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Abstract

We present a method for sampling from the posterior dis- P
tribution of implicitly defined segmentations conditiored
the observed image. Segmentation is often formulated as
an energy minimization or statistical inference problem in
which either the optimal or most probable configuration
is the goal. Exponentiating the negative energy functional Figure 1: Examples of MCMC sampling on a synthetic and
provides a Bayesian interpretation in which the solutions naturalimage. Qualitatively, thresholding the probayif
are equivalent. Sampling methods enable evaluation of dis-Poundary (PB) is superior to the optimal segmentation.
tribution properties that characterize the solution space
the computation of marginal event probabilities. We de-

velopa.I\/Iet.ropolis-Hastings sa_mpling algorithm over[evel C for a given imagel. While many level set methods
sets which improves upon previous methods by allowing forare formulated as an energy minimization over some func-
topological changes while simultaneously decreasing com- tional E (C; 1), it is often the case that, either due to the

putational times by orders of magnitude. Adrary exten- ill-posedness of unsupervised segmentation or the stochas
sion to the method is provided. tic nature of a well posed formulation, multiple plausible
explanations exist. In either case, characterization ef th
posterior distribution is desirable; e.g., marginal stais
over the distribution may offer a more informative charac-
Level set representations and Markov chain Monte Carlo terization than the optimal configuration. Consequently, a
(MCMC) sampling methods are useful in a wide vari- common alternative is to recast the optimization formula-
ety of applications. Level set representations eschew ex-tion as one of Bayesian inference by viewing the energy
plicit curve and surface parameterizations while allowing functional as the negative log of a probability density
topological changes with superior numerical stability][17
MEMCg methodsgenable onepto reason about comp}I/(]a[x dis- p(Cl) xexp (=E (G 1)) @
tributions for which exact analysis is intractable [6, 7] Depending on the form of Equation 1, when ex-
and additionally provide a more extensive characterimatio plicit characterization and/or direct sampling is intedaie,
of energy minimization formulations when viewed from one may utilize (under certain technical conditions) the
a Bayesian perspective. Integrating the two formalisms Metropolis-Hastings algorithm [11] to both sample from the
faces two distinct challenges. First, the high dimension- distribution and evaluate marginal statistics.
ality of implicit representations induces a large configura By way of example, consider the synthetic and natural
tion space resulting in slow convergence for naive imple- images in the first column of Figure 1. For both images,
mentations. Second, certain technical conditions induce awe include the associated probability of boundary (PB) im-
correspondence problem that, in prior efforts, has overly age, a thresholded PB image, and the minimal energy seg-
constrained the applicable class of curves (e.g. simply con mentation obtained via the MCMC sampler described in the
nected shapes). Here, we address these and additional isequel. While neither the thresholded PB image nor the op-
sues resulting in aomputationally tractabléCMC sam- timal segmentation is error-free, the optimal configuratio
pling algorithm over the space of implicitly defined shapes. produces a larger number of false positives. This a well
This, in turn, simplifies the estimation of marginal statis- known phenomenon [6] in the MCMC literature.

Original PB Thresholded PB Optimal

tics defined over the distribution of implicitly defined cess

1. Introduction
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Here, we emphasize that our primary contribution is to 3. Metropolis-Hastings Sampling over Curves
develop acomputationally tractableMetropolis-Hastings . .
sampling algorithm by which energy based, level-set formu- . The energy functlondE (C:I)isa surr_ogate for evaluat-
lations may be analyzed within a Bayesian framework. As ing what constitutes a good segmentation. In both paramet-

with many MCMC samplers, the proposal distribution has a ric and nonparametric settings, th|§ term can often be de-
critical impact on the length of thaixing time i.e. conver- composed into a data-fidelity term (i.e. a likelihood) and a

gence to the stationary distribution from which we would penalty/re_gularization term _(i.e. a prior). While we dis:_;u :
like to sample. In addition to relaxing constraints on the al unsupervised nonparametric methods (whose data-fidelity

lowed shape class (as compared to previous methods [4, 5])terms have.a natural informati(_)n-theoretic interpretgtio
we suggest a design method for the proposal distributionthe underlym.g framework applies to both parametric and
that dramatically reduces the mixing time. In summary, the _nonpara_metrlc models. For eX"’?mp'_e’ [14]. Uses the mutual
contributions of this work are threefold. First, we develop information (M) between the pixel intensities and labels,

an MCMC sampling method for implicit shape representa- L, as the data-fio_ielity term combined with a curve length
tions that includes topological changes. Second, we extencn.enalty as -the prior. In the su_pplemental mgtena_l e pro-
the approach to the case f--ary segmentations. Third, we vide conditions under which this energy functional is equiv

achieve these improvements while simultaneously acceler-2€Nt 10 2 posterior dlstrlbutlon. Other commonl;_/ used en-
ating the sampling procedure loydersof magnitude over ergy functionals include K_L divergence [12], J dlvgrgence
previous methods. While we utilize explicit formulatioms i E.lB]’ and(lj3hatltacharyya d'StI‘?‘”C? [16]. In trk1e f_(:rl]lowmg-secl
order to demonstrate the method, the method itself is quite lon, we develop our sampling framework with a genera

general and can be used for almost any static image featurgnergy.functlonaI,E, such that any of these mformgﬂon—
and region based energy functional theoretic measures can be applied. Following prior ap-
' proaches, we compute distribution estimates via a nonpara-

2. Related Work metric kernel density estimate (KDE) [18]. Fast methods
for computing a KDE can be found in [9].

Sampling from the space of implicit segmentations has  While MCMC sampling in finite dimensional spaces has
been suggested previously. Fan et al. [5] develop a hy-been well studied, the same cannot be said with respect
brid method: alternating between implicit (level set) ard e to sampling from the infinite dimensional space of shapes.
plicit (marker based) representations of a simply conmecte One can construct a Metropolis-Hastings sampler [11] as
shape. The proposal distribution generates a sample perfollows. Let@(!*!) be a proposed sample of the implicit
turbation over a set of marker points which, when comput- representation (i.e. the level-set function) generatechfa
ing what is known as the Hastings ratio, induces a corre- distributiong(¢**+|»(®) conditioned on the current sam-
spondence problem over the explicit representation. Uponple, ¢(*). The superscript valugg) and (¢ + 1) index the
completion, the new sample is converted into an implicit sampling iteration and the hat indicates a proposed sample.
form by resolving the Eikonal equation. While establish- This new sample is then accepted with probability
ing the feasibility of applying MCMC methods to implicit
representations, [5] is constrained to binary segmemistio Pr [sﬁ(tﬂ) = gUt+h) \ w(t)}

of a single, simply connected shape. Furthermore, itera- Hastings Ratio

tions between implicit and explicit representations inaur D) DI

substantial computational burden. Fan suggests the use of _ .. m (¢ ) 4 ("] ) 1. @
jump diffusion processes [10] as a means of incorporating T (o) q (@UHD]p®)

topological changes. However, no formulation satisfying
detailed balance (see Section 3.2) is provided.

Chen et al. [4] improve upon the method of Fan et al. Otherwise,p(*t1) = »®). Convergence to the stationary
by obviating the need to transition between implicit and ex- distribution occurs after a suitable number of iteratidres (
plicit representations. They construct a smooth normal per the mixing time) which producessinglesample from the
turbation at asingle point on the curve (denoted the “foot posterior. Evaluating the Hastings ratio, the product ef th
point”) that preserves the signed distance property batwee two ratios in the acceptance probability, has been the pri-
proposal samples, thereby simplifying the correspondencemary barrier for implementing MCMC methods over im-
problem and evaluation of the Hastings ratio. However, the plicit representations. In particular, one needs to solve a
resulting perturbations are extremely smooth, and as suchgorrespondence problem to compute the probability of gen-
explore the configuration space very slowly. Asin [5] obsta- erating the forward and reverse transition (in the forward-
cles remain for incorporating topological changes, restri  backward ratio). Doing so satisfies the condition of dethile
ing this method to binary segmentations with a single sim- balance which, in addition to ergodicity, is sufficient for
ply connected shape. convergence to the desired posterior distribution.

Posterior Sample RatioForward-Backward Ratio
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As with any level-set representation, one needs to choosesupplemental materials for an illustrative example). Thus
the magnitude of the level-se;, away from the curve. our goal is to develop a proposal distribution with a higher
Previous sampling methods have constrained the level-sebverall Hastings ratio (the product of the PSR and the FBR),
function to be a signed distance function (SDF). Chen [4] where deleterious effects on the FBR are compensated with
solves the correspondence problem by generating perturincreases in the PSR. Exploiting the simple observation tha
bations that are SDF-preserving, thus having a one-to-oneneighboring pixels tend to have the same label, we can de-
mapping from forward and reverse transitions. An alterna- velop a proposal that has this property.
tive is to produce a non-SDF-preserving perturbation and ~ We construct an additive perturbatidito ¢*),
reinitialize the level set function to an SDF at each iter- S(t41) (1) (t)

: - QU =t 1 3)
ation. However, this creates a many-to-many correspon-
dence problem which significantly increases the computa-by first sampling from a point process, attributing the p®int
tional complexity of the forward-backward ratio. with values sampled from a biased Gaussian distribution

Our idea is straightforward: do not constrain the level-set and then smoothing with a lowpass filter. We refer to this
function to be an SDF. SDFs provide advantages in termsprocess as Biased and Filtered Point Sampling (BFPS). The
of numerical stability and the computation of the curva- lowpass filter captures the property that pixels in closepro
ture (see [17] for details) for optimization based methods. imity have higher probability of being in the same region
As the method here is not PDE-based and optimization iswhile thechoiceof bias favors points with high likelihood
not the specific goal, there is essentially no penalty for us- under the energy functional. The result is dramatically in-
ing an alternative. While our level-set function no longer creased PSRs using large biased moves while only slightly
satisfies the SDF property, we still benefit from the way decreasing the FBR. Mathematically this is expressed as
implicit representations handle topological changes and r

parameterization. Furthermore, this greatly simplifies th £ = h® « (C(t) ° n(t)) ; (4)
design and evaluation of a proposal distribution by allow- ® ) o “ o
ing for straightforward evaluation of the Hastings ratio. ng’ ~N (Mi .o ) , ¢~ Bernoulli (pgi)) . (5

where %’ denotes convolution anad* denotes the element-

wise product. We bias the Gaussian RVs with the gradi-
We note that the closer(o|A) is to 7 (o), the closer ~ €nt velocity,v(*), (the negative gradient of the energy func-

the Hastings ratio is to unity and the higher the acceptancetional) to prefer moving to more probable configurations:

3.1. Strategic Bias in the Proposal Distribution

rate. Consequently, designing proposal distributiontvhi OF ((p(t))
capture essential, application-specific characteristithe Ml(-t) = Qn _W] - %v?), (6)
posterior distribution can improve convergence speeds by ¥ i

reducing the number of rejected samples. By relaxing the\yhereq,, is a weighting parameter. The probability associ-
SDF constraint on the level-set function, many potential ated with each point;, is also carefully selected to favor

proposal dl_strlbuthns W!|| result in a tractable evalogtll selecting points which are better explained in another re-
of the Hastings ratio. Without care, however, the majority gion. Specifically, it is chosen to be higher for points that

of these proposal distributions will have very poor mixing pave a gradient velocity that is large in magnituie has
times. Thus, ouraimiis to design a proposal distributiof tha the opposite sign of the current level-set value:

is easily evaluated, has a high acceptance rate, and egplore
the configuration space via large perturbations. pffi)(l) X Q. eXp [—vl@ - sign (%@)} +(1—-a.), ()

In Equation 2, the Hastings ratio consists of the posterior ) ) ) )
sample ratio (PSR) and the forward-backward ratio (FBR). Wherea. is a parameter that trades off the bias with a uni-
The PSR represents the ratio of the posterior probability of fOrm dlstrlbuugn. Additionally, we define the variable
the new sample over that of the old. Generating samplesas g >ico pt(1) = ~, which approximates the average
that have higher posteriors will produce high values of this probability that a random point will be selected, wheres
ratio. The FBR represents the probability of generating the the set of all pixels. Becaus:é’?(l) is only defined up to
previous sample conditioned on the new one (the backwarda scale factor, we can renormalize its value to achieve any
transition) over the probability of generating the new sam- ~. In practice,«,, a., and~ are dynamically adapted to
ple conditioned on the previous one (the forward transjtion maintain a minimum acceptance rate, aritl is chosen to

Fan et al. [5] suggest using a proposal distribution biasedbe a circularly symmetric (truncated) Gaussian kernel with
by the curvature to favor samples that fit the prior model. a scale parameter randomly chosen from a finite set of val-
Here, we develop a proposal which favors both the likeli- ues. Randomly chosen scale parameters introduce a minor
hood and prior model. This generally produces higher PSRcomplication (which we address), but empirically result in
values, but biases the FBR toward smaller values (see thdaster mixing times.
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3.2. Sufficient Conditions for MCMC Sampling We first note the following relationshig:o n = ﬁjl *f,
whereh~! is the highpass filter that is the inversenfThe

In MCMC methods, convergence to the correct station- probability of generating a perturbation can be written as:

ary distribution is a key issue. It is sufficient, and often
easier, to satisfy the following conditions: (1) that thaich

is ergodic and (2) that each individual step in the MCMC F(fle) = ZpH (el )pn (e, €)
procedure satisfiedetailed balance

Ergodicity requires the Markov chain to be aperiodic and ZpH )pc( c|<p, H N nz, wi(p 2) . (10)
irreducible. Proving a complicated Markov chain is aperi- i€Q

¢;i=1

odic is very difficult [8]. Similar to [4] and [5], we argue
that our Markov chain is unlikely to be periodic because Additionally, recall that¢ is a set of sparse points with an
the space of segmentations is so large. In the rare case thajyerage probability of being nonzeropfs 1. Whenh #

the chainis periOdiC but still irreducible, the average ﬁm h, ¢ will be nonzero at almost every pixe|, a"owing us to
path will still converge to the distribution from which weear  conclude the following inequality:

trying to sample. Irreducibility of a Markov chain implies

that any state in the chain has finite probability of reaching  pc(&|p, h # h) ~ 4% <« 47U 379 ~ pe(clp, h),

any other state in the chain. Fan[5] and Chen[4] only show (11)
that the chain is irreducible in the space of single simply wherey 2 1 — v ~ 1. Noting thatpn (fi]p, ¢ # ¢) <
connected components. Additionally, they require mutipl py (n|y, ¢), we conclude that the probability of generating
iterations to show that any curve can be altered to any otherhe perturbation with a filteh # h is much less than the
curve. The method here, however, allows for any topolog- probability of generating it witth = h. We can therefore

ical change and has finite probability of transitioning from approximate the probability of a particular perturbatisn a
any curve to any other curve insingle perturbation. This

is trivially shown asc is a Bernoulli process that has finite 1 2
probability of being one everywhere amdis a Gaussian pr(flp) ~ Ny, pe(cly) 1;[2 N nz,uz( )eo ) - (12)
process that has finite probability of taking on any value. ci=1

Detailed balance is satisfied as long as the Hastings ra-
tio (Equation 2) is calculated correctly. Often, the energy
functional we are sampling from depends on the probability
density of the observed data conditioned on a segmentatlon
In these cases, the densities change at every iteratioohwhi
we assume are properly updated using a kernel density esti-
mate. The PSR can be computed as the following:

whereN}, is the number of possible filters, a filter is chosen
with uniform probability, andpc(c|p) is evaluated using
Equation 7. Combining these equations with Equations 8

nd 9 allows a straightforward and efficient calculation of
the Hastings ratio, ensuring detailed balance.

3.3. Extension toM-ary Shape Sampling

($) _ o[- ()] _ ®) In the context of level-set representations, separate ex-
T (90“)) exp [—E (99(“)] tensions toM-ary segmentation have been suggested by
Chan and Vese [2] and Brox and Weickert [1]. These ex-
tensions do not lend themselves to sampling approaches;
consequently, we suggest a novel alternative. Melevel-

Recall that the new proposed level-sgt, ") is only de-
pendent on the previous level-sgt!), and the random per-

turbation£*). Thus, the FBR can be written as set functions represe + 1 regions. The lasd/ regions,

q( ) PF (_f(t)|¢,(t+1)) El, ..., Ry each cpntain the positiye values of_ its respec-
(D [o) = fO[0) 9) tive level-set function. The null regioRy, contains those

pixels that are not contained by any other region. More pre-

For a single lowpass filter, there exists a simple, one-®-on cisely, we have the following definition of regions:
mapping between the forward and backward transitions.
However, recall thamultiple filters of different variances Ry = ﬂ {i | ¢e (i) <0} (13)
are used to speed up the algorithm. A realized perturbation, teL
f, can therefore be generated framltiplecombinations of Ro={ilpe(i) >0}, WeLl={12,....,M} (14)
{h,¢,n}. Exact calculation of the FBR requires the prob-
ability of generatingf using each of these combinations. When developing ai -ary representation, one must en-
We refer to{h, c,n} without hats as the actual combina- sure that both vacuum (a pixel belongs to no region) and
tion that was used to generdte Here, we show that the overlap conditions (a pixel belongs to multiple regiond) wi
probability of generating the perturbation is dominated by not occur. Due to the null region, vacuum conditions never
{h,é,n} = {h,c,n}. occur; however, an overlap condition may occur among the
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regionsRiy, Ro, ..., Ry/. We develop a perturbation similar
to the binary case that precludes both of these conditions.

At each iteration, randomly select one of the level-sets,

we¢. Each pixel,i, in this level-set can be categorized into
one, and only one, of the following three types: (1) the pixel
belongs toRy, (2) the pixel belongs td, or (3) the pixel
belongs to{ R;|l € L, ¢ {¢,0}}. By only allowing transi-

application is predicated on the evaluation of the gradient
of the energy functional. Here, we present a few energy
functionals and features that are easily incorporatedi@o
approach along with a description of some marginal statis-
tics of interest. In particular, whereas in the past, region
based methods were rarely evaluated over image data sets
where edge detection is the goal, utilizing BFPS allows for

tions between pixels of type 1 and 2, an overlap condition straightforward evalution of region-based methods in edge
cannot occur. The proposed perturbation is then of the samaletection tasks.

form as before:

2yt = o + 1. (15)

The nevvflft) is drawn from the following

fe(t) _ (h(t) “ (CEt) Onét))) o 1 r,uR0}s

wherel ., is the indicator function, and is included to en-
sure only pixels of type 1 and 2 are affected. This re-
striction, along with the modified proposal distribution de

(16)

scribed subsequently, can be implemented with essentially
no penalty. In very specific instances, it can lead to poor
convergence times, but these situations can be preclude&

with a proposal that randomly selects the null region.

To ensure a good proposal distribution, we alter the

Bernoulli processg, and the mean of the Gaussian random
variablesy;. We use the notation thé&t) is the label of the
level-set we are currently perturbing afld is the label of
another level-set (i.el # {0,¢}). In the binary case, only

Table 1 shows three information-theoretic energy func-
tionals used in previous optimization-based segmentation
algorithms (mutual information [14], J-Divergence [13],
and Bhattacharya Distance [16]) and their corresponding
gradients. HereX represents the image feature, mﬁd
represents the densities of the feature infifieregion. Us-
ing these energy functionals within BFPS is a matter of re-
placing the functionals in Equation 8 and the gradient ve-
locities in Equations 6, 7, and 12. In each case, we assume
that a curve length penalty is used for regularization.
Alternative image features are also adaptable to BFPS.
For example, results using the features of [14] (scalaninte
ity), [13] (scalar texture measure), and [12] (vectoruesxt
measure) will be shown in Section 5. Furthermore, distri-
butions of image feature can be described using parametric
(e.g. [12]) or non-parametric models (e.g. [14], [13]).

4.1. Marginal Statistics

As is typical in MCMC approaches, marginal statistics

one gradient velocity existed because there was only onecan be evaluated over samples using a simple counting mea-

level-set. With multiple sets, we define the quantity/, [)
as the gradient velocity between regiddsand R;. In the

sure. Similar to [5], one can compute the histogram image
of a segmentation, where each pixel in the histogram con-

M -ary framework presented above, we would only consider tains a count of the number of times it was included in a

v (¢,0) because only moves to and froRy are allowed.
However, the null regionk,, acts as a temporary region for
pixels switching between other regions. More specifically,
if a pixel in the level-set that is currently being perturbed
¢, would be better described iR;, then there should be
a force to move the pixel to the null region so it can ul-
timately move to regiom?;. This observation is reflected
in our proposal distribution by replacing the true gradient
velocity, v(¢,0), in Equations 6 and 7 with the following
minimal gradient velocitym(¢), at pixels:

min
1€{0,1,2,...,M}

1#0

m; (f) V; (f, l) . (17)

This minimal gradient velocity essentially trades off thie-c
rent region label with the other most likely label. When
M = 1, this formulation simplifies to the binary case.

4. Applying BFPS

BFPS is a general method with application to a variety
of energy functionals over implicit representations. Saich

particular region. Similarly, the 50% quantile curve cerre
sponds to thresholding the histogram image at 0.5.

Here, we consider another marginal event probability:
the probability that a pixel lies on the boundary. We refer to
this as the probability of boundary image (PB). The PB at
pixeli is calculated by simply counting the number of sam-
ples for which pixel lies on a boundary and normalizing by
the number of samples. This statistic is of particular ieser
as it allows one to evaluate results over the Berkeley Seg-
mentation Dataset (BSDS) [15] which compares precision-
recall (PR) curves on precisely this event probability. In
this dataset, the maximum harmonic mean of points on the
PR curve, or F-measure, is used as the metric for rating
boundary detectors. Unlike boundary detectors, however,
optimization-based segmentation algorithms produce-a sin
gle point on the PR curve. Recent segmentation algorithms
rarely report benchmark results on the BSDS due to poor
F-measures owing to the inability to trade off between pre-
cision and recall. BFPS enables these segmentation algo-
rithms to produce a PB image for more robust comparison
on the BSDS.
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Description Energy € (¢)) Gradient Velocity at Pixel (v;), RT = —Z%Eii
Mutual Information — QI (X;L)+a ¢, d

log RT — ak;

. _ . L [log BT — D (pkllpx) — Ry +1] —
JD —1QlJ (pt: dl = [log x IPx +
vergence | | (pX’pX) ta ‘% —Wl, [log R, —-D (p}”p;;) — RT + 1] — K

Bhattacharya Distance — ()| [, \/p% () py (@) dz + o §, dl 52—/ RT — 537/ R} — ax;

Table 1: Energy Functionals and Corresponding Gradiermciiits

Alg. Unbiased Biased
cgcphjcp—
._\

Original BFPS

Figure 2: Synthetic example illustrating the importance of c [4]
allowing topological changes. The histogram image ob- ;
tained using each sampling algorithm is shown.

Original Histogram

PB Histogram PB

Figure 3: Synthetic example of each algorithm after

100,000 iterations. Each row shows the histogram image

In this section, we demonstrate the use of the BFPS_and a detail of the PB image using both an unbiased and
procedure. Unless otherwise stated, we use nonparametrigi- <o version of a sampling algorithm

pixel intensities as the image feature and mutual informa-
tion with a curve length penalty as the energy functional.

While [14] has shown that this combination produces good [5] do not incorporate a gradient bias, we implement both

results in an optimization framework for a wide variety of \yith and without a bias to illustrate its impact. We refer to
images, we choose it mergly to |Ilu§tratg the §am_pllng aS-the algorithms as BFPS, UFPS, B[5], U[5], B[4], and U[4]
pects of BFPS. Other functionals might yield differing seg- \yhere the preceding ‘B’ and ‘U’ indicate a biased or unbi-

mentations, though relative comparisons between samplingyseq algorithm. In [5], the bias corresponds to moving each
approaches, specifically [4] and [5], would remain the same. arker point with the gradient, and in [4], to both selecting

. . . and moving the so-called “foot point” with the gradient.
5.1. Topological Changes and Computation Times Consider the synthetic image of Figure 3 containing a
While the M -ary extension is useful, the primary advan- simply connected ‘C’. We run each algorithm for 100,000
tages of BFPS over [4] and [5] are the ability to handle topo- iterations (which for [4] takes over 8 hours to evaluate a sin
logical changes and the improvement in computation time. gle sample path). The histograms in Figure 3 imply that all
We demonstrate these advantages with two examples. Agilgorithms, aside from U[4], have converged. Examination
[4] and [5] are restricted to simply connected shapes, weof a detail (see Figure 3) of the ‘C’ and the PB associated
initialize the segmentation with a single circle of radids 5 With each algorithm shows this not to be the case; itis clear
pixels, centered at a random location. that both biased and unbiased versions of [4] and [5] have
Figure 2 shows a noisy image containing the letter ‘O’. not converged. The results of [5] have a blurred PB, and the
Each region is composed of normally distributed, i.i.d.-pix results of [4] are both blurred and miss corners.
els. Since the approaches of [4] and [5] do not allow for ~ The plot in Figure 4 shows the average energy across all
topological changes, the iterations either settle on the ex sample paths for each algorithm as a function of the number
terior or interior boundary of the ‘O’ (but never both) de- of iterations. We note that while the average energy appears
pending on the initialization. This is a simple example of to be non-decreasing, the energy in each sample path both
the importance of handling topological changes. increases and decreases. While all of the algorithms will
The computation time needed to draw a sample from theeventually converge to the stationary distribution, Fegdr
posterior depends on two factors: (1) the time to draw andillustrates the stark difference in mixing times. BFPS con-
evaluate a sample from the proposal distribution and (2) theverges in approximately 150 iterations while the unbiased
number of iterations needed from the proposal distribution version, UFPS, converges in approximately 40,000 itera-
before the Markov chain reaches its stationary distrilputio  tions. After 100,000 iterations, all other algorithms have
We examine the computation times for six algorithms basedyet to converge.

on BFPS and the algorithms of [4] and [5]. While [4] and When calculating total computation time, one must also

5. Empirical Results
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F-Measures of Sampling (Image Threshold) vs. Optimization Average F-Measures of Sampling vs. Optimization

BFPS -

— — - UFPS

B4
- - -ug
B[5]

4
1418
3]
112

Average Energy

— - 0 Tom R
u[s] 0 0z Optimization 08 10 [14]

x 10

Number of Iterations

_ Figure 6: Sampling vs. optimization on the BSDS. The
Figure 4: The average energy across all sample paths vs. thecatter plot shows the F-measures of each image using an

number of iterations for multiple sampling algorithms. image-based threshold on the PB image vs. the optimal seg-
mentation. The bar plot shows the average F-measures us-
. Iterations Until Seconds per Total ing the global threshold on the PB image, the image-based
Algorithm Convergence Iteration Gain threshold on the PB image, and the optimal segmentation.
BFPS 150 0.03 x1
UFPS 40,000 0.025 x222
B[4] 254,000 0.30 % 16,933 case, the 50% quantile clearly produces much better results
U[4] 896,000 0.26 %x51,769 than the optimal sample path. As the SNR increases, the
B[5] 321,000 5.00 x 356,667 optimal sample path approaches the average sample path.
u[5] 336,000 5.00 %x373,333 Consequently, in low SNR scenarios, marginal event prob-

abilities tend to be more robust than optimal configurations

5.3. Boundary Detection

Table 2: Computation Times of Algorithms
As stated previously, marginal events such as boundaries
are of interest. Due to their inherent topological constsi

albc
[4] and [5] are less applicable to natural images where it is

‘ ‘ m qften desirable to group _regions_ which are separated spa-
Original Histogram o8 50% Quantile . Optimal tially and/or segment an image into more than two region
labels. As such, the remaining results focus on the use of
Figure 5: Results for three synthetic images with varying the M -ary version of BFPS. We consider four different im-
SNR values (0.5, 1.0, and 2.0, top to bottom, respectively). age features: the raw intensity of a pixel [14], the intrin-
sic intensity of a pixel [14] & [3], the shape operator [13],

. . . and the steerable pyramid output [12]. The intrinsic in-
consider the time it takes to genergte and evaluate a S'ng,lecensity is estimated a priori, meaning that a gain and bias
sample from t_he proplosal. These times are summanzeq Mield [3] are estimated and removed prior to segmentation.
Table 2. We linearly interpolate the average energy using o BEPS extends almoshy segmentation algorithm to a
the last 5,000 iterations to estimate how many iteratioas ar boundary detector, the emphasis here is not on a particu-
needed for the algorithms based on [4] and [3], noting that |3 energy functional or image feature, but rather the im-
this is an optimistiéower bound on the number of iterations 64 performance via marginal statistics (made feasible
as the average energy grows sub-linearly. While the blasby BFPS) compared to optimization. To avoid local min-
term increases speed in all algorithms, BFPS is stil OVe€l'ima, we run gradient descent with 100 random initializa-
15,000 times faster than any th_er biased mgthod._ BFPS iSions and select the minimal energy configuration for each
over 50,000 faster than the original formulations (i.e. ex- image. Results across the entire BSDS are shown in Fig-
cluding the bias) of U[4] and over 300,000 faster than U[5]. e 6. |n addition to reporting performance on BSDS with
the average F-measure (as is typical) we also report results
using the optimal image-based threshold. While a measure

The previous results illustrate the computational advan- of image complexity or contextual content might provide a
tages of BFPS over other sampling algorithms. We now means of approximating such a threshold, our purpose is to
show results of using BFPS in a few applications. Con- illustrate the achievable gains using the PB image. Regard-
sider the synthetic images shown in Figure 5. Each imageless, results are reported using both global and imagedbase
contains two regions that are drawn from Gaussian distribu-thresholds, and in either case, sampling improves upon the
tions with different means. We alter the variance to corrside optimization approach across the majority of images in the
three different SNR values: 0.5, 1.0, and 2.0. The last col- dataset.
umn shows the sample path with the highest energy which  Figure 7 shows results on four specific images from the
approximates the optimal configuration. In the lowest SNR BSDS. Qualitatively, the PB image provides a superior de-

5.2. Low SNR Segmentations
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