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Abstract

We present a method for sampling from the posterior dis-
tribution of implicitly defined segmentations conditionedon
the observed image. Segmentation is often formulated as
an energy minimization or statistical inference problem in
which either the optimal or most probable configuration
is the goal. Exponentiating the negative energy functional
provides a Bayesian interpretation in which the solutions
are equivalent. Sampling methods enable evaluation of dis-
tribution properties that characterize the solution spacevia
the computation of marginal event probabilities. We de-
velop a Metropolis-Hastings sampling algorithm over level-
sets which improves upon previous methods by allowing for
topological changes while simultaneously decreasing com-
putational times by orders of magnitude. AnM -ary exten-
sion to the method is provided.

1. Introduction

Level set representations and Markov chain Monte Carlo
(MCMC) sampling methods are useful in a wide vari-
ety of applications. Level set representations eschew ex-
plicit curve and surface parameterizations while allowing
topological changes with superior numerical stability [17].
MCMC methods enable one to reason about complex dis-
tributions for which exact analysis is intractable [6, 7]
and additionally provide a more extensive characterization
of energy minimization formulations when viewed from
a Bayesian perspective. Integrating the two formalisms
faces two distinct challenges. First, the high dimension-
ality of implicit representations induces a large configura-
tion space resulting in slow convergence for naive imple-
mentations. Second, certain technical conditions induce a
correspondence problem that, in prior efforts, has overly
constrained the applicable class of curves (e.g. simply con-
nected shapes). Here, we address these and additional is-
sues resulting in acomputationally tractableMCMC sam-
pling algorithm over the space of implicitly defined shapes.
This, in turn, simplifies the estimation of marginal statis-
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Figure 1: Examples of MCMC sampling on a synthetic and
natural image. Qualitatively, thresholding the probability of
boundary (PB) is superior to the optimal segmentation.

tics defined over the distribution of implicitly defined curves
C for a given imageI. While many level set methods
are formulated as an energy minimization over some func-
tional E (C; I), it is often the case that, either due to the
ill-posedness of unsupervised segmentation or the stochas-
tic nature of a well posed formulation, multiple plausible
explanations exist. In either case, characterization of the
posterior distribution is desirable; e.g., marginal statistics
over the distribution may offer a more informative charac-
terization than the optimal configuration. Consequently, a
common alternative is to recast the optimization formula-
tion as one of Bayesian inference by viewing the energy
functional as the negative log of a probability density

p (C|I) ∝ exp (−E (C; I)) . (1)

Depending on the form of Equation 1, when ex-
plicit characterization and/or direct sampling is intractable,
one may utilize (under certain technical conditions) the
Metropolis-Hastings algorithm [11] to both sample from the
distribution and evaluate marginal statistics.

By way of example, consider the synthetic and natural
images in the first column of Figure 1. For both images,
we include the associated probability of boundary (PB) im-
age, a thresholded PB image, and the minimal energy seg-
mentation obtained via the MCMC sampler described in the
sequel. While neither the thresholded PB image nor the op-
timal segmentation is error-free, the optimal configuration
produces a larger number of false positives. This a well
known phenomenon [6] in the MCMC literature.
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Here, we emphasize that our primary contribution is to
develop acomputationally tractableMetropolis-Hastings
sampling algorithm by which energy based, level-set formu-
lations may be analyzed within a Bayesian framework. As
with many MCMC samplers, the proposal distribution has a
critical impact on the length of themixing time, i.e. conver-
gence to the stationary distribution from which we would
like to sample. In addition to relaxing constraints on the al-
lowed shape class (as compared to previous methods [4, 5]),
we suggest a design method for the proposal distribution
that dramatically reduces the mixing time. In summary, the
contributions of this work are threefold. First, we develop
an MCMC sampling method for implicit shape representa-
tions that includes topological changes. Second, we extend
the approach to the case ofM -ary segmentations. Third, we
achieve these improvements while simultaneously acceler-
ating the sampling procedure byordersof magnitude over
previous methods. While we utilize explicit formulations in
order to demonstrate the method, the method itself is quite
general and can be used for almost any static image feature
and region based energy functional.

2. Related Work

Sampling from the space of implicit segmentations has
been suggested previously. Fan et al. [5] develop a hy-
brid method: alternating between implicit (level set) and ex-
plicit (marker based) representations of a simply connected
shape. The proposal distribution generates a sample per-
turbation over a set of marker points which, when comput-
ing what is known as the Hastings ratio, induces a corre-
spondence problem over the explicit representation. Upon
completion, the new sample is converted into an implicit
form by resolving the Eikonal equation. While establish-
ing the feasibility of applying MCMC methods to implicit
representations, [5] is constrained to binary segmentations
of a single, simply connected shape. Furthermore, itera-
tions between implicit and explicit representations incura
substantial computational burden. Fan suggests the use of
jump diffusion processes [10] as a means of incorporating
topological changes. However, no formulation satisfying
detailed balance (see Section 3.2) is provided.

Chen et al. [4] improve upon the method of Fan et al.
by obviating the need to transition between implicit and ex-
plicit representations. They construct a smooth normal per-
turbation at asinglepoint on the curve (denoted the “foot
point”) that preserves the signed distance property between
proposal samples, thereby simplifying the correspondence
problem and evaluation of the Hastings ratio. However, the
resulting perturbations are extremely smooth, and as such,
explore the configuration space very slowly. As in [5] obsta-
cles remain for incorporating topological changes, restrict-
ing this method to binary segmentations with a single sim-
ply connected shape.

3. Metropolis-Hastings Sampling over Curves

The energy functionalE (C; I) is a surrogate for evaluat-
ing what constitutes a good segmentation. In both paramet-
ric and nonparametric settings, this term can often be de-
composed into a data-fidelity term (i.e. a likelihood) and a
penalty/regularization term (i.e. a prior). While we discuss
unsupervised nonparametric methods (whose data-fidelity
terms have a natural information-theoretic interpretation),
the underlying framework applies to both parametric and
nonparametric models. For example, [14] uses the mutual
information (MI) between the pixel intensities and labels,
L, as the data-fidelity term combined with a curve length
penalty as the prior. In the supplemental material we pro-
vide conditions under which this energy functional is equiv-
alent to a posterior distribution. Other commonly used en-
ergy functionals include KL divergence [12], J divergence
[13], and Bhattacharyya distance [16]. In the following sec-
tion, we develop our sampling framework with a general
energy functional,E, such that any of these information-
theoretic measures can be applied. Following prior ap-
proaches, we compute distribution estimates via a nonpara-
metric kernel density estimate (KDE) [18]. Fast methods
for computing a KDE can be found in [9].

While MCMC sampling in finite dimensional spaces has
been well studied, the same cannot be said with respect
to sampling from the infinite dimensional space of shapes.
One can construct a Metropolis-Hastings sampler [11] as
follows. Let ϕ̂(t+1) be a proposed sample of the implicit
representation (i.e. the level-set function) generated from a
distributionq(ϕ̂(t+1)|ϕ(t)) conditioned on the current sam-
ple, ϕ(t). The superscript values(t) and(t + 1) index the
sampling iteration and the hat indicates a proposed sample.
This new sample is then accepted with probability

Pr
[

ϕ(t+1) = ϕ̂(t+1)
∣
∣ϕ(t)

]

= min

[

Hastings Ratio
︷ ︸︸ ︷

π
(
ϕ̂(t+1)

)

π
(
ϕ(t)

)

︸ ︷︷ ︸

Posterior Sample Ratio

·
q
(
ϕ(t)

∣
∣ϕ̂(t+1)

)

q
(
ϕ̂(t+1)

∣
∣ϕ(t)

)

︸ ︷︷ ︸

Forward-Backward Ratio

, 1

]

. (2)

Otherwise,ϕ(t+1) = ϕ(t). Convergence to the stationary
distribution occurs after a suitable number of iterations (i.e.
the mixing time) which produces asinglesample from the
posterior. Evaluating the Hastings ratio, the product of the
two ratios in the acceptance probability, has been the pri-
mary barrier for implementing MCMC methods over im-
plicit representations. In particular, one needs to solve a
correspondence problem to compute the probability of gen-
erating the forward and reverse transition (in the forward-
backward ratio). Doing so satisfies the condition of detailed
balance which, in addition to ergodicity, is sufficient for
convergence to the desired posterior distribution.
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As with any level-set representation, one needs to choose
the magnitude of the level-set,ϕ, away from the curve.
Previous sampling methods have constrained the level-set
function to be a signed distance function (SDF). Chen [4]
solves the correspondence problem by generating pertur-
bations that are SDF-preserving, thus having a one-to-one
mapping from forward and reverse transitions. An alterna-
tive is to produce a non-SDF-preserving perturbation and
reinitialize the level set function to an SDF at each iter-
ation. However, this creates a many-to-many correspon-
dence problem which significantly increases the computa-
tional complexity of the forward-backward ratio.

Our idea is straightforward: do not constrain the level-set
function to be an SDF. SDFs provide advantages in terms
of numerical stability and the computation of the curva-
ture (see [17] for details) for optimization based methods.
As the method here is not PDE-based and optimization is
not the specific goal, there is essentially no penalty for us-
ing an alternative. While our level-set function no longer
satisfies the SDF property, we still benefit from the way
implicit representations handle topological changes and re-
parameterization. Furthermore, this greatly simplifies the
design and evaluation of a proposal distribution by allow-
ing for straightforward evaluation of the Hastings ratio.

3.1. Strategic Bias in the Proposal Distribution

We note that the closerq (◦|△) is to π (◦), the closer
the Hastings ratio is to unity and the higher the acceptance
rate. Consequently, designing proposal distributions which
capture essential, application-specific characteristicsof the
posterior distribution can improve convergence speeds by
reducing the number of rejected samples. By relaxing the
SDF constraint on the level-set function, many potential
proposal distributions will result in a tractable evaluation
of the Hastings ratio. Without care, however, the majority
of these proposal distributions will have very poor mixing
times. Thus, our aim is to design a proposal distribution that
is easily evaluated, has a high acceptance rate, and explores
the configuration space via large perturbations.

In Equation 2, the Hastings ratio consists of the posterior
sample ratio (PSR) and the forward-backward ratio (FBR).
The PSR represents the ratio of the posterior probability of
the new sample over that of the old. Generating samples
that have higher posteriors will produce high values of this
ratio. The FBR represents the probability of generating the
previous sample conditioned on the new one (the backward
transition) over the probability of generating the new sam-
ple conditioned on the previous one (the forward transition).

Fan et al. [5] suggest using a proposal distribution biased
by the curvature to favor samples that fit the prior model.
Here, we develop a proposal which favors both the likeli-
hood and prior model. This generally produces higher PSR
values, but biases the FBR toward smaller values (see the

supplemental materials for an illustrative example). Thus,
our goal is to develop a proposal distribution with a higher
overall Hastings ratio (the product of the PSR and the FBR),
where deleterious effects on the FBR are compensated with
increases in the PSR. Exploiting the simple observation that
neighboring pixels tend to have the same label, we can de-
velop a proposal that has this property.

We construct an additive perturbation,f , to ϕ(t),

ϕ̂(t+1) = ϕ(t) + f
(t), (3)

by first sampling from a point process, attributing the points
with values sampled from a biased Gaussian distribution
and then smoothing with a lowpass filter. We refer to this
process as Biased and Filtered Point Sampling (BFPS). The
lowpass filter captures the property that pixels in close prox-
imity have higher probability of being in the same region
while thechoiceof bias favors points with high likelihood
under the energy functional. The result is dramatically in-
creased PSRs using large biased moves while only slightly
decreasing the FBR. Mathematically this is expressed as

f
(t) = h

(t) ∗
(

c
(t) ◦ n

(t)
)

, (4)

n
(t)
i ∼ N

(

µ
(t)
i , σ2

)

, c
(t)
i ∼ Bernoulli

(

p(t)
ci

)

, (5)

where ‘∗’ denotes convolution and ‘◦’ denotes the element-
wise product. We bias the Gaussian RVs with the gradi-
ent velocity,v(t), (the negative gradient of the energy func-
tional) to prefer moving to more probable configurations:

µ
(t)
i = αn

[

−
∂E

(
ϕ(t)

)

∂ϕ(t)

]

i

= αnv
(t)
i , (6)

whereαn is a weighting parameter. The probability associ-
ated with each point,ci, is also carefully selected to favor
selecting points which are better explained in another re-
gion. Specifically, it is chosen to be higher for points that
have a gradient velocity that is large in magnitudeandhas
the opposite sign of the current level-set value:

p(t)
ci

(1) ∝ αc exp
[

−v
(t)
i · sign

(

ϕ
(t)
i

)]

+ (1 − αc) , (7)

whereαc is a parameter that trades off the bias with a uni-
form distribution. Additionally, we define the variableγ
as 1

|Ω|

∑

i∈Ω p
(t)
ci

(1) = γ, which approximates the average
probability that a random point will be selected, whereΩ is
the set of all pixels. Becausep(t)

ci
(1) is only defined up to

a scale factor, we can renormalize its value to achieve any
γ. In practice,αn, αc, andγ are dynamically adapted to
maintain a minimum acceptance rate, andh

(t) is chosen to
be a circularly symmetric (truncated) Gaussian kernel with
a scale parameter randomly chosen from a finite set of val-
ues. Randomly chosen scale parameters introduce a minor
complication (which we address), but empirically result in
faster mixing times.
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3.2. Sufficient Conditions for MCMC Sampling

In MCMC methods, convergence to the correct station-
ary distribution is a key issue. It is sufficient, and often
easier, to satisfy the following conditions: (1) that the chain
is ergodic and (2) that each individual step in the MCMC
procedure satisfiesdetailed balance.

Ergodicity requires the Markov chain to be aperiodic and
irreducible. Proving a complicated Markov chain is aperi-
odic is very difficult [8]. Similar to [4] and [5], we argue
that our Markov chain is unlikely to be periodic because
the space of segmentations is so large. In the rare case that
the chain is periodic but still irreducible, the average sample
path will still converge to the distribution from which we are
trying to sample. Irreducibility of a Markov chain implies
that any state in the chain has finite probability of reaching
any other state in the chain. Fan[5] and Chen[4] only show
that the chain is irreducible in the space of single simply
connected components. Additionally, they require multiple
iterations to show that any curve can be altered to any other
curve. The method here, however, allows for any topolog-
ical change and has finite probability of transitioning from
any curve to any other curve in asingleperturbation. This
is trivially shown asc is a Bernoulli process that has finite
probability of being one everywhere andn is a Gaussian
process that has finite probability of taking on any value.

Detailed balance is satisfied as long as the Hastings ra-
tio (Equation 2) is calculated correctly. Often, the energy
functional we are sampling from depends on the probability
density of the observed data conditioned on a segmentation.
In these cases, the densities change at every iteration, which
we assume are properly updated using a kernel density esti-
mate. The PSR can be computed as the following:

π
(
ϕ̂(t+1)

)

π
(
ϕ(t)

) =
exp

[
−E

(
ϕ̂(t+1)

)]

exp
[
−E

(
ϕ(t)

)] . (8)

Recall that the new proposed level-set,ϕ̂(t+1) is only de-
pendent on the previous level-set,ϕ(t), and the random per-
turbation,f (t). Thus, the FBR can be written as

q
(
ϕ(t)

∣
∣ϕ̂(t+1)

)

q
(
ϕ̂(t+1)

∣
∣ϕ(t)

) =
pF

(
−f

(t)|ϕ̂(t+1)
)

pF

(
f (t)|ϕ(t)

) . (9)

For a single lowpass filter, there exists a simple, one-to-one
mapping between the forward and backward transitions.
However, recall thatmultiple filters of different variances
are used to speed up the algorithm. A realized perturbation,
f , can therefore be generated frommultiplecombinations of
{ĥ, ĉ, n̂}. Exact calculation of the FBR requires the prob-
ability of generatingf using each of these combinations.
We refer to{h, c,n} without hats as the actual combina-
tion that was used to generatef . Here, we show that the
probability of generating the perturbation is dominated by
{ĥ, ĉ, n̂} = {h, c,n}.

We first note the following relationship:̂c◦ n̂ = ĥ
−1 ∗ f ,

whereĥ−1 is the highpass filter that is the inverse ofĥ. The
probability of generating a perturbation can be written as:

pF(f |ϕ) =
∑

ĥ

pH(ĥ)pC(ĉ|ϕ, ĥ)pN (n̂|ϕ, ĉ)

=
∑

ĥ

pH(ĥ)pC(ĉ|ϕ, ĥ)
∏

i∈Ω
ĉi=1

N
(
n̂i; µi(ϕ), σ2

)
. (10)

Additionally, recall that̂c is a set of sparse points with an
average probability of being nonzero ofγ ≪ 1. Whenĥ 6=
h, ĉ will be nonzero at almost every pixel, allowing us to
conclude the following inequality:

pC(ĉ|ϕ, ĥ 6= h) ≈ γ|Ω| ≪ γγ|Ω| · γγ|Ω| ≈ pC(c|ϕ,h),
(11)

whereγ , 1 − γ ≈ 1. Noting thatpN (n̂|ϕ, ĉ 6= c) ≪
pN (n|ϕ, c), we conclude that the probability of generating
the perturbation with a filter̂h 6= h is much less than the
probability of generating it witĥh = h. We can therefore
approximate the probability of a particular perturbation as

pF(f |ϕ) ≈
1

Nh

pC(c|ϕ)
∏

i∈Ω
ci=1

N
(
ni; µi(ϕ), σ2

)
, (12)

whereNh is the number of possible filters, a filter is chosen
with uniform probability, andpC(c|ϕ) is evaluated using
Equation 7. Combining these equations with Equations 8
and 9 allows a straightforward and efficient calculation of
the Hastings ratio, ensuring detailed balance.

3.3. Extension toM -ary Shape Sampling

In the context of level-set representations, separate ex-
tensions toM -ary segmentation have been suggested by
Chan and Vese [2] and Brox and Weickert [1]. These ex-
tensions do not lend themselves to sampling approaches;
consequently, we suggest a novel alternative. LetM level-
set functions representM + 1 regions. The lastM regions,
R1, ..., RM each contain the positive values of its respec-
tive level-set function. The null region,R0, contains those
pixels that are not contained by any other region. More pre-
cisely, we have the following definition of regions:

R0 =
⋂

ℓ∈L

{i | ϕℓ (i) < 0} (13)

Rℓ = {i | ϕℓ (i) ≥ 0} , ∀ℓ ∈ L = {1, 2, . . . , M} (14)

When developing anM -ary representation, one must en-
sure that both vacuum (a pixel belongs to no region) and
overlap conditions (a pixel belongs to multiple regions) will
not occur. Due to the null region, vacuum conditions never
occur; however, an overlap condition may occur among the

2084



regionsR1, R2, . . . , RM . We develop a perturbation similar
to the binary case that precludes both of these conditions.

At each iteration, randomly select one of the level-sets,
ϕℓ. Each pixel,i, in this level-set can be categorized into
one, and only one, of the following three types: (1) the pixel
belongs toRℓ, (2) the pixel belongs toR0, or (3) the pixel
belongs to{Rl|l ∈ L, l 6∈ {ℓ, 0}}. By only allowing transi-
tions between pixels of type 1 and 2, an overlap condition
cannot occur. The proposed perturbation is then of the same
form as before:

ϕ̂
(t+1)
ℓ = ϕ

(t)
ℓ + f

(t)
ℓ . (15)

The newf
(t)
ℓ is drawn from the following

f
(t)
ℓ =

(

h
(t) ∗

(

c
(t)
ℓ ◦ n

(t)
ℓ

))

◦ 1I{Rℓ∪R0}, (16)

where1I{·} is the indicator function, and is included to en-
sure only pixels of type 1 and 2 are affected. This re-
striction, along with the modified proposal distribution de-
scribed subsequently, can be implemented with essentially
no penalty. In very specific instances, it can lead to poor
convergence times, but these situations can be precluded
with a proposal that randomly selects the null region.

To ensure a good proposal distribution, we alter the
Bernoulli process,c, and the mean of the Gaussian random
variables,µi. We use the notation that(ℓ) is the label of the
level-set we are currently perturbing and(l) is the label of
another level-set (i.e.l 6= {0, ℓ}). In the binary case, only
one gradient velocity existed because there was only one
level-set. With multiple sets, we define the quantityv (ℓ, l)
as the gradient velocity between regionsRℓ andRl. In the
M -ary framework presented above, we would only consider
v (ℓ, 0) because only moves to and fromR0 are allowed.
However, the null region,R0, acts as a temporary region for
pixels switching between other regions. More specifically,
if a pixel in the level-set that is currently being perturbed,
ϕℓ, would be better described inRl, then there should be
a force to move the pixel to the null region so it can ul-
timately move to regionRl. This observation is reflected
in our proposal distribution by replacing the true gradient
velocity, v(ℓ, 0), in Equations 6 and 7 with the following
minimal gradient velocity,m(ℓ), at pixeli:

mi(ℓ) = min
l∈{0,1,2,...,M}

l 6=ℓ

vi (ℓ, l) . (17)

This minimal gradient velocity essentially trades off the cur-
rent region label with the other most likely label. When
M = 1, this formulation simplifies to the binary case.

4. Applying BFPS

BFPS is a general method with application to a variety
of energy functionals over implicit representations. Suchan

application is predicated on the evaluation of the gradient
of the energy functional. Here, we present a few energy
functionals and features that are easily incorporated intothe
approach along with a description of some marginal statis-
tics of interest. In particular, whereas in the past, region-
based methods were rarely evaluated over image data sets
where edge detection is the goal, utilizing BFPS allows for
straightforward evalution of region-based methods in edge-
detection tasks.

Table 1 shows three information-theoretic energy func-
tionals used in previous optimization-based segmentation
algorithms (mutual information [14], J-Divergence [13],
and Bhattacharya Distance [16]) and their corresponding
gradients. Here,X represents the image feature, andp±X
represents the densities of the feature in theR± region. Us-
ing these energy functionals within BFPS is a matter of re-
placing the functionals in Equation 8 and the gradient ve-
locities in Equations 6, 7, and 12. In each case, we assume
that a curve length penalty is used for regularization.

Alternative image features are also adaptable to BFPS.
For example, results using the features of [14] (scalar inten-
sity), [13] (scalar texture measure), and [12] (vector texture
measure) will be shown in Section 5. Furthermore, distri-
butions of image feature can be described using parametric
(e.g. [12]) or non-parametric models (e.g. [14], [13]).

4.1. Marginal Statistics

As is typical in MCMC approaches, marginal statistics
can be evaluated over samples using a simple counting mea-
sure. Similar to [5], one can compute the histogram image
of a segmentation, where each pixel in the histogram con-
tains a count of the number of times it was included in a
particular region. Similarly, the 50% quantile curve corre-
sponds to thresholding the histogram image at 0.5.

Here, we consider another marginal event probability:
the probability that a pixel lies on the boundary. We refer to
this as the probability of boundary image (PB). The PB at
pixel i is calculated by simply counting the number of sam-
ples for which pixeli lies on a boundary and normalizing by
the number of samples. This statistic is of particular interest
as it allows one to evaluate results over the Berkeley Seg-
mentation Dataset (BSDS) [15] which compares precision-
recall (PR) curves on precisely this event probability. In
this dataset, the maximum harmonic mean of points on the
PR curve, or F-measure, is used as the metric for rating
boundary detectors. Unlike boundary detectors, however,
optimization-based segmentation algorithms produce a sin-
gle point on the PR curve. Recent segmentation algorithms
rarely report benchmark results on the BSDS due to poor
F-measures owing to the inability to trade off between pre-
cision and recall. BFPS enables these segmentation algo-
rithms to produce a PB image for more robust comparison
on the BSDS.
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Description Energy (E (ϕ)) Gradient Velocity at Pixeli (vi), R+
− =

p
+

X
(xi)

p
−

X
(xi)

Mutual Information − |Ω| I (X ; L) + α
∮

C dl log R
+

−

− ακi

J Divergence − |Ω|J
(
p+

X ; p−X
)

+ α
∮

C
dl

1

π+

ˆ

log R+

−

− D
`

p+

X
‖p−

X

´

− R−

+ + 1
˜

−
1

π−

ˆ

log R
−

+ − D
`

p
−

X
‖p+

X

´

− R
+

−

+ 1
˜

− ακi

Bhattacharya Distance − |Ω|
∫

X

√

p+
X (x) p−X (x) dx + α

∮

C
dl 1

2π−

q

R
+

−

− 1

2π+

q

R
−

+ − ακi

Table 1: Energy Functionals and Corresponding Gradient Velocities

Original BFPS [4] [5]

Figure 2: Synthetic example illustrating the importance of
allowing topological changes. The histogram image ob-
tained using each sampling algorithm is shown.

5. Empirical Results

In this section, we demonstrate the use of the BFPS
procedure. Unless otherwise stated, we use nonparametric
pixel intensities as the image feature and mutual informa-
tion with a curve length penalty as the energy functional.
While [14] has shown that this combination produces good
results in an optimization framework for a wide variety of
images, we choose it merely to illustrate the sampling as-
pects of BFPS. Other functionals might yield differing seg-
mentations, though relative comparisons between sampling
approaches, specifically [4] and [5], would remain the same.

5.1. Topological Changes and Computation Times

While theM -ary extension is useful, the primary advan-
tages of BFPS over [4] and [5] are the ability to handle topo-
logical changes and the improvement in computation time.
We demonstrate these advantages with two examples. As
[4] and [5] are restricted to simply connected shapes, we
initialize the segmentation with a single circle of radius 50
pixels, centered at a random location.

Figure 2 shows a noisy image containing the letter ‘O’.
Each region is composed of normally distributed, i.i.d. pix-
els. Since the approaches of [4] and [5] do not allow for
topological changes, the iterations either settle on the ex-
terior or interior boundary of the ‘O’ (but never both) de-
pending on the initialization. This is a simple example of
the importance of handling topological changes.

The computation time needed to draw a sample from the
posterior depends on two factors: (1) the time to draw and
evaluate a sample from the proposal distribution and (2) the
number of iterations needed from the proposal distribution
before the Markov chain reaches its stationary distribution.
We examine the computation times for six algorithms based
on BFPS and the algorithms of [4] and [5]. While [4] and

Alg. Unbiased Biased

FPS

[4]

[5]

Original Histogram PB Histogram PB

Figure 3: Synthetic example of each algorithm after
100,000 iterations. Each row shows the histogram image
and a detail of the PB image using both an unbiased and
biased version of a sampling algorithm.

[5] do not incorporate a gradient bias, we implement both
with and without a bias to illustrate its impact. We refer to
the algorithms as BFPS, UFPS, B[5], U[5], B[4], and U[4]
where the preceding ‘B’ and ‘U’ indicate a biased or unbi-
ased algorithm. In [5], the bias corresponds to moving each
marker point with the gradient, and in [4], to both selecting
and moving the so-called “foot point” with the gradient.

Consider the synthetic image of Figure 3 containing a
simply connected ‘C’. We run each algorithm for 100,000
iterations (which for [4] takes over 8 hours to evaluate a sin-
gle sample path). The histograms in Figure 3 imply that all
algorithms, aside from U[4], have converged. Examination
of a detail (see Figure 3) of the ‘C’ and the PB associated
with each algorithm shows this not to be the case; it is clear
that both biased and unbiased versions of [4] and [5] have
not converged. The results of [5] have a blurred PB, and the
results of [4] are both blurred and miss corners.

The plot in Figure 4 shows the average energy across all
sample paths for each algorithm as a function of the number
of iterations. We note that while the average energy appears
to be non-decreasing, the energy in each sample path both
increases and decreases. While all of the algorithms will
eventually converge to the stationary distribution, Figure 4
illustrates the stark difference in mixing times. BFPS con-
verges in approximately 150 iterations while the unbiased
version, UFPS, converges in approximately 40,000 itera-
tions. After 100,000 iterations, all other algorithms have
yet to converge.

When calculating total computation time, one must also

2086



Figure 4: The average energy across all sample paths vs. the
number of iterations for multiple sampling algorithms.

Algorithm
Iterations Until Seconds per Total
Convergence Iteration Gain

BFPS 150 0.03 ×1
UFPS 40,000 0.025 ×222
B[4] 254,000 0.30 ×16,933
U[4] 896,000 0.26 ×51,769
B[5] 321,000 5.00 ×356,667
U[5] 336,000 5.00 ×373,333

Table 2: Computation Times of Algorithms

Original Histogram PB 50% Quantile Optimal

Figure 5: Results for three synthetic images with varying
SNR values (0.5, 1.0, and 2.0, top to bottom, respectively).

consider the time it takes to generate and evaluate a single
sample from the proposal. These times are summarized in
Table 2. We linearly interpolate the average energy using
the last 5,000 iterations to estimate how many iterations are
needed for the algorithms based on [4] and [5], noting that
this is an optimisticlowerbound on the number of iterations
as the average energy grows sub-linearly. While the bias
term increases speed in all algorithms, BFPS is still over
15,000 times faster than any other biased method. BFPS is
over 50,000 faster than the original formulations (i.e. ex-
cluding the bias) of U[4] and over 300,000 faster than U[5].

5.2. Low SNR Segmentations

The previous results illustrate the computational advan-
tages of BFPS over other sampling algorithms. We now
show results of using BFPS in a few applications. Con-
sider the synthetic images shown in Figure 5. Each image
contains two regions that are drawn from Gaussian distribu-
tions with different means. We alter the variance to consider
three different SNR values: 0.5, 1.0, and 2.0. The last col-
umn shows the sample path with the highest energy which
approximates the optimal configuration. In the lowest SNR

Figure 6: Sampling vs. optimization on the BSDS. The
scatter plot shows the F-measures of each image using an
image-based threshold on the PB image vs. the optimal seg-
mentation. The bar plot shows the average F-measures us-
ing the global threshold on the PB image, the image-based
threshold on the PB image, and the optimal segmentation.

case, the 50% quantile clearly produces much better results
than the optimal sample path. As the SNR increases, the
optimal sample path approaches the average sample path.
Consequently, in low SNR scenarios, marginal event prob-
abilities tend to be more robust than optimal configurations.

5.3. Boundary Detection

As stated previously, marginal events such as boundaries
are of interest. Due to their inherent topological constraints,
[4] and [5] are less applicable to natural images where it is
often desirable to group regions which are separated spa-
tially and/or segment an image into more than two region
labels. As such, the remaining results focus on the use of
theM -ary version of BFPS. We consider four different im-
age features: the raw intensity of a pixel [14], the intrin-
sic intensity of a pixel [14] & [3], the shape operator [13],
and the steerable pyramid output [12]. The intrinsic in-
tensity is estimated a priori, meaning that a gain and bias
field [3] are estimated and removed prior to segmentation.
As BFPS extends almostany segmentation algorithm to a
boundary detector, the emphasis here is not on a particu-
lar energy functional or image feature, but rather the im-
proved performance via marginal statistics (made feasible
by BFPS) compared to optimization. To avoid local min-
ima, we run gradient descent with 100 random initializa-
tions and select the minimal energy configuration for each
image. Results across the entire BSDS are shown in Fig-
ure 6. In addition to reporting performance on BSDS with
the average F-measure (as is typical) we also report results
using the optimal image-based threshold. While a measure
of image complexity or contextual content might provide a
means of approximating such a threshold, our purpose is to
illustrate the achievable gains using the PB image. Regard-
less, results are reported using both global and image-based
thresholds, and in either case, sampling improves upon the
optimization approach across the majority of images in the
dataset.

Figure 7 shows results on four specific images from the
BSDS. Qualitatively, the PB image provides a superior de-
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Original PB Optimal PR-Curve

Figure 7: Example images from [15]. In the PR curves, the
‘×’ marks the F-measure obtained using BFPS, and the ‘+’
marks that of the optimal sample. The first two rows use
the image feature of [14]. The third row also uses the image
feature of [14] but with the gain and bias field of [3]. The
fourth row uses the textural image feature of [13].

marcation of edges in the image. Quantitatively, the F-
measure is also improved by thresholding the PB image
rather than using the optimal sample path. Additional re-
sults are included in the supplemental material.

6. Conclusion

We have presented an MCMC framework that allows
one to sample from the space of segmentations. The
formulation was developed with a general energy func-
tional and image feature such that almost any optimiza-
tion based segmentation algorithm can be used. In con-
trast to previous methods, BFPS easily and efficiently han-
dles topological changes, large perturbations, and multi-
ple regions, while exhibiting a 50,000 times speed up. In
addition to more robust segmentation quantiles, we have
demonstrated that MCMC sampling also allows one to ex-
tend a region based, level set segmentation algorithm to a
boundary detector. This development enables the evalua-
tion of region-based methods on the Berkeley Segmenta-
tion Dataset as a common benchmark comparison. Publicly
available code for the BFPS algorithm, easily adaptable to
any image feature and energy functional, can be found at
http://people.csail.mit.edu/jchang7/.
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