balanced J divergence and
J divergence. This result indicates that the regularization weight chosen for the mutual information
case is sufficient for eliminating unrealistically small regions.

3.6.2 Equal Slope at Zero

The unbalanced weighting of information theoretic and regularization terms discussed in the pre-
vious section leads to another comparison of the three distance terms. By choosing theα’s appro-
priately, we can enforce the three speeds to have the same slope when the log likelihood ratio is
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zero. Assuming equal priors and divergences, we easily find the relationship to be

αI =
1

2
αJB

=
1

4
αJ = C, (3.25)

whereC is any constant. The plots in Figure 3-4 show the three speedswhen this condition is
met (with C = 1). The first of these plots, Figure 3-4a, shows the speeds whenthe priors and
individual divergences are equal. The gradient ascent velocity of the J divergence is then exactly
equal to that of the balanced J divergence. When using this set of α’s, the three speeds behave
very similarly for small log likelihood ratios, or equivalently when there is not very much evidence
that a pixel should belong in one region over another. However, the J divergence and balanced
J divergence terms put much more emphasis on pixels that havea very large magnitude of log
likelihood ratios. One would expect that segmentations only differ when there is a large amount of
evidence indicating that a pixel should be in one region. If that region is very small, then the curve
length penalty in the mutual information case may eliminatethe region because the information
theoretic velocity is not large enough to overcome it. In theJ divergence and balanced J divergence
cases, the extra emphasis on the information theoretic terms may overcome the competing effect
of the curve length penalty and allow the small region to grow.

Figure 3-4a considers the case when the priors and individual divergences are equal (i.e.π+ =
π− andD

(

p+
X‖p−X

)

= D
(

p+
X‖p−X

)

). It is more interesting to consider Figures 3-4b and 3-4c
where the priors are different. Unlike the gradient ascent velocity for mutual information, both J
divergence and balanced J divergence depend on the priors. As stated previously, these priors are
not known a priori so they are estimated by the empirical sizeof each region. Whenπ+ > π−, both
J divergence and balanced J divergence weight positive log likelihood ratios more than negative
values. This is reasonable because the difference in priorsimplies that the label at a random pixel
has a higher probability of belonging toR+ rather thanR−. In addition, when the priors are not
equal, the speed of the J divergence term is nonzero when the log likelihood ratio is zero. This
could be a self-fulfilling prophecy in that it will tend to grow larger regions, and as those larger
regions grow, the gradient ascent velocity tries to grow it even more.

Figures 3-4d and 3-4e consider the case when the individual divergences are different (i.e.
D
(

p+
X‖p−X

)

6= D
(

p+
X‖p−X

)

). As expected, the mutual information and balanced J divergence
gradient ascent velocities are unaffected. However, the difference in divergences affects the zero
crossing of the J divergence case. To analyze this difference, we consider a case where both
conditional distributions are Gaussian with zero mean and different variances, shown in Figure
3-5. If we consider a pixel that has equal probability of being drawn from eitherp+

X or p−X (which
takes a value that is the intersection of the blue and red curves in Figure 3-5), there is no evidence
that it was drawn from one distribution over the other. However, the plots show that even when the
probability of the pixel belonging to either region is the same, and the prior on the labels is also
equal, there is still a bias to include the pixel in theR+ region. Unlike the different prior case,
there is no reasonable explanation for this biased zero crossing.

We now consider segmentations of our synthetic image with this equal slope case, shown in
Figure 3-6. From the plot shown in Figure 3-4a, we see that even though the slope is equal when
the likelihoods are equal, for every other likelihood value, more weight is put on the divergence
terms as compared to the mutual information terms. In the ground truth segmentations, the lower
star is still captured very well by the divergence terms because it has more weight on the likeli-
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Figure 3-4: A comparison of the speed of three distance measures as a function oflog
p+

X
(·)

p−
X

(·)
. α is

chosen such that each speed has the same slope when the likelihood ratio is 1. (a) Equal priors
and divergences; (b)-(c) Difference in priors by a factor of2; (d)-(e) Difference in divergences by
a factor of 2
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Figure 3-5: Two Gaussian distributions with different variances.σ2
+ < σ2

− leads toD
(

p+
X‖p−X

)

<

D
(

p−X‖p+
X

)

.

hood. Though there are many less small pixel regions compared to the previous section, we still
see some in the divergence terms when we start with a random initial seed. The segmentations
obtained using J divergence and balanced J divergence are slightly different, but we have verified
that each segmentation is a local extremum for both distancemeasures. As expected, the upper
star is captured more accurately in the divergence cases because the regularization weight does not
overcome the likelihood terms.

3.6.3 Equal Comparison

The previous section considered the case where we forced theregularization parameters such that
the speed had equal slope for all distance measures when the log likelihood was zero. How-
ever, the J divergence and balanced J divergence velocitieswere still putting more weight on the
likelihood terms compared to the mutual information case. With a few tries, we were able to
identify a regularization parameter for each distance measure such that their segmentation on our
synthetic image was approximately the same. The segmentation results using this relationship
(αI = 1

8
αJB

= 1
16

αJ = 1) are shown in Figure 3-7. Figure 3-8 shows the gradient ascent velocity
speeds as a function of the log likelihood ratio.

Using this set of curve length penalty weights, we segmenteda set of images with each algo-
rithm. The results are shown in Figure 3-9. In general, the three measures produce similar results.
The most notable difference is seen in the zebras of the last row of Figure 3-9. The white stripes
of the zebra are much more likely to be in the background basedon pixel intensity. In the mutual
information case, the curve length penalty is able to overcome this likelihood and include some
white stripes with the black stripes. This may explain why a pixel intensity based segmentation
algorithm (which has no specific consideration of texture analysis) is still able to successfully sep-
arate the textured zebra from the background. However, in the divergence cases, the exponential
curve of the velocity on the likelihood term completely dominates the curve length penalty. We
explore these results further in Figure 3-10. The histograms shown in the middle column of Figure
3-10 count the log likelihood ratios (where we have binned anything less than -5 or greater than 5
into the first or last bin respectively. In the divergence cases, the likelihood ratios have a very high
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Figure 3-6: Segmentation using three different measures and equal slope in the log likelihood
domain when likelihoods are equal (αI = 1

2
αJB

= 1
4
αJ = 1). Top row is obtained initializing to

the correct segmentation and bottom row is obtained with a random initialization.
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Figure 3-7: Segmentation using three different measures and uneven weighting (αI = 1
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=
1
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αJ = 1). Top row is obtained initializing to the correct segmentation and bottom row is obtained
with a random initialization.
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Figure 3-9: Segmentation using three different measures and uneven weighting (αI = 1
8
αJB

=
1
16

αJ = 1). First column is the original image, second column is obtained using mutual informa-
tion, third column is obtained using balanced J divergence,and fourth column is obtained using J
divergence.
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Figure 3-10: Comparing segmentation results using different measures. The top plot shows the
speeds plotted as a function of the log likelihood ratio (assuming equal priors and individual diver-
gences). The left column shows the segmentation results, the middle column shows the histograms,
and the right column shows the log likelihood ratios mapped to a color (using the colorbar in the
speed plot). The first row is mutual information, the second row is balanced J divergence, and the
last row is J divergence.
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value for much of the image. The third column maps the log likelihood ratio to a color, clearly
showing that the white stripes of the zebra have a high log likelihood ratio. Looking at the plot of
gradient ascent velocity speeds shows that when the log likelihood ratio has an absolute value of 5
or more, the speed is so large that it most likely will overcome the regularization term.

One can argue about the benefit of using any of the distance measures. In the zebra case,
mutual information seems to be a better criterion, but one can create other synthetic images that
favor other distance measures. We typically choose to implement our subsequent algorithms with
mutual information for simplicity, keeping in mind that theextension to balanced J divergence or
J divergence is fairly straightforward to implement.
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Chapter 4

Texture Modeling

In the previous chapter, we considered segmentation using level set methods based on a variety
of Ali-Silvey distance measures. The results presented were based on algorithms that considered
pixel intensities and treated the pixels as statistically independent. Though this assumption is often
made, it typically does not hold in natural images. We know that pixels must have some spatial
correlation because of the underlying scene that they represent. In this chapter, we attempt to
model these correlations by considering a new representation of the image that is not based solely
on intensity values.

One particular type of image that does not perform well underpixel-based methods are textured
images. These images contain very complex repeating patterns which that cannot be captured in
pixel-based methods. Instead, we present a method to represent these spatial correlations with a
novel texture feature extraction based on the steerable pyramid representation (discussed in Section
2.3). Our features are designed to detect and measure the dominant orientation and scale at each
pixel in an image. We show that our feature set allows us to decompose an image into separate
contrast, bias, orientation, and scale fields. Because of this decomposition, we are able to capture
spatial correlations and model smoothly changing texturesin each of our four features. Addition-
ally, our representation allows us to estimate an unknown radiometric camera response function
and a shading image that can be used to recover shapes of objects. While the measure implicitly
assumes that a dominant orientation and scale exist, we showempirically that it works well on a
much broader set of textures.

4.1 Texture Descriptors

In this section we describe the machinery used to extract ourfeatures from an image. Once the
features describing contrast, bias, orientation, and scale are found, we impose an additional set of
smooth Markov random fields (MRFs) to capture the spatial changes of each feature.

4.1.1 Extracting the Dominant Scale and Orientation

Within the steerable pyramid representation, the filter output at any orientation can be well ap-
proximated [16] by interpolating the outputs of the filter bank at a discrete set of orientations. This
attribute of the steerable pyramid, in addition to its multi-scale representation, allows for accurate
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(a) (b)

Figure 4-1: (a) Features at a given scale at the center pixel w.r.t. orientation; (b) A Brodatz image
used in the plot

and efficient estimation of texture orientations. Within each scale, denoted byη, we use the re-
sponse at four orientations:yη (0), yη

(

π
4

)

, yη
(

π
2

)

, andyη
(

3π
4

)

. The filter output at an arbitrary
orientation,θ, can the be well approximated by:

y
η
i (θ) =

∑

φ

y
η
i (φ) [cos (θ − φ) + cos (3 (θ − φ))]

2
(4.1)

wherei is a pixel location andφ ∈
{

0, π
4
, π

2
, 3π

4

}

. Let

E
η
i (θ) ,

1

|Rη
i |
∑

j∈Rη
i

|yj (θ)|2 (4.2)

be the angular energy over a local regionR
η
i (typically a 3x3 region) at an angleθ, scaleη, and

locationi. Using golden section search [25], we find the orientation within each scale,θη
i , with the

maximum angular energy. This is defined to be the orientationof the texture at scaleη, that is

θ
η
i , arg max

θ
E

η
i (θ) . (4.3)

As E
η
i (θ) is periodic with periodπ, we only search the range[0, π). As a function of scaleη and

locationi, we extract the contrast energy

E
η
i , E

η
i (θη

i ) (4.4)

and what we refer to as the residual contrast energy

ǫ
η
i , E

η
i

(

θ
η
i +

π

2

)

. (4.5)

The term residual energy is used since, for strongly oriented textures, the energy of the response
when the filter is orthogonal to the dominant orientation tends to be small. These features are
depicted graphically in Figure 4-1.

Within a scale, the last feature that we introduce is the biasof the texture,µη
i . This term

captures the low-frequency energy of the image that is not directly measured by the steerable
pyramid. While nearly any lowpass filter is suitable, we use acircularly symmetric Gaussian blur
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filter.

Summarizing, in each scale and at each pixel, we calculate the contrast energy (E
η
i ), the resid-

ual energy (ǫη
i ), the orientation (θη

i ), and the bias (µη
i ). For each locationi we then select the set of

features corresponding to the scale,ηi, with maximum contrast energy:

ηi , arg max
η

E
η
i . (4.6)

These become the feature set at each pixel. We drop the superscript of scale for each feature once
we haveηi. This leads us to our final feature set at pixeli: {ηi, Ei, ǫi, θi, µi}.

Exceptηi, all features are continuous. We sample scale logarithmically in order to approximate
η as a continuous parameter. Specifically, we use scale factors of: unity,2−0.25, 2−0.5, and2−0.75.
For each scale factor, we create a separate steerable pyramid for feature extraction. Sampling at
a finer scale can be accomplished at the cost of memory and computation time. Hereafter, the
detected scale feature is treated as a continuous quantity.

4.1.2 Likelihood Model

Because of the decomposition presented in the previous section, we treat each feature as statisti-
cally independent. The model was specifically designed to represent a texture with one dominant
orientation. Later, it is shown empirically that the model is able to represent other textures as well.
However, the extracted angle and scale are only robust when the texture contains one dominant
orientation.

If a texture is not strongly oriented or contains multiple dominant orientations, the angular
energy changes drastically. Instead of containing one verydominant peak as shown in Figure 4-1,
the energy will be much more flat. When noise is present in thisflat case, the location of maximum
angular energy (i.e. the orientationθ) can easily be corrupted. Subsequently, the measured scale,
eta, can also be corrupted by a small amount of noise.

To address this issue, we introduce an auxiliary Bernoulli random variable,T , that indicates
whether a texture is strongly oriented. Recall that one of the features,ǫ, is called the residual
energy. The ratio,E

ǫ
roughly captures the peakiness of the angular energy curve (i.e. higher ratios

correspond to a more pronounced peak and smaller ratios correspond to a flatter curve). We define
the PMF ofT to be a function of this ratio,E

ǫ
. The function is empirically chosen to have a fairly

sharp transition when the ratio is approximately 15. The specific function chosen is

pT (1|ǫ, E) = max

{

1,
1

3

(

tan−1

(

−100

(

ǫ

E
− 1

15

))

+
π

2

)}

(4.7)

and is displayed in Figure 4-2, though we note that any similar function would suffice. The residual
energy only plays a role in calculating the probability of the texture being strongly oriented. If the
texture is not strongly oriented, we model the scale and orientation as being drawn from uniform
distributions to represent the uncertainty of the measurements. The likelihood of a given pixeli
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Figure 4-2: Probability of a texture being strongly oriented as a function ofE
ǫ
.

conditioned on being in regionRl is then

p
(

Ei, µi, ηi, θi|i ∈ Rl
)

= pl
E (Ei) pl

µ (µi)
∑

t∈{0,1}

pl
η|T (ηi|Ti = t) pT (t|ǫi, Ei)

∑

t∈{0,1}

pl
θ|T (θi|Ti = t) pT (t|ǫi, Ei) , (4.8)

where the distributionspl
E(·), pl

µ(·), pl
η|T (·|T = 1), andpl

θ|T (·|T = 1) are estimated using a KDE
from the pixels inRl. All of these nonparametric estimates can use the Fast GaussTransform [20]
to be computed efficiently.

Periodic KDE

The orientation of the texture, represented byθ, is periodic with periodπ. Consequently, the
estimated distribution ofθ should also be periodic. A slight modification to the typicalKDE is
needed to compute a periodic PDF. In the estimate, the periodic PDF should be estimated atM

target points (equally spaced in the range[0, π)) from the set ofN source points,S. Each source
value inS, denoted byθs is confined to the range[0, π). If we assume that the kernel bandwidth
is small enough such that the contribution of a source point two periods away (±2π) is negligible,
then there are two straightforward methods to estimate a periodic KDE.

The first method is to replicate every source point twice: once with a shift by a positive pe-
riod +π, and once with a shift by a negative period−π. Thus, the new set of source points has
cardinality3N , and consists of the set of points{S, S + π, S − π}. The KDE is still estimated at
the sameM target points. Because of the shifted sets of source points,an approximately periodic
distribution will exist in the range[0, π). The periodic KDE in this case is

pθ(θ) =
β

3Nh

N
∑

s=1

(

KG

(

θ − θs

h

)

+ KG

(

θ − (θs + π)

h

)

+ KG

(

θ − (θs − π)

h

))

, (4.9)

whereβ is a scale factor to makepθ a valid distribution.
Similarly, one can replicate every target point twice: oncewith a shift by a positive period+π,

and once with a shift by a negative period−π. In this case, the source points do not change, but
the3M target points now span the range[−π, 2π). We refer to this new KDE as̃pθ. Oncep̃θ is
estimated, to obtain the periodic distribution at a specifictarget point,θ, one combines the new
KDE at p̃θ(θ), p̃θ(θ+π), andp̃θ(θ−π). This also results in an approximately periodic distribution.
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The periodic KDE in this case is

pθ(θ) = β [p̃θ(θ) + p̃θ(θ + π) + p̃θ(θ − π)] , θ ∈ [0, π) , (4.10)

whereβ is a scale factor to makepθ a valid distribution and̃pθ is estimated as follows

p̃θ(θ) =
1

Nh

N
∑

s=1

(

KG

(

θ − θs

h

))

, θ ∈ [−π, 2π) . (4.11)

Each non-periodic KDE is estimated using the Fast Gauss Transform [20], which has an ap-
proximate complexity ofO(M +N), whereM is the number of target points andN is the number
of source points. The method of replicating the source points has an approximate complexity of
O(M +3N), whereas the method of replicating the target points has an approximate complexity of
O(3M + 3N). Either of these methods can be used; however, because the number of target points
is typically much less than the number of source points, the method of replicating target points is
used in this thesis.

4.1.3 Verification on Brodatz Images

We apply our feature extraction to the Brodatz textures [5].Using the first thirteen images from
[49], we attempt to classify the images based on our feature set to validate our model. The original
images are shown in Figure 4-3. Each Brodatz image is 512-by-512 pixels. For each image, we use
the top-left 256-by-256 corner to train the feature distributions, and the top-right 256-by-256 corner
as the test data. Classification results were 100% correct for all tests, showing that our features are
able to distinguish these different textures. This result does not mean that our representation is
able to categorize all natural textures perfectly. However, the results on a small and widely used
database of textures does encourage the validity of the model. For each of these cases, we estimate
the mutual information between the likelihood of a pixel under our feature set with the label of
that pixel. This number gives us a confidence measure, where larger numbers correspond to a
more confident classification. Table 4.1 shows the most likely incorrect classification (i.e. the most
similar texture with the lowest confidence measure) and the most unlikely incorrect classification
(i.e. the most different texture with the highest confidencemeasure).

In addition to classification of the Brodatz textures, we also segment a few synthetic Brodatz
images using our feature set. We overlayed the most similar and most different textures for each of
the thirteen textures and show the results of the segmentation for mutual information, balanced J
divergence, and J divergence (usingαI = 1

8
αJB

= 1
16

αJ = 1) in Figure 4-4. It is important to note
that we are performing a very crude segmentation where we blindly measure the features at every
pixel, and use these as the segmentation features without any further consideration. It will later be
shown that a better segmentation algorithm can be achieved.These results support our intuition
that any Ali-Silvey distance could be a suitable segmentation criterion. It is interesting to note
that the most similar textures portrayed in Table 4.1 are notnecessarily the hardest to segment.
Segmentation is a much harder problem than classification. In addition to having to learn the
statistics during the process of segmentation, boundary effects due to using a local measure will
also change the result.

The majority of segmentation results using the three different measures in Figure 4-4 are very

57



Figure 4-3: Brodatz textures used in classification. The yellow number is the label assigned to it.

Table 4.1: Confidence of Brodatz Classification

Texture
(T1)

Most
Similar

Texture(T2)

Most
Different

Texture(T3)

I (X; L)
L ∈ {T1, T2}

I (X; L)
L ∈ {T1, T3}

1 2 8 0.264 0.688
2 7 8 0.237 0.687
3 7 8 0.281 0.675
4 7 8 0.182 0.691
5 10 1 0.269 0.657
6 13 8 0.055 0.686
7 4 8 0.182 0.688
8 9 4 0.465 0.691
9 12 1 0.301 0.676
10 11 8 0.184 0.658
11 10 1 0.184 0.672
12 9 1 0.301 0.599
13 6 8 0.055 0.682
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Figure 4-4: Segmentation using three different measures onsynthetic Brodatz images. First col-
umn is the original image, second column is obtained using MI, third column is obtained using
balanced J divergence, and fourth column is obtained using Jdivergence.
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Figure 4-5: Segmentation using three different measures ona synthetic Brodatz images. First
column is the the initialization used, second column is obtained using MI, third column is obtained
using balanced J divergence, and fourth column is obtained using J divergence. The first row’s
initialization was the original segmentation result usingMI and a gridded initialization. The second
row’s initialization was the original segmentation resultusing J divergence and the same gridded
initialization.

Table 4.2: Distances of local extrema

Initialization MI Balanced J Divergence J Divergence
MI’s segmentation 0.262 1.346 2.446

J Divergence’s segmentation 0.423 2.132 4.620

similar. There are a few surprising cases where J divergenceseems to perform much better than
both mutual information and balanced J divergence. We examine one of these cases (fourth row
of the second page of Figure 4-4) in more detail. It is interesting to consider how each measure
performs when initialized to the segmentation of another algorithm. Because the segmentations
obtained using MI and balanced J divergence are comparable,we initialize each algorithm to the
MI segmentation and the J divergence segmentation. Resulting segmentations with these initial-
izations are shown in Figure 4-5. These segmentations show that given either initialization, any
of the distance measures will not drastically perturb the curve. In other words, this means that
each of the original segmentations is very close to a local extremum under any of the distance
measures. We can evaluate which local extremum is a better segmentation under each distance
criterion by evaluating the actual distance. Table 4.2 shows these values. The distances obtained
when initializing to the J divergence segmentation are greater than those obtained when initializing
to the mutual information segmentation under all three distance measures. Though we found that
both the original MI and J divergence segmentations are local extremum, these values show that
the mutual information segmentation was only a local extremum, whereas the one obtained using J
divergence may be the global extremum. We believe our original initialization (a uniformly spaced
grid of seeds) may have contributed to the result of reachinga local extremum instead of the global
extremum in the MI and balanced J divergence cases.

We proceed to verify this claim by generating a set of random initializations and segmenting
based on those seeds. We generate a random initialization byfirst randomly picking locations of
seeds. Each pixel has approximately 0.1% chance of being thecenter of a seed. We then draw
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Figure 4-6: Segmentation using three different measures ona synthetic Brodatz images. For each
set of four images, the first shows the random initializationused, the second shows the result
obtained using MI, the third shows the result obtained usingbalanced J divergence, and the fourth
shows the result obtained using J divergence.

a circle around that seed having a random radius within some fixed range. When overlapping
circles occur, we take the exclusive-or of the elements. Figure 4-6 shows the results for twenty
random initializations. Clearly, the results are comparable in these random initialization cases.
The erroneous result we obtained for this image in Figure 4-4seems to be an error that occurred
only because of the specific initialization we used. To explore even further, we show the best
segmentation results obtained using this random initialization scheme in Figure 4-7. The “best”
segmentation is chosen by finding the result among twenty different initializations that has the
maximum distance (i.e. the ground truth is never used).

In most cases, the non-gridded initialization improves thealgorithm regardless of the distance
measure. We compare our original gridded initialization results with our non-gridded initialization
results by looking at the probability of error statistics ascompared to the ground truth. Although
these empirical probabilities are computed with access to the ground truth, it is important to keep
in mind that none of the actual segmentation results considered knowing the ground truth. These
results are shown in Figure 4-8. This figure shows that using the best of eight non-gridded initial-
izations generally performs better than using one gridded initialization. Additionally, a scatter plot
of the probability of errors using the two initialization methods is shown in Figure 4-9. Because
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Figure 4-7: Segmentation using three different measures onsynthetic Brodatz images. First col-
umn is the original image, second column is obtained using MI, third column is obtained using
balanced J divergence, and fourth column is obtained using Jdivergence. Results obtained using a
non-gridded random initialization. 64
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Figure 4-7: Segmentation using three different measures onsynthetic Brodatz images. First col-
umn is the original image, second column is obtained using MI, third column is obtained using
balanced J divergence, and fourth column is obtained using Jdivergence. Results obtained using a
non-gridded random initialization.
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Figure 4-8: Plot of labeling error for three measures using the gridded and non-gridded initializa-
tions. The mean of the labeling errors for all synthetic Brodatz images is plotted with the standard
deviation of the errors shown.

Figure 4-9: Scatter plot of labeling error for three measures using the gridded and non-gridded
initializations. The y-axis represents the probability oferror for the best of eight non-gridded
initializations and the x-axis represents the probabilityof error for the gridded initialization. The
thick markers represent the mean of the associated information measure.
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most points lie below the diagonal line, this plot also showsthat the non-gridded method generally
performs better.

When using gradient ascent to find the maximum, we conjectured that when searching the en-
ergy manifold, a particular initialization may converge toa local maximum instead of the global.
The idea of using multiple non-gridded initializations wasto overcome the problem of local ex-
trema. As expected, Figures 4-8 and 4-9 indicate that the multiple initializations have helped in
some cases. The results also indicate that using only eight initializations may not be enough to
globally optimize the complex energy manifold, and more initializations may benefit in the fi-
nal segmentation. Regardless, this section shows that choosing the best energy among multiple
segmentations typically leads to improved results.

Similar to Chapter 3, we have shown that in most cases, the three Ali-Silvey distances produce
very similar results. At times, the specific initializationcan produce a different local extremum, but
with the use of many random initializations, we are much morelikely to find the global extremum.
As stated previously, in most of our applications henceforth, we will choose to use multiple non-
gridded initializations with mutual information as the distance measure for its more simple gradient
ascent velocity.

4.1.4 Smoothness Priors on Extracted Features

Having defined and verified our feature set, we now discuss howto capture spatial correlations
for each feature. By capturing these correlations, we are able to model how the texture changes.
We take each measured feature as the output of a smooth MarkovRandom Field (MRF) plus
additive noise conditioned on the segmentation label. The model for each of these random fields
is similar modulo differing degrees of assumed smoothness.We derive the inference procedure
for the orientation field only; the derivation for scale, contrast, and bias follow accordingly. One
notable departure from standard MRF methods is that we modelthe additive noise term in each
field nonparametrically. This is due to the fact that the “noise” terms correspond to quantities of
interest. Effectively, smoothness is utilized as a means toseparate the contributing factors to the
observed feature. We also derive a novel fixed point update utilizing the nonparametric model.

Under a standard Gaussian MRF model of smooth variation one assumes the observation model
shown in Figure 4-10a, wheren is typically Gaussian and̂φ is a smooth MRF. However, in the
types of images we consider, the fields within a commonly labeled region may be locally smooth
while exhibiting a small number of abrupt changes. One way toaccount for this is to decompose
φ̂ into a completely smooth component,φ̃ and a piecewise constant component,C, as depicted in
Figure 4-10b. Under the assumption that the abrupt changes in C are large relative to the standard
deviation ofn, this is equivalent to an MRF where the additive noise term comprised of bothC
andn is equivalent to a mixture of Gaussians or, more generally, akernel density estimate (KDE).

In total we infer four different smooth fields: an orientation field onθ, a scale field onη, a gain
field onE, and a bias field onµ. It is important to note that the piecewise constant component of the
noise,C, captures relevant information about the intrinsic properties of the observed image. This
is most apparent when looking at the estimated smooth gain and bias fields whose specific details
are covered later. These two fields aim to capture a slowly changing contrast and bias caused by
lighting effects. The piecewise constant fieldC is an image with a uniformly contrasted and biased
texture. Consequently, the observed image after removing the effects of the gain and bias field
(i.e. C + n) is essentially a noisy approximation of the intrinsic reflectance image. Likewise, the
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(a) (b) (c)

Figure 4-10: Smooth Field Model: (a)̂φ is smooth with abrupt changes; (b)̃φ is completely
smooth; (c) Intrinsic Image,θ∗

Figure 4-11: Graphical model for the MRF estimation of orientation. Eachθi is measured directly
from the observed image and̃φi is estimated through the fixed-point iteration.

residual terms associated with the orientation and scale fields provide what we call the intrinsic
texture image. Accounting for all of the smooth fields gives us an image with a uniform texture
oriented in the same direction and with constant scale.

Ultimately, we iterate between estimation of these fields conditioned on a given segmentation
and segmentation based upon the estimated intrinsic texture images. Figure 4-10c depicts the
observation model incorporating the intrinsic unorientedtexture image,θ∗ where the superscript,
∗, denotes the intrinsic feature.

We formulate MAP estimation of the various fields in a similarfashion to [51]. The primary
difference is the incorporation of nonparametric noise model. Furthermore, as a consequence of the
nonparametric model, we derive a fixed point iteration in theabsence of an analytic solution. A key
assumption is that eachθi is i.i.d. conditioned onφi. This relationship is depicted in the graphical
model of Figure 4-11. A full derivation is given in the appendix (Section B.1). Though this
derivation follows from the smooth field only affecting one parameter, we also show the derivation
and the resulting fixed-point update for a field affecting multiple independent parameters in the
appendix (Section B.3). We assume thatφ̃ ∽ N (0, Λφ) andθ̃ ∽ 1

Nh

∑N
i=1 KG

(

θ−θI

h

)

.

φ̃ = arg max
φ

P
(

φ|θ
)

(4.12)

Using Bayes rule and differentiating w.r.t.φ, we arrive at the following equality

θ − φ̃ − wθ
p

(

θ − φ̃
)

− h2

2
Λ−1

φ φ̃ = 0, (4.13)

whereh is the bandwidth used in the KDE, andwθ
p(·) is the ratio of a weighted KDE to the KDE
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defined as follows

wθ
p(·) =

∑N
s=1

(

θs − φ̃s

)

e−
((·)−θs+φ̃s)

2

h2

∑N
s=1 e−

((·)−θs+φ̃s)
2

h2

. (4.14)

Rearranging this equation results in a fixed-point iteration to solve forφ̃

φ̃
(k+1)

= F−1
(

θ − wθ
p

(

θ − φ̃
(k)
))

, (4.15)

where the matrix,F , is defined as follows

F =

(

2

h2
Λφ

)−1

+ I = F−1
1 + I. (4.16)

As in [51], by treatingΛφ as the result of filtered i.i.d. noise, the fixed-point updatecan be com-
puting efficiently using FFT methods. Consequently, we write the matrix,F1, in Equation 4.16 as
follows

F1 =
2

h2
Λφ =

2

h2
Hσ2

φIHT =
2σ2

φ

h2
HHT , (4.17)

whereH is the matrix that performs a convolution with a unity DC gainlowpass filter andσ2
φ is

the variance ofφi. This implies that multiplying by the covariance matrix,Λφ, is equivalent to
applying two lowpass filters. In general, the bandwidth usedto estimate the PDF,h, is very small
because it is chosen to be inversely proportional toN1/5. With this assumption, the matrixF−1

equivalently performs a lowpass filtering operation with approximately unity DC gain. This will
be shown here.

By construction,H (or equivalentlyHT ) is the matrix that performs a lowpass filtering opera-
tion with unity DC gain. ThusHHT must equivalently perform a lowpass filtering operation (e.g.
Figure 4-12a). If we assume thath << σ2

φ, then the matrixF1 performs a lowpass filtering oper-
ation with a very large DC gain (e.g. Figure 4-12b). The inverse matrix,F−1

1 must then perform
a highpass filter operation with a very small DC gain (e.g. Figure 4-12c). The identity matrix,I
does not alter the signal and consequently must be an all passfilter (e.g. Figure 4-12d).

Now we consider the matrixF in Equation 4.16. Summing the two matricesF−1
1 andI is

equivalent to summing their frequency responses. Thus, thefilter F must perform a highpass filter
operation with near unity DC gain (e.g. Figure 4-12e). When we invert this operation, the resultant
F−1 must then perform a lowpass filter operation also with approximately unity DC gain (e.g.
Figure 4-12f). This shows that the fixed-point update of 4.15can be efficiently computed using a
unity DC gain lowpass filter.

While each of the separate smooth fields is modeled similarly, there are differences between
them which we briefly explain now. For the orientation feature,θ, we assume there is an underlying
smooth, additive orientation field,φ. We cannot use a conventional lowpass filter in (4.15) because
the orientation is periodic (with periodπ). Instead, we double each angle and convert it into the
sine and cosine components (i.e. mapping it onto the unit circle). We lowpass these X and Y
coordinates, take the inverse tangent, and then halve the angle to find the equivalent lowpassed
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(b) High DC gain LPF
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(c) Low DC gain HPF
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(d) All pass filter

Equivalent Fourier Operation of

Frequency (rads/sec)

M
a
g
n
it
u
d
e
 o

f 
D

T
F

T

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

(e) Unity DC gain HPF
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(f) Unity DC gain LPF

Figure 4-12: Equivalent Fourier operations to matrices used in fixed-point update

angle. To find the intrinsic angle, we simply subtract the smooth field from our measurement:

θ∗i = θi − φi. (4.18)

As mentioned, we treat the discrete scale measurement as a continuous quantity. The bandwidth
of the KDE is chosen to be large enough to sufficiently smooth over adjacent scales. The additive
term is denoted by the symbolν and the intrinsic scale is computed as

η∗
i = ηi − νi. (4.19)

The treatment of the remaining fields is somewhat more complex. The gain fieldg, is a mul-
tiplicative field accounting for contrast changes. The biasfield, b, is an additive field that corrects
the low-frequency component of the texture. We impose smoothness on the log of the gain field
allowing us to treat it as an additive field. Having accountedfor these fields, we are left with an
estimate of the intrinsic reflectance image,R. Figure 5-11b depicts this relationship.

In contrast to the orientation and scale fields, the gain and bias fields both operate directly on
the pixel intensities. To find the reflectance image, we divide our observed image by the gain field
and then subtract the bias field. As the steerable pyramid is comprised of linear filters, dividing
the image by a value implies that the filter outputs are divided by the same value. Thus, both
the energy and bias features of our texture are affected by the gain field. The contrast energy
captures the filter response at some bandpass frequency, whereas the bias captures low frequency
components. Consequently, adding a constant value should only change the low frequency bias
and not the contrast energy. If we assume that the bias field can correct for any changes that the

71



Table 4.3: Empirically Chosen Smoothness Constants

Field hmin hscale

Orientation Field (φ) 0.8 2
Scale Field (ν) 0.2 2
Gain Field (G) - 2
Bias Field (B) - 4

gain field has made to the bias term, then we can estimate thesetwo fields independently. The
gain field is first estimated assuming that it only affects thecontrast energy, and then the bias field
is estimated only based on the bias term. If we assume that these fields are sufficiently smooth
within a small neighborhood, then we can approximate the effect of them on the intrinsic features
as follows

E∗
i =

1

|Rηi

i |
∑

j∈R
ηi
i

∣

∣

∣

∣

yj (θηi

i )

gj

∣

∣

∣

∣

2

≈ Ei

g2
i

, (4.20)

µ∗
i =

∑

j∈R
ηi
f,i

(

xj

gj

− bj

)

· fj ≈
µi

gi

− bi

∑

j∈R
ηi
f,i

fj =
µi

gi

− bi, (4.21)

whereR
ηi

f,i is the support of the lowpass filter around pixeli and in scaleηi, andfj is a lowpass
filter coefficient. Note that the last equality in (4.21) is bydesign since our filter has constant DC
gain.

The last implementation detail for field estimation is the assumed degree of smoothness. This is
determined by the properties of the covariance matrices associated with each field, which is in our
case is determined by the structure of the filter used in (4.15). In our experiments, we use a 15x15
averaging filter for each field, noting that the segmentationis not overly sensitive to the window
size. Another parameter that we can tune is the bandwidth of our KDE. Larger bandwidths equate
to grouping more regions into the same intrinsic texture representation. This is advantageous
because it allows us to capture more extreme lighting and geometric effects. However, if the
bandwidth is too large, textures that belong to two different intrinsic textures will look the same.
We chose a minimum bandwidth for each smooth field and set the scaling factor to the “rule of
thumb” bandwidth [41] so that they provided pleasing results, noting that the segmentation is not
very sensitive to a fairly large range of these values. Table4.3 contains the values we used in our
final algorithm.

4.2 Boundary Effects

When segmentation of synthetic Brodatz images was done in the previous section, it was noted
that the most similar textures were not necessarily the hardest to segment. The main reason for this
anomaly is that we have yet to consider boundary effects. In this section, we discuss the different
boundary effects that are encountered and our solutions to them. This nuisance surfaces in two
different ways: feature extraction and smooth field estimation.
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(a) (b) (c) (d)

Figure 4-13: A toy example of extending an object: (a) the original image; (b) the segmentation
mask provided for the extension algorithm; (c) the red pixelis where we would like to extend the
object to and the yellow region is the texture patch we extend; (d) the resulting extended object.

4.2.1 Boundary Effects with Feature Extraction

Our originally proposed method for feature extraction was to always look at a fixed size local
window around each pixel. When segmenting an image, object boundaries indicate places where
the texture we measure should abruptly change. When using the original feature extraction method,
a local window around a pixel near a boundary will include pixels from two separate objects. This
method provides for a smooth change in our features across a boundary that is a mixture of the
two different objects. Ideally, we desire to have an abrupt change at an object boundary. Thus, we
define a new region,R′

i, which is similar to our original region,Ri, but is confined to the segmented
region,R±.

R′
i = Ri ∩ R± (4.22)

A more subtle effect from boundaries originates from the actual steerable pyramid output.
Each output is due to a 9-by-9 filter. When we convolve the filter with the image, boundaries will
again contain mixtures of both objects. To address this problem, we can extend each object past
its boundary and calculate the steerable pyramid for the extended object. Note that an extension
needs to be performed for each object (e.g. if there are two objects, there will be two resulting
extended images). Algorithm 1 gives pseudo-code on how to extend theR+ region into theR−

region, Figure 4-13 portrays how the extension is performedgraphically for one region, and Figure
4-14 shows the extension performed on a natural image. From Figure 4-14 it’s clear that this

Algorithm 1 Object Extension
1: for each pixeli in R− that needs to be extended toR+ do
2: Draw a line fromi to the closest point inR+

3: Repeat the pattern of the line from the object boundary toi

4: end for

method to reproduce textures seems fairly accurate, at least near boundaries. The center of what
used to be the zebra in Figure 4-14b shows some glaring discontinuities. However, since level set
velocities for segmentation are typically only concerned with the pixels near the boundary, this
error can be tolerated.

The second row in Figure 4-15 shows three of our features for aBrodatz image when the
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(a) (b) (c)

Figure 4-14: An example of extending a natural image (given the correct segmentation): (a) the
original image; (b) the first extended image; (c) the second extended image.

boundary effects are ignored. The third row in Figure 4-15 shows the same three features after our
refinement to incorporate boundary effects.

We would like to use the new local region described in Equation 4.22 when extracting our
feature set combined with the object extension to eliminatethe filter boundary effects. We call the
combination of these two solutions to be the refinement of ouralgorithm. Using these two solutions
are problematic for a few reasons. The new region requires the features to be calculated any time
the curve changes, or essentially at every iteration in segmentation. In addition to this, the steerable
pyramid must also be calculated any time a new extended imageis created. These computations can
take a considerable amount of time, and is not something thatis particularly feasible. Additionally,
the refinement creates many more local extremum which is probably attributed to the difficulty
of distinguishing an object boundary from an edge within a texture. For these reasons, using this
refinement needs to be treated with special care.

In our segmentation algorithm, our solution to these boundary effects was to first segment
based on our original feature extraction (ignoring boundary effects) so that we would reach a local
extremum near the global extremum. Then, we refine our segmentation by using the newly defined
region in Equation 4.22, extending the object boundaries, and recalculating the steerable pyramid.
This prevents the segmentation from falling into a local extremum that is very different than the
global, and will decrease the computation time. The result before and after the refinement are
shown for a sample image in Figure 4-16.

4.2.2 Boundary Effects with Smooth Field Estimation

As stated previously, we estimate a smooth field for each feature under each label. The smooth
field is only valid for pixels corresponding to the same label, but it is still necessary to define it for
other pixels. One reason for this is because when we lowpass the values with the matrixF−1 in
Equation 4.15, we would like to have values defined everywhere so that this can be done in a faster
way. However, the more important reason that the smooth fields need to be defined everywhere
is because of the gradient ascent velocity used to update thelevel sets. We need the smooth field
under each label to be well defined for pixels near the boundary so we can evaluate the likelihood
of the intrinsic feature. The values far from the border are less important, similar to the boundary
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(a) Original image

(b) E ignoring boundary effects (c) µ ignoring boundary effects (d) η ignoring boundary effects

(e)E refined (f) µ refined (g) η refined

Figure 4-15: An example of our originally proposed feature extraction with and without consider-
ing boundaries. (a) The original image; (b)-(d) features ignoring boundary effects; (e)-(g) features
accounting for boundary effects

Figure 4-16: Zoomed in portion of segmentation. Green solidline is before refinement, red dotted
line is after refinement
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effect solution in the feature extraction.
As a result of this issue, we use a similar method as before andextend the smooth field before

applying the lowpass filter. The extension is done by simply setting the values for pixels outside
of a region to be the same value as the nearest pixel inside theregion. Our final algorithm for
estimating the smooth orientation field is described with pseudocode in Algorithm 2.

Algorithm 2 Estimating Smooth Orientation Field inR+

1: while Fixed point iteration has not convergeddo
2: for each pixeli ∈ R+ do
3: Estimate the smooth field as if there was no spatial correlation by

φ̃
(k+1)
i = θ − wp

(

θ − φ̃
(k)
)

4: end for
5: for each pixeli 6∈ R+ do
6: Extend the smooth field̃φ(k+1)

i to be the same value as̃φ
(k+1)
j , wherej is the nearest point

in R+

7: end for
8: Finish applying Equation 4.15 by lowpass filteringφ̃

(k+1)

9: end while
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Chapter 5

Texture Modeling Applications and Results

Prior to this chapter, we have discussed various distance measures for segmentation purposes and
feature extraction for textures. We have chosen a very explicit model for textures, namely one that
tries to capture a strongly oriented texture. Though the development of our model was for a fairly
specific type of texture, we show here why our modeling choices have advantages. In addition to
being able to segment natural images fairly well, we are alsoable to extend our texture features to
estimate the radiometric response of a camera and estimate intrinsic shading images.

5.1 Segmentation

We begin with image segmentation, which has already been mentioned throughout previous chap-
ters. We use mutual information [26] to segment the image incorporating our estimation of smooth
random fields and our solution to the boundary effects. Additionally, we utilize the multi-region
segmentation presented in [6]. We assume that the number of regions in the image is known, noting
that this quantity could be estimated in various ways. Our final algorithm for image segmentation
is summarized in the flowcharts of Figures 5-1 and 5-2.

In this section, we will compare segmentation results of ouralgorithm with the algorithms of
[26] and [21]. The algorithm in [26] is a mutual information based label method on the pixel

Figure 5-1: Flowchart for segmenting an image with multipleregions.
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Figure 5-2: Flowchart for segmenting a region within an image.

intensities. However, the combination of a curve length penalty and nonparametric estimates on
the intensity distributions enables the segmentation of simple textures without an explicit texture
representation. The algorithm in [21] uses steerable pyramids, but differs from the method in
that here because they use these filter outputs directly as features. They treat each filter output as
statistically independent and segment based on this assumption. The exact algorithms of [26] and
[21] produce very poor results in our experiments due to the fact they do not model changes due
to illumination and other physical phenomenon. To make a fairer comparison, we incorporate our
gain field into the approach of [21] and the gain and bias field into the approach of [26]. The bias
field is excluded from [21] because it does not fit their model well and should have little or no
effect on the features. This allows us to compare the difference gained in using our texture model
by removing lighting effects from all algorithms.

5.1.1 Sensitivity to Parameters

We begin our comparison by looking at the sensitivity of segmentation results to the algorithm
parameters. We show the sensitivity to three user-specifiedvalues: the local region size|Ri| around
pixel i, the initialization for the segmentation, and the curve length penalty weight,α.

Local Region Size

The first parameter we consider is the local region size,|Ri|. This term is not used in the other
algorithms so the sensitivity is only considered for the method presented here. We note that this
region size was used in the calculation of angular energy in Equation 4.2. If|Ri| is too small,
the measure may not accurately capture the local angular energy. However, if|Ri| is too large,
we oversmooth our feature set which may lead to problems in small regions. We show the results
of segmenting an image based on varying|Ri| within the range 3-by-3 to 9-by-9 in two different
ways. Figure 5-3a shows the regions for the various segmentations, where the closer a pixel is to
white or black, the more often it was labeled into the same region when varying values of|Ri|.
Pixels that are gray are more sensitive to change. We also show our results in Figure 5-3b, where
pixels that changed between segmentations are red. The morered a pixel is, the more sensitive it
is to varying|Ri|. These figures show that our feature set typically captures the body of the zebra
very well. As expected, thin regions (e.g. the legs and tail of the zebra) are most sensitive to this
parameter. When a larger region size is used, the contrast energy is oversmoothed for these small
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(a) (b)

Figure 5-3: Sensitivity to local region size: (a) Regions changed when varying|Ri| (gray pixels
are more sensitive); (b) Pixels changed when varying|Ri| (red pixels are more sensitive)

regions. Our algorithm is fairly sensitive to this parameter, but we show empirically that using the
small, 3-by-3 region size typically allows for enough smoothing while still being able to capture
small regions.

Initialization

The next parameter we consider is the initialization used tostart the segmentation. We showed
extensively in Section 4.1.3 that segmentation algorithmscan converge to a local extremum (in-
stead of a global) if given a poor initialization. Here, we consider multiple gridded initializations,
where the size of each seed in the grid changes. If the seeds are too small, the curve length penalty
may dominate the evolution and not capture all parts of an object. If the seeds are too large, then
smaller regions in the image may not be captured. In general,the random seeds to initialize the
segmentation should contain a mixture of the region statistics of the final segmentation. In the case
of the zebra, when considering pixel intensities, if the initial seeds only contain pixels in the black
stripes of the zebra, then there is no driving force in the evolution to include the white stripes. Thus,
especially for regions that have a a multi-modal feature distribution, the initialization can produce
very different results. Figure 5-4 shows a comparison of thesensitivity of the three algorithms to
this parameter.

The middle image obtained using [21] is clearly the most sensitive to the initialization. Their
texture model discriminates textures at different scales and orientation even if the textures look very
similar or if they smoothly change into each other. Consequently, the stripes in the midsection of
the zebra are represented as a different texture as the stripes in the hindquarters of the zebra. This
discrimination creates many more local extrema which, as shown in Section 4.1.3, increases the
sensitivity to the initialization.

The left image obtained using [26] performs fairly well for the set of initializations used. The
few stripes that are occasionally not captured in this case can be corrected with a stronger curve
length penalty weight. Without using any texture analysis,their pixel measure is oblivious to the
actual structure of the pixels. In fact, if one were to randomly permute the pixels in the zebra
so that stripes no longer existed, this algorithm would probably still segment the image correctly.
While this algorithm works well for simple textured images,the empirical results in Section 5.1.2
will show why utilizing an explicit texture representationcan aid in segmentation.

The right image obtained using the method presented here shows that it is not very susceptible
to changes in the initialization. Unlike the method of [21],this most likely indicates that there
are very few local extrema. Additionally, this method always captures all of the zebra stripes and
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Figure 5-4: Sensitivity to random initialization: 1st column shows algorithm from [26]; 2nd column
shows algorithm from [21]; 3rd column shows our algorithm; 1st row shows regions changed when
varying initial seed size (gray pixels are more sensitive);2nd row shows pixels changed when
varying initial seed size (red pixels are more sensitive)

excludes the shadow because it models the texture appearance.

Curve Length Penalty Weight

The last parameter we consider is the weight of curve length penalty,α. This has a significant
impact on the segmentation when there are small regions or there are sharp corners. The compar-
ison is shown in Figure 5-5. Note that the region between the left legs of the zebra in the method
presented here is not captured well whenα is too large because this region is already small due to
boundary effects. However, it is always able to capture the entire body of the zebra in one region,
unlike the other methods.

The method of [21] shown in the middle image is again fairly sensitive to the curve length
penalty weight. This is not surprising because as stated previously, this method creates many local
extrema. By altering any segmentation parameter, we can expect this specific segmentation to
change due to the gradient ascent approach used in level set methods.

As expected, the method of [26] shown in the left image is fairly sensitive to the curve length
penalty weight. When this weighting is too small, the cost ofassigning neighboring stripes differ-
ent labels is not large enough to overcome the likelihoods. Thus, the thicker white stripes some-
times are grouped with the background when smaller curve length penalty weights are chosen.

5.1.2 Segmentation Results

In this section, we show empirical results for image segmentation. In each case, we compare the
results obtained using the algorithms of [26] with an estimated gain and bias field, [21] with an
estimated gain field, and the algorithm presented here. We use the multiple random initialization
method described in Section 4.1.3 to provide a more robust result for each of these methods that
is less sensitive to local extrema. The best result amongst the multiple random initializations are
chosen as our segmentation, where ranking is determined solely by the energy associated with the
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Figure 5-5: Sensitivity to curve length penalty weight: 1st column shows algorithm from [26];
2nd column shows algorithm from [21]; 3rd column shows our algorithm; 1st row shows regions
changed when varying curve length penalty weight (gray pixels are more sensitive); 2nd row shows
pixels changed when varying curve length penalty weight (red pixels are more sensitive)

segmentation without having access to the ground truth.
We first consider the segmentation shown in Figure 5-6. This image was segmented into both

two and four regions for each of the algorithms. In the two region case, the scalar algorithm of [26]
and the algorithm presented here both do very well in distinguishing the shirt from the background.
Because the method of [21] does not capture dependencies between orientation, the sleeve of the
shirt is categorized as a different texture from the body of the shirt.

In the four region case, the algorithm presented here is ableto further distinguish the sleeve
of the shirt and some of the folds in the body of the shirt. Notice how the other two algorithms
fail in predictable ways. In a sense, the algorithm of [26] isapproximately orientation and scale
invariant for textures because it ignores those attributesof the texture. Thus, because the sleeve is
only a different orientation from the body of the shirt, thismethod is not able to differentiate the
two regions. On the other hand, the method of [21] is not orientation or scale invariant because
each pyramid output is considered to be independent. Thus, it fails in grouping the sleeve with
the body of the shirt in the two region case. The texture measure presented here is only partially
invariant in scale and orientation, in that it is only invariant to smooth changes in these features.
Consequently it performs well in both the two region and fourregion cases.

We now present additional segmentation results on images from the Berkeley Segmentation
Dataset (BSD) [31] and others found on the internet. Again, we compare to the same algorithms
as before and comment on a the segmentations in 5-7. The baseball field is separated fairly well
in both the scalar algorithm and out algorithm whereas the independent steerable pyramid case
did not perform very well. The scalar algorithm groups some of the background with the grass,
while our algorithm does not. However, our algorithm is alsonot able to capture the grass between
the mound and second base which is most likely due to using a local measure combined with the
boundary effects. We have verified that excluding this smallincorrect region has a higher energy
(and thus a better segmentation), meaning that this segmentation must be a local extremum and not
a global one.

In the second image of Figure 5-7 containing pillows, the difference between the algorithms is
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Figure 5-6: Segmentation Results: first column contains theoriginal images, second column con-
tains results from scalar algorithm [26] with estimated gain and bias fields, third column contains
results from independent steerable pyramid algorithm [21]with estimated gain field, and fourth
column contains results from our algorithm. First row is segmented into two regions, and sec-
ond row is segmented into four regions. Notice how our algorithm is able to segment the shirt
from the background in the two region case, and upon further segmenting into four regions, it can
distinguish the sleeve and folds of the shirt.

more pronounced. The scalar algorithm groups only based on pixel intensities. Thus, most of the
two pillows have similar intensities and are grouped together. However, some of the background is
also grouped with the pillows due to the similar intensities. In the independent steerable pyramid
case, only part of the left pillow is separated from the rest of the image. Because the texture is
somewhat similar (modulo orientation and scale), we can think of the actual distributions within a
scale and orientation to be fairly similar. The part of the pillow that is segmented has a different
orientation from the other stripes resulting in the pyramidhaving high response at this orientation
only in this region of the image. Consequently, this algorithm seems to segment the image based
highly on orientation. Our algorithm is able to represent the textures of this image well and group
the two pillows in one region. There is a slight error in the left pillow which is due to a rapidly
changing texture in scale, gain, and bias fields. Our smoothly varying field is not able to capture
this abrupt change well, and therefore the image is not properly segmented.

The third image of Figure 5-7 differs from other images because it does not contain a strong
texture. One would think that the method of [26] (i.e. using scalar pixel intensities) would be best
suited for this type of image. Though it is able to capture much of the image, it misses the corners
that have a vignetting effect. Ideally, the gain and bias fields would have solved this issue; however
the smoothness assumptions were not able to completely overcome the strong vignetting present
in the picture (though it did help). The independent steerable pyramid method of [21] is able to
capture a rough outline on the segmentation, but suffers significantly from border effects. Also,
note how the body of the bird is not segmented properly. Our method is able to capture most of the
image well, though it does have some errors near the image boundaries.

We chose to segment the fourth image in Figure 5-7 of zebras into three regions. We hoped that
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Figure 5-7: Segmentation Results: first column contains theoriginal images, second column con-
tains results from scalar algorithm [26] with estimated gain and bias fields, third column contains
results from independent steerable pyramid algorithm [21]with estimated gain field, and fourth
column contains results from our algorithm.
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the zebras would be well described by a homogeneous texture with some smooth orientation and
scale variations. Furthermore, we anticipated that abruptchanges in these features on boundaries
between zebras would help distinguish the zebras. In the scalar case, the zebras are mainly grouped
into one region, and the background is split into two based ontheir pixel intensities. The indepen-
dent steerable pyramid method also does a good job in grouping all of the zebras in one region, but
it is not able to differentiate between the zebras. The thirdregion created by this method, which
may be hard to see, captures the noses of two of the zebras and asmall area between the legs. As
shown previously, our algorithm is able to identify object boundaries based on abrupt changes in
orientation or scale of a texture. However, these parameters are actually fairly smooth across the
boundaries of the zebras. Yet, the legs of the zebras have an abrupt change in orientation, and the
necks or chests of the zebras have an abrupt change in scale. Our algorithm therefore predictably
segments under this model to distinguish these changes instead of separating the zebras.

The last image of Figure 5-7, similar to others, is taken fromthe BSD. For the algorithms
compared in the dataset, this image is the7th hardest image out of the 100 images. Additional
segmentation results are shown in Figure 5-8.

5.2 Feature Visualization and Intrinsic Texture Image

Once a segmentation is computed, we can use our feature set for various other computer vision
problems. A common useful decomposition of an image is to findcertain intrinsic images. An
intrinsic image is a representation of the image that contains one intrinsic characteristic of the scene
[3]. One pair of useful intrinsic images contains the intrinsic reflectance and shading images. An
intrinsic reflectance image represents what the objects look like without any lighting effects. Each
pixel is represented with the color attributes (or how it reflects light) of the object it belongs to. An
intrinsic shading image represents the exact opposite; it contains only the lighting effects present in
the image and describes how they interact with the specific geometries of the objects. The problem
of finding intrinsic images can be quite difficult, especially with only one observed image. The
problem becomes even harder when considering textured images because changes in intensities
can be an effect of changes from either the reflectance (i.e. texture appearance) or shading.

The decomposition into shading and reflectance images has been studied by many scientists
and remains to be a difficult problem. [50] considered a scenario in which multiple images of the
same scene are obtained where the illumination changes between images. Though the problem
is still ill-posed, they are able to obtain fairly good results on grayscale images. Recently, [28]
developed a fairly robust algorithm to decompose the image into shading and reflectance from one
color image. Their method uses the changing colors and a pre-trained gray-scale pattern identifier
to classify whether changes are due to a reflectance change orshading change. While their method
does perform very well, it is limited to color images and requires training data.

Though we have never explicitly represented these intrinsic images, we show that we can pro-
duce visually appealing results. We will discuss how the intrinsic reflectance image and what we
call the intrinsic texture image are obtained in this section. The shading image recovery procedure
will be discussed in Section 5.4.

The estimated gain and bias fields represent the changes of the intensities due to lighting con-
ditions. Thus, if we remove these fields, then we have an estimate (at least to a scale factor) of the
intrinsic reflectance image. If we extend the same reasoningto the estimated scale and orientation
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Figure 5-8: Additional Segmentation Results: first column contains the original images, second
column contains results from scalar algorithm [26] with estimated gain and bias fields, third column
contains results from independent steerable pyramid algorithm [21] with estimated gain field, and
fourth column contains results from our algorithm.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5-9: Calculated feature set: (a) Original image; (b)Contrast energy; (c) Bias; (d) Scale
(brighter is coarser scale); (e) Orientation; (f) Estimated intrinsic reflectance image; (g) Visualiza-
tion of the estimated intrinsic texture image

fields, removing these effects should provide us with an image that is uniformly illuminated with
textures that are at uniform scales and orientations. We call this type of image the intrinsic texture
image. In Figure 5-9, we show our measured features, our estimated intrinsic reflectance image,
and a visualization of our estimated intrinsic texture image. The blocky artifacts in Figure 5-9g are
a result of how we created the image. This visualization is obtained by rotating and scaling small
regions of the estimated reflectance image with the estimated scale and orientation fields. This
image is for illustrative purposes only; it is never actually used in the segmentation.

5.3 Nonlinear Camera Model Estimation

In the previous section, we estimated the intrinsic reflectance image by removing the effects of the
gain and bias field. However, to formalize a more precise estimate of the reflectance image, we
need to first consider the process a camera follows to output an image. We use a very simple model
of the camera where the raw data from the camera sensor (also known as the irradiance image,I) is
passed through some nonlinear mapping function (called theradiometric response function,f(·))
to get to the observed image (x). This process is illustrated in Figure 5-10. The radiometric func-
tion was first introduced to correct theγ factor, (·)γ, that is in most computer monitors. Today’s
cameras use more advanced functions to provide more visually appealing photographs. We sim-
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Figure 5-10: Model of the radiometric response function of the cameraf(·) acting on the irradiance
imageI to get to the observed imagex

(a) (b)

Figure 5-11: Model for the intrinsic reflectance image: (a) Aone parameter,γ model for an
unknown camera; (b) Our feature model of the image with a gain(g) and bias (b) field

plify this by approximating the radiometric response with asimple one-parameter power function:

f(·) = (·)γ. (5.1)

The intrinsic reflectance (R) and shading (S) images discussed previously have an intimate
relationship with the irradiance image. Under certain common assumptions, the product of the
reflectance and shading images is exactly the irradiance image [28]. We show this model with our
assumptions in Figure 5-11a juxtaposed to our feature modelin Figure 5-11b.

Here, we see that the two models in Figure 5-11 are very similar. As described previously, we
first estimate the gain field and then the bias field. If there were no radiometric response function
(γ = 1), then the lighting effects could be completely explained by a multiplicative gain field, and
our estimate of the bias field should have very little energy.Thus, in the absence ofγ, our gain field
is approximately our shading image. We exploit this observation to find the optimalγ estimate in
our camera model.

Given a value ofγ, we can estimate the gain and bias fields as stated in Section 4.1.4. Assuming
a noiseless model, the reflectance image is simply

Ri (γ) =
x

1/γ
i

gi (γ)
− bi (γ) , ∀i ∈ Ω. (5.2)

Setting the bias field to be zero everywhere, which would onlyoccur if the camera model was
correct, we reconstruct the observed image using only the reflectance image and the gain field for
a givenγ value. The reconstruction error energy under the zero bias field assumption is

e (γ) =
∥

∥

(

R (γ) · g (γ)
)γ − x

∥

∥

2
, (5.3)

where all operations are done element-wise. We find the optimal γ value by minimizing (5.3)
within the range[0.2, 1] using golden section search [25].
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Figure 5-12: Two scenes taken at different exposures used tocalibrate the radiometric response
function of a camera

5.3.1 Verification with Multiple Exposed Images

We used a Canon A430 to take two different scenes at multiple exposures in order to capture the
entire radiometric function. There are many reliable ways to determine the function from this set
of multiple photos. The method of [33] has shown to provide reliable results on a wide variety of
functions by using a polynomial parameterization. We estimated the radiometric response using
this method on two sets of photos (displayed in Figure 5-12) and averaged the response.

Once the calibration was done, we took photographs using thesame camera of various scenes.
Those images are shown in Figure 5-13. We segmented each image in Figure 5-13 into two re-
gions, and then found the bestγ curve for the segmented image using our method and the method
described in [14]. Because the method presented here finds aγ curve, we first obtain the optimal
γ curve by finding theγ value to produce the closest curve in the L2 sense to the calibrated poly-
nomial curve. We compare the estimated curves with theγ curve closest to the calibrated curve
and show the results in Figure 5-14. The results obtained using the texture model presented here
are superior to the results obtained using [14] in every testimage, and were obtained using a single
grayscale image.

5.4 Shading Estimation

Given the camera model (i.e.γ), it is straightforward to determine the shading image. One
could use the estimated gain field as the shading image, but wehave empirically observed that
re-estimating the gain field assuming the bias field is zero produces better results. Here, we take
into account that the bias feature,µ, is also affected by the gain field. As we assume that these two
values are independent, it is straightforward to make this slight modification. The details of the
modification are shown in the Appendix (Section B.2).
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Figure 5-13: Various scenes photographed to test the accuracy of the radiometric response estima-
tion procedure
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Figure 5-14: Camera model estimation comparing the method presented here with the method of
[14]. The method presented here outperforms the method of [14] on every test image.
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Once the shading is estimated (given that the camera response is known), the reflectance can be
easily estimated by dividing the shading image from the irradiance image. Additionally, the shape
of the object in the image can be estimated using common shapefrom shading techniques [22].
We visually verify our shading results by inspecting the estimated shape using the algorithm pre-
sented in [44] with post Gaussian smoothing. The results of the entire segmentation and estimation
process is shown in Figure 5-15.

In the segmentation of the zebra, the method presented here is able to segment the three regions
better than [26] and [21], even with incorporating the smooth fields. In each subsequent step,
all algorithms are given the advantage of having the segmentation and the estimated radiometric
response obtained using the algorithm presented here. The second row of Figure 5-15 shows the
intrinsic reflectance and shading estimates for each algorithm respectively estimated using the
same smoothness assumptions. The intensities of the shading image within each region have been
scaled to[0, 255] for illustrative purposes. When using the measure of [26], the reflectance seems
to have some of the desired attributes (e.g. very minimal lighting or shading effects). However,
the estimated shading image contains many indications of what should be in the reflectance image
(e.g. the stripes of the zebra). The estimated reflectance and shading using the measure of [21]
performs even worse. In fact, the decomposition makes the brighter patches in the reflectance
even brighter and the darker patches even darker. The third column of estimates using the method
presented here produces good results for both the reflectance and shading. The reflectance image
seems to have minimal lighting or shading effects, and the shading image does not contain an
overwhelming evidence of the reflectance image. Note that the shading of the nose of the zebra
is incorrectly estimated because the texture of the nose (orlack thereof) is very different from the
rest of the zebra.

As expected, the shape estimates reflect what was seen in the shading estimates. The stripes
near the hindquarters of the zebra using [26] ripple with theintensity which is evidence of an incor-
rect shading estimate. When using [21], the shape of the zebra almost seems to be inverted, which
indicates a very bad estimate of the shading and reflectance decomposition. The third column
seems to provide a fairly good estimate of shape.

There has been extensive work (e.g. [45] and [29]) on estimating shape from texture cues such
as changes in orientation and scale. The work presented hererealizes that these cues could be
due to the texture itself and not the geometric properties ofthe object. Where typical shape from
texture or shape from shading algorithms may fail, the shapefrom shading from textures presented
here does fairly well.
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Figure 5-15: Segmentation, intrinsic shading estimation,and shape from shading shown for three
texture measures. The first column is the scalar algorithm from [26] with estimated gain and bias
fields, the second column is the independent steerable pyramid algorithm from [21] with estimated
gain field, and the third column is from the method presented in this thesis. In each column, the first
row shows the three-region segmentation, the second row shows the estimated intrinsic reflectance
and shading images respectively, and the last three rows show the shape estimated using [44]. In
each step of the process, the algorithm presented here outperforms the other two methods. The
algorithms of [26] and [21], in addition to incorporating our smooth fields, is also given the benefit
of our segmentation and camera response curve for the reflectance, shading, and shape estimation.
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Chapter 6

Conclusion

Two main topics were discussed in this thesis: using information measures (specifically Ali-Silvey
distances) for an energy criterion in image segmentation and modeling smoothly varying tex-
tures. Previous use of information measures for segmentation was categorized into either the label
method (i.e.d (pXL, pXpL)) or the conditional method (i.e.d

(

p+
X , p−X

)

). Gradient ascent velocities
were derived for general Ali-Silvey distances for both methods. More importantly, in the binary
segmentation case, a simple relationship between the two methods was found that maps a distance
taking on a specific form from one method to the other. This mechanism allows one to extend the
limited binary segmentation of the conditional method to a multiple region segmentation using the
label method.

This thesis has also presented a novel texture measure that decomposes a local image patch
into the contrast, bias, scale, and orientation of a local texture patch. We incorporated smoothness,
via Markov random fields, which, to our knowledge, has not been considered previously. This
combination of texture features and imposed smoothness combine to segment images with various
textures more robustly than other measures. Additionally,this representation easily extends to
estimate the radiometric response of a camera from asingleimage more accurately than previously
proposed methods. Lastly, it also allows for an accurate estimate of the irradiance, reflectance, and
shading image, which have been empirically validated by recovering the shape of the object.

6.1 Possible Changes

Some very explicit choices were made in the work of this thesis. Though these decisions aided in
the derivations, they are not the only possibilities. Here,we conjecture on aspects of our work that
could be changed or improved.

The model (i.e. the features) we designed was chosen to very explicitly represent a texture
with a dominant orientation. Empirically, we have validated that the model still seems to hold for
textures that are not necessarily dominated by a single orientation (e.g. the spots of the leopard
or the non-textured bird in Figure 5-7). Regardless of the success, one can potentially increase
performance by considering a model that is not designed explicitly for strongly oriented textures.

One possible way to capture more textures is related to the angular energy defined in Section
4.1. The angular energy is defined for the range of angles in[0, π), yet we only chose to use
the maximum energy and the energy orthogonal to the maximum.While this lends itself well to
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the incorporation of the MRF estimation, one could considerother aspects of the distribution of
angular energy.

Additionally, while the contrast energy and residual energy attempted to capture correlations
amongst the various orientations of the steerable pyramid,our method for extracting the scale does
not elegantly capture correlations across scales of the pyramid (a simple maximum operator is
used). The steerable pyramid is an invertible representation, meaning that any scale and orienta-
tion can be computed from the basis. However, the process of inverting the pyramid and computing
a new response is fairly inefficient. In the work presented here, we took advantage of the efficient
interpolation that can be achieved in orientation for the steerable pyramid. If a particular transform
could be interpolated in scale and orientation, correlations among both of these attributes would be
more easily captured. Although [43] showed that a pyramid that is shiftable (i.e. can be interpo-
lated) in scale can also be designed, they also argued that a pyramid that is shiftable in scale and
orientation is not possible (without further approximations). One could possible consider using a
pair of pyramids, one that is shiftable in scale and another one that is shiftable in orientation, but
further efforts are needed to develop the idea.

Another possible change is relevant to the function chosen to describe the probability of a
texture being strongly oriented in Section 4.1.2. It was noted that a strong change in the function
should occur when the ratio of the contrast energy to the residual energy was approximately 15.
This value was chosen because it empirically gave good results. The analysis would benefit from a
more thorough experiment where, for example, humans are actually asked at what threshold in the
ratio does a texture appear oriented.

6.2 Future Work

There are still many open areas of research and unanswered questions in the topics covered in this
thesis. The following describes potential future researchrelated to the work presented.

6.2.1 Information Measures

In Chapter 3, we considered the gradient ascent velocity fora general Ali-Silvey distance. The
segmentation comparisons were computed with three specificmeasures: mutual information in
the label method, J divergence in the conditional method, and balanced J divergence in the condi-
tional method. A more comprehensive comparison of information measures would be beneficial
to understand when particular measures are more suited for specific images. Additionally, one
may consider incorporating the work of [35] which links information measures to surrogate loss
functions.

6.2.2 Intelligent Initializations

As shown in Sections 4.1.3 and 5.1.1, image segmentation algorithms (especially those involv-
ing more complicated models) tend to have numerous local extrema and are fairly sensitive to
the initialization. We have presented two approaches to a random initialization: the gridded and
non-gridded method. We have shown that the using the best result of multiple non-gridded ini-
tializations typically outperforms the single gridded initialization. However, this method requires
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segmenting an image multiple times which increases computation time. A more intelligent ini-
tialization that analyzes the model measurements could be developed and used to overcome the
local extrema issue without increasing the computation time. Additionally, one could consider
perturbations to the level set function to avoid falling into a local extremum.

6.2.3 Experimental Validation

Methods for image segmentation and intrinsic reflectance and shading estimation are difficult to
evaluate. We have presented a small set of results that is encouraging for our model; however,
more extensive experimental validation is needed to determine how effective our model is. In
segmentation, we have visually compared our results with two other algorithms. These algorithms
were chosen because they fit into our framework fairly straightforwardly. Comparison to more
recent algorithms would be beneficial, but is typically hardbecause of the lack of publicly available
source code.

One possibility is to compare to a large segmentation database like the Berkeley Segmentation
Database (BSD) [31]. This has not been done here for a few reasons. Firstly, this database typically
reports the probability that a pixel is declared to be on a boundary, rather than the results of region-
based segmentation methods. The method that the BSD uses to evaluate the success of an algorithm
favors a soft boundary detector. Ground truth segmentations are combined from multiple hand
segmentations where each typically is segmented into a different number of regions. Because the
algorithm presented here considers segmenting an image into a specified number of regions, the
goodness criterion of [31] may penalize this algorithm morethan boundary detection algorithms.
Thus, for a more accurate comparison, an extension using thetexture model presented here to a
boundary detection algorithm could be developed for a better comparison.

Additionally, large image databases like [31] inevitably contain a wide variety of natural im-
ages. Though we have tried to show results for various scenes, it is important to realize that
our algorithm is specifically designed for textured images.Thus, a more suitable image database
would contain only images that fit our model. To our knowledge, there is no database that is solely
composed of natural textured images.
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Appendix A

Derivations of Distance Measures

A.1 Equivalence of MAP and Maximizing MI

In this section we will show that finding the MAP estimate of the labeling is equivalent to finding
the labeling that maximizes the mutual information of a random label and its likelihood. We denote
the region,Rl, as the set of all pixels that have the labelingl.

Rl = {i|Li = l} (A.1)

We start with the typical MAP estimate on the labels,L.

L∗ = arg max
L

P (L|X) (A.2)

= arg max
L

log P (X|L) + log P (L) (A.3)

= arg max
L

∑

i∈Ω

log P (Xi|Li) + log P (L) (A.4)

= arg max
L

∑

l

[

∑

i∈Rl

log P (Xi|Li = l)

]

+ log P (L) (A.5)

where we have assumed in Equation A.4 that the pixelsxi are i.i.d. conditioned on the labeling. The
inner summation in Equation A.5 is proportional to the empirical expected value oflog P (xi|Li).
If we assume that each region is fairly large, we can approximate the empirical expected value with
the actual expected value. Thus, we have the following.

L∗ ≈ arg max
L

∑

l

∣

∣Rl
∣

∣E [log P (Xi|Li = l)] + log P (L) (A.6)

= arg max
L

−
∑

l

∣

∣Rl
∣

∣H (Xi|Li = l) + log P (L) (A.7)

= arg max
L

− |Ω|
∑

l

∣

∣Rl
∣

∣

|Ω| H (Xi|Li = l) + log P (L) (A.8)
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Here, we note that the ratio,
|Rl|
|Ω|

is the empirical prior on the labelLi taking on valuel. We can
then relate this expression to mutual information by the following.

L∗ ≈ arg max
L

− |Ω|
∑

l

P (Li = l)H (Xi|Li = l) + log P (L) (A.9)

= arg max
L

− |Ω|H (Xi|Li) + log P (L) (A.10)

= arg max
L

|Ω| (I (Xi; Li) − H (Xi)) + log P (L) (A.11)

= arg max
L

|Ω| I (Xi; Li) + log P (L) (A.12)

This result shows the equivalence of finding the MAP labelingversus finding the labeling that
maximizes the MI. The prior term on the labeling,log P (L) can be thought of as a regularization
term to ensure that the labeling tends to group neighboring pixels together. When using level-set
methods, this term is related to the curve length penalty. Thus, we have shown that finding the
MAP estimate is equivalent to maximizing the mutual information of a pixel and its label under
certain commonly made assumptions.

A.2 General Formulas and Derivatives

Two approximations will be used throughout the derivation.They were stated originally in Chapter
3, but will be reproduced here for convenience:

EpX
[f(·)] =

∫

x∈X

pX (x) f(x)dx ≈ 1

|R|

∫

i∈R

f(xi)di (A.13)

g1(a) ≈ g2(a) ∀g1, g2 ∈















1
|R|

∫

i∈R
f(xi)K(xi − a)di,

EpX
[f(xi)K(xi − a)] ,

∫

x∈X
pX (x) f(x)K(x − a)dx,

pX (a) f(a)















(A.14)

Two formulas will be used throughout the derivation. The first of these appears when we have
an equation of the following form:

∂E

∂t
=

∮

C

〈−→
V , S (xℓ)

−→
N
〉

dℓ, (A.15)

where the vector,
−→
N , is a unit normal vector pointing outwards from the positivelevel set values.

If we can take the partial derivative of an energy w.r.t. time, and write it in this form, then the
gradient ascent velocity to maximizeE for the level set at pixelℓ is the following [53]:

∂ϕℓ

∂t
= S (xℓ) δ0(ϕℓ). (A.16)

We typically use the smooth Heaviside function in implementation to smearδ0(ϕℓ) over the curve
as discussed in Section 2.1.3.
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The other formula we will be using is the multidimensional Leibniz Integral rule (also known
as the Reynolds Transport Theorem in two dimensions). This states the following:

∂

∂t

∫

R(t)

F (xA, t) dA =

∫

R(t)

∂

∂t
F (xA, t) dA +

∮

C

〈−→
V , F (xℓ, t)

−→
N
〉

dℓ, (A.17)

where the vector,
−→
N is a unit normal vector pointing outwards fromR. Because we are considering

the same velocity for one level set, we will indicate a negative velocity for this equation when we
integrate overR−.

In addition to these two formulas, we will also often need thetime derivative of a few terms.

∂

∂t
p±X (xi) =

∂

∂t

[

1

|R±|

∫

s∈R±

K±(xi − xs)ds

]

=
∂

∂t





1

|R±|

∫

s∈R±

e−
(xi−xs)2

h2

√
πh2

ds





=
∂

∂t

[

1

|R±|

]
∫

s∈R±

e−
(xi−xs)2

h2

√
πh2

ds +
1

|R±|
∂

∂t





∫

s∈R±

e−
(xi−xs)2

h2

√
πh2

ds





=

∮

C

〈−→
V ,∓p±X (xi)

|R±|
−→
N

〉

dℓ +

∮

C

〈−→
V ,±K±(xi − xℓ)

|R±|
−→
N

〉

dℓ

Thus, the time derivative to our nonparametric conditionaldistributions are

∂

∂t
p±X (xi) =

∮

C

〈−→
V ,± 1

|R±|
[

K±(xi − xℓ) − p±X (xi)
]−→
N

〉

dℓ. (A.18)

We will also need the time derivative of the size of a region:

∂

∂t

∣

∣R±
∣

∣ =
∂

∂t

∫

i∈R±

di =

∮

C

〈−→
V ,±−→

N
〉

dℓ. (A.19)

A.3 Gradient Ascent for Conditional Method

We will now derive the gradient ascent velocity for the conditional method described in Section
3.2. We begin with an energy functional based on a general Ali-Silvey distance between the two
distributions conditioned on the labeling:

EC = |Ω| d
(

p+
X , p−X

)

= |Ω|
∫

X

p+
X (x) C

(

p−X (x)

p+
X (x)

)

dx, (A.20)

where|Ω| is the number of pixels in the image andC(·) is a convex function not to be confused
with C, the curve. As stated previously, the|Ω| term is used so that the velocities can be accurately
compared with the label method. This term only contributes aconstant scaling on the velocity and
does not affect the majority of the derivation. We proceed bytaking the partial derivative of this
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energy w.r.t. time.

∂

∂t
ECM = |Ω|

∫

X

C

(

p−X (x)

p+
X (x)

)

∂p+
X (x)

∂t
+ C ′

(

p−X (x)

p+
X (x)

)[

∂p−X (x)

∂t
− p−X (x)

p+
X (x)

∂p+
X (x)

∂t

]

dx

whereC ′(·) is the derivative ofC(·) w.r.t. to(·):

C ′ (·) =
∂C (·)
∂ (·) (A.21)

We now use Equation A.18 to obtain the following:

∂

∂t
ECM =

∮

C

〈−→
V ,

1

π+

∫

X

[

K+(xi − xℓ) − p+
X (xi)

]

C

(

p−X (x)

p+
X (x)

)

dx
−→
N

〉

dℓ

+

∮

C

〈−→
V ,

1

π−

∫

X

[

−K−(xi − xℓ) + p−X (xi)
]

C ′

(

p−X (x)

p+
X (x)

)

dx
−→
N

〉

dℓ

−
∮

C

〈−→
V ,

1

π+

∫

X

[

K+(xi − xℓ) − p+
X (xi)

] p−X (x)

p+
X (x)

C ′

(

p−X (x)

p+
X (x)

)

dx
−→
N

〉

dℓ.

Using the approximation in Equation A.14, we can rewrite this expression as

∂

∂t
ECM =

∮

C

〈−→
V ,

1

π+

[

C

(

p−X (xℓ)

p+
X (xℓ)

)

− d
(

p+
X , p−X

)

]−→
N

〉

dℓ

+

∮

C

〈−→
V ,

1

π−

[

−C ′

(

p−X (xℓ)

p+
X (xℓ)

)

+

∫

X

p−X (xi)C ′

(

p−X (x)

p+
X (x)

)

dx

]−→
N

〉

dℓ

−
∮

C

〈−→
V ,

1

π+

[

p−X (xℓ)

p+
X (xℓ)

C ′

(

p−X (xℓ)

p+
X (xℓ)

)

−
∫

X

p−X (xi)C ′

(

p−X (x)

p+
X (x)

)

dx

]−→
N

〉

dℓ

Thus, the gradient ascent velocity at a pointℓ is

SCM (xℓ) =
1

π+

[

C

(

p−X (xℓ)

p+
X (xℓ)

)

− d
(

p+
X , p−X

)

]

+
1

π+π−
Ep−

X

[

C ′

(

p−X (·)
p+

X (·)

)]

(A.22)

−
[

1

π−
+

p−X (xℓ)

π+p+
X (xℓ)

]

C ′

(

p−X (xℓ)

p+
X (xℓ)

)

. (A.23)

A.4 Gradient Ascent for Label Method

We will now derive the gradient ascent velocity for the labelmethod. We begin with a general
Ali-Silvey distance between the joint distribution and theproduct of the marginal distributions.

ELM = |Ω| d (pXL, pXpL) = |Ω|EpXL

[

C

(

pXpL

pXL

)]

= |Ω|
∑

l∈L

∫

X

pXL(x, l)C

(

pX(x)pL(l)

pXL(x, l)

)

dx
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By conditioning on the labels,l, we can rewrite this expression as

ELM = |Ω|
∑

l∈L

πl

∫

X

pl
X(x)C

(

pX(x)

pl
X(x)

)

dx,

where the notationpl
X(·) is the distribution conditioned on the label taking on a value of l (equiva-

lently pX|L (·|L = l)). We proceed by using the LLN approximation in Equation A.13:

ELM = |Ω|
∑

l∈L

∣

∣Rl
∣

∣

|Ω|
1

|Rl|

∫

Rl

C

(

pX(xi)

pl
X(xi)

)

di

=
∑

l∈L

∫

Rl

C

(

pX(xi)

pl
X(xi)

)

di.

For simplicity, we now consider the two region case:

ELM =

∫

R+

C

(

pX (xi)

p+
X (xi)

)

di +

∫

R−

C

(

pX (i)

p−X (i)

)

di.

We proceed by taking the partial derivative w.r.t. time of this energy functional:

∂

∂t
ELM =

∂

∂t

∫

R+

C

(

pX (xi)

p+
X (xi)

)

di +
∂

∂t

∫

R−

C

(

pX (xi)

p−X (xi)

)

di. (A.24)

We consider these two terms separately, noting that there isonly a sign difference due to the
opposite normal directions:

∂

∂t

∫

R±

C

(

pX (xi))

p±X (xi)

)

di

=

∮

C

〈−→
V ,±C

(

pX (xℓ)

p±X (xℓ)

)−→
N

〉

dℓ +

∫

R±

C ′

(

pX (xi)

p±X (xi)

)

∂

∂t

pX (xi)

p±X (xi)
di. (A.25)

The second term in this equation can be simplified as follows:
∫

R±

C ′

(

pX (xi)

p±X (xi)

)

∂

∂t

pX (xi)

p±X (xi)
di

=

∫

R±

C ′

(

pX (xi)

p±X (xi)

)

pX (xi)

−p±X (xi)
2

∮

C

〈−→
V ,

[

±K± (xi − xℓ) − p±X (xi)

|R±|

]−→
N

〉

dℓdi

=

∮

C

〈−→
V ,

[

± 1

|R±|

∫

R±

C ′

(

pX (xi)

p±X (xi)

)

pX (xi)

p±X (xi)

(

1 − K+ (xi − xℓ)

p±X (xi)

)

di

]−→
N

〉

dℓ

≈
∮

C

〈−→
V ,

[

±
∫

X

C ′

(

pX (x)

p±X (x)

)

pX (x)

(

1 − K± (x − xℓ)

p±X (x)

)

dx

]−→
N

〉

dℓ

≈
∮

C

〈−→
V ,

[

±EpX

[

C ′

(

pX

p±X

)]

∓ C ′

(

pX (xℓ)

p±X (xℓ)

)

pX (xℓ)

p±X (xℓ)

]−→
N

〉

dℓ, (A.26)
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where we have used the approximation in Equations A.13 and A.14. Combining Equations A.24 -
A.26, we find that the gradient ascent velocity for pixelℓ is

SLM (xℓ) =C

(

pX (xℓ)

p+
X (xℓ)

)

+ EpX

[

C ′

(

pX

p+
X

)]

− C ′

(

pX (xℓ)

p+
X (xℓ)

)

pX (xℓ)

p+
X (xℓ)

−C

(

pX (xℓ)

p−X (xℓ)

)

− EpX

[

C ′

(

pX

p−X

)]

+ C ′

(

pX (xℓ)

p−X (xℓ)

)

pX (xℓ)

p−X (xℓ)
. (A.27)

A.5 Gradient Ascent for a Balanced Symmetric Ali-Silvey Dis-
tance

We begin with an energy functional of the form of a balanced symmetric Ali-Silvey distance mea-
sure as described in Section 3.5

EBS = |Ω| dBS

(

p+
X , p−X

)

= |Ω|
[

π+d
(

p+
X , p−X

)

+ π−d
(

p−X , p+
X

)]

.

We now derive the gradient ascent velocity of the left term and extend it to find the overall velocity.
Taking the partial derivative w.r.t. time of the left term leads us to

∂

∂t
EBS,left

=
∂π+

∂t
|Ω| d

(

p+
X , p−X

)

+ π+ ∂

∂t

[

|Ω| d
(

p+
X , p−X

)]

=
∂R+

∂t
d
(

p+
X , p−X

)

+ π+ ∂

∂t
ECM

=

∮

C

〈−→
V ,

[

C (r (xℓ)) +
1

π−
Ep−

X
[C ′ (r (·))] −

[

π+

π−
+ r (xℓ)

]

C ′ (r (xℓ))

]−→
N

〉

dℓ.

Thus, the total gradient ascent velocity for a balanced symmetric distance is

SBS (xℓ) =

[

C

(

p−X (xℓ)

p+
X (xℓ)

)

+
1

π−
Ep−

X

[

C ′

(

p−X (·)
p+

X (·)

)]

−
[

π+

π−
+

p−X (xℓ)

p+
X (xℓ)

]

C ′

(

p−X (xℓ)

p+
X (xℓ)

)

−C

(

p+
X (xℓ)

p−X (xℓ)

)

− 1

π+
Ep+

X

[

C ′

(

p+
X (·)

p−X (·)

)]

+

[

π−

π+
+

p+
X (xℓ)

p−X (xℓ)

]

C ′

(

p+
X (xℓ)

p−X (xℓ)

)

]

.

(A.28)
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Appendix B

Smooth MRF Estimation

In this chapter of the appendix, derivations for Markov random field (MRF) estimation are shown.
First, the fixed-point update for a field affecting a single parameter is shown. Then, we extend
this derivation to a field that affects two parameters (specifically, the shading image estimation
affecting both contrast energy and bias). Finally, we derive a generalized MRF estimation for a
field that affects a set of independent parameters.

B.1 Single Parameter MRF Estimation

We start with a smooth additive Markov random field calledφ̃. We use the model shown in Figure
4-10c where our intrinsic parameter,θ∗, is estimated using a kernel density estimate. We assume
that our MRF isφ̃ ∼ N (0, Λφ). Our goal is to find the MAP estimate ofφ̃. Starting from Equation
4.12, we have:

φ̃ = arg max
φ

[

P
(

φ|θ
)]

= arg max
φ

[

log P
(

θ|φ
)

+ log P
(

φ
)]

= arg max
φ

[

N
∑

i=1

log P (θi|φi) + log P
(

φ
)

]

where we have assumed that the elements ofθ∗ are i.i.d. conditioned on knowing̃φ. We then
differentiate the expression and set it to zero to find the maximum.

∂

∂φ

[

N
∑

i=1

log P (θi|φi) + log P
(

φ
)

]

φ̃

= 0 (B.1)

We first look at the derivative of the left term. Because each term in the summation is only a
function ofφi, we can bring the derivative inside the sum.

∂

∂φi
log P (θi|φi) =

∂
∂φi

P (θi|φi)

P (θi|φi)
(B.2)
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The numerator in (B.2) can be found by the following:

∂

∂φi
[P (θi|φi)] =

∂

∂φi

[

pθi|φi
(θi|φi)

]

=
∂

∂φi
[pθ (θi − φi)]

=
∂

∂φi

[

1

Nh
√

π

N
∑

s=1

e−
(θi−φi−θs+φs)2

h2

]

=
1

Nh
√

π

N
∑

s=1

e−
(θi−φi−θs+φs)2

h2

(

2 (θi − φi − θs + φs)

h2

)

=
2

h2
[(θi − φi) pθ (θi − φi) − wθ (θi − φi)]

where the termspθi
(θi − φi) andwθi

(θi − φi) are the estimated PDF and weighted PDF defined
as follows

pθ (θi − φi) =
1

Nh
√

π

N
∑

s=1

e−
(θi−φi−θs+φs)2

h2

wθ (θi − φi) =
1

Nh
√

π

N
∑

s=1

e−
(θi−φi−θs+φs)2

h2 (θs − φs)

Defining the ratio,wθ
p(·), as the weighted PDF over the PDF, Equation B.2 becomes the following:

∂

∂φi
log P (θi|φi) =

2

h2

[

θi − φi − wθ
p (θi − φi)

]

(B.3)

We note that the derivative of a zero mean multivariate normal distribution is the following:

∂

∂φ
P
(

φ
)

= Λ−1
φ φ̃P

(

φ
)

(B.4)

Using Equations B.3 and B.4, we can rewrite Equation B.1 as the following:

0 =
2

h2

[

θ − φ̃ − wθ
p

(

θ − φ̃
)]

− Λ−1
φ φ̃

⇒ θ − φ̃ − wθ
p

(

θ − φ̃
)

− h2

2
Λ−1

φ φ̃ = 0

which is exactly the expression in Equation 4.13 of Section 4.1.4.

B.2 Shading Estimation

When estimating the shading image, we look at its effects on both the contrast energy and the bias
term. It is important to note that this is only for estimatingthe shading image,S, and not the gain
field, g, or the bias fieldb. This is only a slight modification, but should be mentioned nonetheless.

The derivation for this field follows straightforwardly from the previous derivation. From Equa-
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tion 4.12, we simply replace the first conditional distribution with the product of our two features

S = arg max
S

[

log
(

P (E|S)P
(

µ|S
))

+ log P (S)
]

.

We assume the shading image is smooth in the log domain which allows us to treat it as an
additive field. The contrast energy was a sum of squared filteroutputs, thus the log of the shading
image is additive on the log of the square root of the contrastenergy. We define our fields in the
log domain as follows

S log = log (S)

Elog = log
(

√

E
)

µ
log

= log
(

µ
)

.

Because of the independence assumption, we can propagate this change through most of the
proof and arrive at the following

2
h2

Elog

[

Elog − S log − wE
p

(

Elog − S log

)]

+ 2
h2

µlog

[

µ
log

− S log − wµ
p

(

µ
log

− S log

)] = Λ−1
Slog

S log.

Now we rearrange the equation as follows

2
h2

Elog

[

Elog − wE
p

(

Elog − S log

)]

+ 2
h2

µlog

[

µ
log

− wµ
p

(

µ
log

− S log

)] =

[

Λ−1
Slog

+
2

h2
Elog

I +
2

h2
µlog

I

]

S log = MS log,

where the matrixM is introduced for notational purposes. Continuing, we havethe following

S log = M−1 2

h2
Elog

[

Elog − wE
p

(

Elog − S log

)]

+ M−1 2

h2
µlog

[

µ
log

− wµ
p

(

µ
log

− S log

)]

S log = S log,1 + S log,2.

Now we consider only one of these terms, as it is straightforward to find the other one.

S log,1 =

[

Λ−1
Slog

+
2

h2
Elog

I +
2

h2
µlog

I

]−1
2

h2
Elog

(

Elog − wE
p

(

Elog − S log

))

=

[

h2
Elog

2
Λ−1

Slog
+ I +

h2
Elog

h2
µlog

I

]−1
(

Elog − wE
p

(

Elog − S log

))

=

[

h2
Elog

2
Λ−1

Slog
+

h2
µlog

+ h2
Elog

h2
µlog

I

]−1
(

Elog − wE
p

(

Elog − S log

))

= F−1
E

[

Elog − wE
p

(

Elog − S log

)]
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whereF−1
E is a lowpass filter. However, instead of having unity DC gain,the same reasoning as

in the paper reveals thatF−1
E has a DC gain of

h2
µlog

h2
µlog

+h2
Elog

. A similar filter, F−1
µ can be found for

S log,2 to have a DC gain of
h2

Elog

h2
µlog

+h2
Elog

. Thus, our fixed point iteration becomes the following

S(k+1)
log = F−1

E

[

Elog − wE
p

(

Elog − S(k)
log

)]

+ F−1
µ

[

µ
log

− wµ
p

(

µ
log

− S(k)
log

)]

. (B.5)

B.3 Generalized Multiple Parameter MRF Estimation

We can easily generalize the formulation in the previous section to estimate the MRF based on it
affecting a set of parameters,Θ. Defining the smooth field,f , to be additive on the|Θ| different
independent parameters, we can write a set of relationshipsof 4.12 as follows:

f = arg max
f

[

log
∏

θ∈Θ

P
(

θ|f
)

+ log P
(

f
)

]

,

noting that if the field were multiplicative, the log domain could be used. Again, this propagates
through most of the proof to the following

∑

θ∈Θ

2

h2
θ

[

θ − f − wθ
p

(

θ − f
)]

= Λ−1
f f.

We extract the field term from the left side of the equation andsimplify as follows:

∑

θ∈Θ

2

h2
θ

[

θ − wθ
p

(

θ − f
)]

= Λ−1
f f +

∑

θ∈Θ

2

h2
θ

f =

[

Λ−1
f + I

∑

θ∈Θ

2

h2
θ

]

f,

whereI is the identity matrix. Solving forf , we have

f =

[

Λ−1
f + I

∑

θ1∈Θ

2

h2
θ1

]−1
∑

θ∈Θ

2

h2
θ

[

θ − wθ
p

(

θ − f
)]

=
∑

θ∈Θ





[

Λ−1
f + I

∑

θ1∈Θ

2

h2
θ1

]−1
2

h2
θ

[

θ − wθ
p

(

θ − f
)]





=
∑

θ∈Θ





[

h2
θ

2
Λ−1

f + I + Ih2
θ

∑

θ1 6=θ

1

h2
θ1

]−1
[

θ − wθ
p

(

θ − f
)]



 .
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We then expand the inner summation as follows

f =
∑

θ∈Θ





[

h2
θ

2
Λ−1

f + I

(

1 +
h2

θ

∑

θ1 6=θ

∏

θ2 6=θ,θ1
h2

θ2
∏

θ1 6=θ h2
θ1

)]−1
[

θ − wθ
p

(

θ − f
)]





=
∑

θ∈Θ





[

h2
θ

2
Λ−1

f + I

(

∏

θ1 6=θ h2
θ1

+ h2
θ

∑

θ1 6=θ

∏

θ2 6=θ,θ1
h2

θ2
∏

θ1 6=θ h2
θ1

)]−1
[

θ − wθ
p

(

θ − f
)]





=
∑

θ∈Θ





[

h2
θ

2
Λ−1

f + I

(

∑

θ1∈Θ

∏

θ2 6=θ1
h2

θ2
∏

θ1 6=θ h2
θ1

)]−1
[

θ − wθ
p

(

θ − f
)]





Thus, for a field that affects the parameters in the setΘ, the fixed point update is

f (k+1) =
∑

θ∈Θ

F−1
θ

[

θ − wθ
p

[

θ − f
)]

, (B.6)

whereF−1
θ is a lowpass filter with DC gain

DC Gain
(

F−1
θ

)

=

∏

θ1 6=θ h2
θ1

∑

θ1∈Θ

∏

θ2 6=θ1
h2

θ2

. (B.7)

We note that all of the DC filter gains sum to 1:
∑

θ∈Θ

∏

θ1 6=θ h2
θ1

∑

θ1∈Θ

∏

θ2 6=θ1
h2

θ2

= 1.
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