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ABSTRACT While both the data likelihood and prior terms are user-éefitthe

Sampling from distributions of implicitly defined shapesables ~ form of the prior varies considerably depending on the ofzition
analysis of various energy functionals used for image segatien. ~ Method; a curve-length penalty is typically used in lewatiraethods
Recent work [1] describes a computationally efficient Mpais- while a neighborhood affinity is typically used in graph-&asneth-
Hastings method for accomplishing this task. Here, we ektaat ods. We refer to these two fqrms as the PDE-based energy and th
framework so that samples are accepted at every iteratidheof 9raph-based energy, respectively.

sampler, achieving an order of magnitude speed up in coemesy Another form of prior information incorporates the topoyoof

Additionally, we show how to incorporate topological caastts. the segmented object. Hatwl. [5] first showed this using topology-
preserving level-set methods, where the topology of thenseged

object was not allowed to change. This methodology was Eter
tended in [6] to topology-controlled level-set methods,evehthe
topology was allowed to change but only within an allowaldeaf

Index Terms— Markov chain Monte Carlo, MCMC, Metropolis-
Hastings, level sets, segmentation

1. INTRODUCTION topologies. To our knowledge, topology-constrained sargpheth-
o . . ods have not previously been considered.
For many Bayesian inference tasks, evaluating marginaitereb- While [7], [8], and [1] all present Metropolis-Hastings MGM

abilities may be more robust than computing point estim@gsthe  sampling methods to generate implicitly represented shape first

MAP estimate). Image segmentation, particularly when tgea- o have been shown to converge very slowly and cannot accom-

to-noise ratio (SNR) is low, is one such task. However, bseabe 1 odate any topological changes. Recently, however, [§emmed

space of shapes is infinitely large, direct inference or $mgfs of-  an algorithm called BFPS that acts directly on the levelfsat-

ten difficult, if not infeasible. In these cases, Markov chifonte  tion. BEPS generates proposals by sampling a sparse settaf de

Carlo (MCMC) sampling approaches can be used to compute eMgnctions and smoothing them with an FIR filter. Delta locati

pirical estimates of marginal probabilities. Recentlg #ork of [1]  and heights were biased by the gradient of the energy todsere

derived an efficient MCMC method for sampling from distrion  the Hastings ratio. Empirical results demonstrated tha?®/as

of implicit shapesi(e. level sets). We improve upon that algorithm g qers of magnitude faster than [7] and [8], and represienstun-

in two ways. First, we improve the convergence rate by deji@in |ixe the previous two methods, could change topology. Hes,

Gibbs-like iteration in whictevery sample is accepted and, second, show how to efficiently sample from a distribution over segtae

we dempnstrate hqw to efficiently incorporate both local glathal  tions in both the PDE-based and graph-based energies. trasbto

topological constraints on sample shapes. . previous MCMC samplers, proposals at each iteration arepted
‘Many approaches formulate image segmentation as an energith certainty, achieving an order of magnitude speed upinver-

optimization. One can derive a related Bayesian inferenoegglure gence. Additionally, we incorporate topological controlexploit

by viewing the energy functiondl' (¢; =) as the log of a probability prior knowledge of the shape topology.

function
prix ({|z) o< exp [£E (4 2)] @
where is the labeling associated with some segmentatios, the 2. METROPOLIS-HASTINGS MCMC SAMPLING
observed image, and the in the exponent depends on whether
one is maximizing or minimizing. In PDE-based level-setinoels, We begin with a brief discussion of two MCMC sampling algo-
¢ = sign(y), wherey is the level-set function. In graph-based seg-rithms .f. [9] for details). For notational convenience, we drop
mentation algorithms, such as ST-Mincut [2] [3] or NormatizZCuts  the dependence anin distributions. We denotg,, x (¢) as thetar-
[4], ¢ is the label assignment. Often, the energy functional decomget distribution, i.e. the distribution from which we would like to
poses into a data fidelity term and a regularization of thesega- sample. MCMC methods are applicable when one can compute a
tion (Normalized Cuts being an exception). Bayesian foetiohs  Vvalue proportional to the target distribution, but not sérfpom it
treat the former as the data likelihood and the latter as@r jpra  directly. Distributions defined over the infinite-dimensab space of
segmentations: shapes fall into this category. MCMC methods address thab-pr
lem by constructing a first-order Markov chain such that taéen-
prx (£x) o< pxr (@) pr (€) . (2 ary distribution of that chain is exactly the target disttion. For
This research was partially supported by the Air Force Offit8cien- thls. Condltlon. t(.) h0|d3 itis sufficient to show th'at the 9hmrer-
tific Research under Award No. FA9550-06-1-0324. Any opisidindings, ~ 90dic and satisfiesletailed balance. The Metropolis-Hastings sam-
and conclusions or recommendations expressed in thisgatibln are those ~ pler (MH-MCMC) [9] is one such approach. At tinten the chain,
of the author(s) and do not necessarily reflect the viewseofih Force. the algorithm samples from some user-defined proposaituigitn,




1
4:-2 f ! |

%

w
N
N
=
N£
<
&

Fig. 1. Mapping the masked level-set function (left) onto the lieal
(right). Possible ranges, and widths 3, are shown on the right.

¢ ~ q(pM ]~ z), and assigns the transition probability:

) _ o® w/ prob  min(a®, 1) 3)
L oY w/prob 1—min(a¥ 1)’
o™ =15
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determined solely by the range. If we chogsgg(f|r) = % (i.e.
a uniform distribution), we can write the perturbation likeod as
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whereg.. is the width or range: (note that- is deterministic condi-
tioned onf). Because the value gfwithin a range- does not affect
the sign of the resulting level-set function, the proposdxtling can
be expressed as

D (m,r) = sign(@® (m, f ~ pe r(f]r)).

By choosing the following Gibbs-like proposal for the ragge

(8)

9)

one can verify via Equations 4, 6, and 7 that the Hastinge eatal-

prix v (rlm, oY) o Br pryx (19 (m, 7)),

wherea® is the Hasting’s ratio, and the segmentation labels araiates to one at every iteration.

I = sign(®) and ¢~ = sign(e*~1). As this transition
probability satisfies detailed balance, the correct statip distri-

bution is ensured as long as the chain is ergodic. A singleokam

from the target distribution is then generated by repeatiigpro-
posal/transition step until the chain converges.
Gibbs sampling is a special case of MH-MCMC, where?) =

1. Gibbs proposals typically select a random dimension ana sa

ple from the target distribution conditioned on all othemdinsions.
Empirical evidence indicates that when learning appearanod-
els (e.g. in [10]), Gibbs sampling exhibits slow convergetimes.

One subtlety exists in the endpoints of the first and lasteang
Since these ranges extendttoo, their corresponding is alsoocc.
We therefore restrict both ranges to be of some finite lergth
While any finite value will suffice, in practice, we chogsg = 1.

The resulting algorithm, called the Gibbs-Inspired Metilip
Hastings Shape Sampler (GIMH-SS), is described by theviiotip
steps: (1) Sample a circular mask, with a random center and ra-
dius; (2) Sample a range, according to Equation 9; (3) Sample
a perturbation,f, uniformly in this range; (4) Computg® (m, f)
using Equation 5; (5) Repeat from Step 1 until convergenolirR-

Block Gibbs sampling, where a group of dimensions are sainpleinary results ¢.f. [11]) show that GIMH-SS draw a single sample

conditioned on all other dimensions, allows for larger nsovéhe
proposed algorithm is related to this type of Gibbs sampling

3. GIBBS-INSPIRED METROPOLIS-HASTINGS

BFPS [1] achieves a high acceptance ratio at each iterayidmas-
ing the proposal by the gradient of the energy functionalteHee
design a similar proposal such that samples are acceptbdceit
tainty. Given some previous level-set functigrt! =), we generate
a proposalp(®) with the following steps: (1) sample a mask, that
selects a subset of pixels and (2) add a constant vdue,all pixels
within this mask. We can express this as

¢ (m, ) ="V + fm, (5)

where the masky, is a set of indicator variables with the same size
asy. The support of the mask can be of any shape and size, thou

in practice we use circles of random center and radius. Deéethe
choice of f, we write the proposal likelihood as

).

Figure 1 shows a notional mask overlaid on a level-set fonctp,

q(@P1" Y x) = par(m) prixare (flm, ¢

from a 500x300 pixel image in approximately 10 seconds. Tbis
vergence speed is approximatélyx faster than BFPSL,0°x faster
than [8], andl0°x faster than [7].

3.1. Relation to Block Gibbs Sampling

Block Gibbs sampling first selects a mask of pixels (or dinmers
to changes, and then samples from the target distributioditoned
on all other pixels. In binary segmentation, a block of $iz¢would
require one to evaluate an exponential numt2tl) of different
configurations, which is intractable for a reasonably sinedk.
The GIMH-SS algorithm similarly selects a mask of pixelseTh
level-set function orders the masked pixels, in that, if xepiof
height +h changes sign, all pixels of height < ¢, < h must
as well. Consequently, this algorithm samples from a sutistite
conditional distribution, resulting in a linear numbém( + 1) of
ifferent configurations. We note that ergodicity is endurecause
e ordering of pixels by the level-set function changes tivee.

4. TOPOLOGY-CONTROLLED SAMPLING

In this section, we extend GIMH-SS to a topology-control$zain-
pler. The topology of a continuous, compact surface is often

with the height ofp plotted on the real line for pixels in the support scribed by its genus (i.e. the number of “handles”). Diditglology

of the mask. The dotted line marks the zero-height whichssplk-
els into foreground and background. As all pixels in the suppf
the mask are summed with the same constnthoosing anf is
equivalent to shifting the zero-height byf. The resulting proposed
zero-height can fall into one dfim| + 1) differentranges, where
|m| counts the pixels in the support of the mask.

[12] is the discrete counterpart of continuous topologyerehre-
gions are represented via binary variables on a grid.

In digital topology,connectiveness must be defined for the fore-
ground (FG) and background (BG) describing how pixels incallo
neighborhood are connected. For example, in 2D, a 4-coedieet
gion corresponds to a pixel being connected to its neighdloose,

Sampling a perturbatiory;, can then be decomposed into sam- below, left, and right. An 8-connected region correspomdseing

pling a range followed by a value within that range. Most gger
functionals only depend on the sign of pixels, which coneatly is

connected to the eight pixels in a 3x3 neighborhood. Coivesetss
must be jointly defined for the foreground)(and backgroundr) to



BG Pixel (8-connected)
FG Pixel (4-connected)

e Connected Component

Ty=1Tx=1 T,=2Ts=2 Ty=11Tx=1

GP CCP

Initialization GIMH-SS TP

Fig. 2. Examples of topological numbers with, 7) = (4, 8). Fig. 4. Example samples imposing different topology constraints

[]BG Pixel (8-connected) T (0) =2 = T, (A)=2
Il FO Pixel (4-connected)  Ti(0)=1 = T5(8)=2 4.1. Topology-Controlled GIMH-SS
B sSplitting of Region THo)=2 # THA)=1
I Destruction of Handle HTo)=1 # T(A)=2

In this section, we summarize how to sample from the space of

Fig. 3. Splitting a region vs. destroying a handle while a pixel is Segmentations while enforcing topology constrairt$. ([11] for

added to BG. Topologal numbers are shown on right. details). While the goal is similar to [6], a simple alteaatiof the
level-set velocity in an MCMC framework witiot preserve detailed
balance. A naive approach generates proposals using @BlEnrd
rejects samples that violate topology constraints. Sucip@noach

avoid topological paradoxes. As shown in [12], valid conivittes  wastes significant computation generating samples thaegeted

for 2D are(n,m) € {(4,8),(8,4)}. Given a pair of connective- due to their topology. We take a different approach: onlyegate

ness, the topological numbers [13] at a particular pi¥gl(for the  proposed samples from the set of allowable topological géan

FG) andT7 (for the BG) count the number of connected compo- Recalling the discussion of ranges in GIMH-SS, one can deter

nents a pixel is connected to in a 3x3 neighborhood. Figut®®s  mine which ranges correspond to allowable topologies anithwh

a few neighborhoods with their corresponding topologieahbers.  do not. Ranges corresponding to restricted topologies Hzsie

While these topological numbers reflect topological chandleey  likelihood set to zero in a topology-controlled version dMB-SS

do not distinguish splitting or merging of regions from theation  (TC-GIMH-SS). An efficient implementation for finding allable

or destruction of a handle. Segonne [6] defines two additimm®-  ranges can be designed by considering the masked pixels- in as

logical numbers,T; and T3Y, which count the number afnique  cending absolute height while maintaining the labelingafreected

connected components a pixel is connected to over the émége  components. This methodology treats the topology as a tard ¢

domain.7;" and7; depend on how pixels are connected outside ofstraint. A distribution over topologies is implemented bgighting

the 3x3 region and allow one to distinguish all topologidahiges.  ranges based on topologies rather than eliminating resdrianes.

By labeling each connected component in the foreground and
background, Segonne shows ti&f can be computed efficiently 5 RESULTS
when a pixel is added to the foreground &fig when a pixel is '

added to the background. In 3D, amest calculatel>r whenadding  The TC-GIMH-SS algorithm can be applied to any PDE-based or
a pixel to the foreground, which can be computationally @spe. o a0h hased energy functional that depends only on theirigbe
We show here that this calculation is not necessary in 2D. and that can be evaluated. For deomnstration purposes, ke ama
Consider the two pixels marked by and A in Figure 3.  specific choice on the energy functional. Similar to [10], warn
Removing theo pixel from the foreground splits the region and nonparametric probability densities over intensities aondhbine
removing theA pixel destroys a handle. We emphasize that in thismutual information with a curve length penalty. We imposarfo
2D case, bothl}f (o) # T (A) and Tit (o) # Tit(A), which  different topology constraints on the foreground: unceised
generally is not true in 3D. In fact, in 2D, the destructioradfandle ~ (GIMH-SS), topology-preserving (TP), genus-preservié#), and
in the foreground corresponds directly to a merging of negimm  connected-component-preserving (CCP). The TP sampler wloe
the background. Likewise, the splitting of regions in theefgound  allow any topology changes, the GP sampler only allows thie sp
corresponds directly to a creation of a handle in the backgio ting and merging of regions, and the CCP sampler only alldwes t
Because of this one-to-one mapping, we do not need to corntipeite creation and destruction of handles. Typical samples fraoh ef
expensivel’ when adding a pixel to the foreground. Table 1 sum-these constraints are shown in Figure 4. When the topology co
marizes the topological changes of the foreground and baakg  straint is incorrect for the object (e.g. using TP or GP),rdwaulting
in 2D as a function of the four topological numbers. sample may be undesirable (e.g. creating a strait congetttentwo
connected components of the background). When the topatogy
correct, however, more robust results can be obtained. ¥eongle,
the CCP constraint removes some noise in the background.

Add to FG | AddtoBG . . :

T, Tt T T+ FG BG | FG BG . The us.efulness.of the topology constraint rel.les ona yaltdal-

) ) T 1 CR _ch DR Dom ization. Histogram images [7] display the marginal probgbthat
1 1 0 0 DH DR | CH CR a pixel belongs to the foreground or background where ligboé
1 1 1 1 - - - - ors equate to higher foreground likelihood. The computetbgram
>2 <T, X X CH SR | X X images are shown in Figure 5 for each of the topology comgtai
>2  >2 X X MR DH | X X We initialize the samples either using a random circle dairtg the
X X 22 <Ty| X X | SR CH foreground (FG Init), or a random circle placed anywherémim-
X X >2 >2 X X | DH MR

age (Random Init). While not always the case, marginal stesi
Table 1. Topological changes as a function of topological numbersgre often robust to incorrect topology constraints. Fonexa, in
‘C’ - Create; ‘D’ - Destroy; ‘S’ - Split; ‘M’ - Merge; ‘H' - Hande(s);  the FG initialization case, the strait in the TP and GP caists is
‘R’ - Region(s); ‘X’ - any value; *-' - no topological chang®©mitted  no longer visible. Additionally, if the initialization oglcaptures one
configurations are impossible in 2D. connected component of the background (which is possilttenan-
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95%
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Fig. 6. Low SNR image using FG Init. Histograms are shown above,

and quantiles (thresholded histograms) are shown below.

dom initialization), certain samplers that prohibit regisplits (TP
and CCP) will not be able to capture the entire region. Thi®is
flected in the histogram image with the gray center.

Consider the low SNR image of Figure 6. The work in [1]

demonstrated that sampling improves results when comparej+

Original  GIMH-SS TP

GP CcCcpP

Fig. 7. Example images illustrating the utility of topology prsor

http://people.csail.nit.edu/jchang7/.

7. REFERENCES

[1] J. Chang and J. W. Fisher Ill, “Efficient MCMC Sampling

with Implicit Shape Representations,” IEEE CVPR, 2011,
pp. 2081-2088.

D. M. Greig, B. T. Porteous, and A. H. Seheult, “Exact Maxi
mum A Posteriori Estimation for Binary ImagesJinl. of the
Royal Satistics Society, vol. 51, pp. 271-279, 1989.

timization based methods in low SNR cases. When the prokdem i [3] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximatergy

less likelihood dominated, as in this case, the prior haatgrem-

pact. The top row of Figure 6 shows the histogram images oédai

using each of the topological constraints. One can see 104
the straits in the TP and GP cases. Thresholding the noraaltizs-

togram image at a valugeveals theé™" quantile of the segmentation.
For example, it = 0.9, the resulting foreground of the thresholded

histogram contains pixels that are in the foreground foeast 90%

of the samples. We show the 95%, 50%, and 5% quantile segmen-

tations in Figure 6. Since reducing the threshold nevenkhrihe
foreground segmentation, we can overlay these quantiléspnf

each other. The 95% quantile shows the straits in the TP and GP
[7] A.C. Fan, J. W. Fisher Ill, W. M. Wells, J. J. Levitt, and 8.

cases which results from the wrong prior topology. Howeusing
a correct CCP constraint improves results as compared taiten-
strained case by removing a lot of the background noise.

minimization via graph cuts,1EEE Trans. PAMI, vol. 23, pp.
1222-1239, November 2001.

[4] J. Shi and J. Malik, “Normalized cuts and image segmenta-

tion,” IEEE Trans. PAMI, vol. 22, no. 8, pp. 888—905, 2000.

[5] X.Han, C. Xu, and J. L. Prince, “A topology preserving étv

set method for geometric deformable model$EEE Trans.
PAMI, vol. 25, no. 6, pp. 755-768, 2003.

F. Ségonne, “Active contours under topology contr@rgs
preserving level setsfnt. J. Comput. Vision, vol. 79, pp. 107—
117, August 2008.

Willsky, “MCMC curve sampling for image segmentation.,”
MICCAI, vol. 10, no. Pt 2, pp. 477-485, 2007.

The CCP constraint is particularly useful when an unknown [8] S Chen and R. J. Radke, “Markov chain Monte Carlo shape

number of handles exist (e.g. deformable objects). Objsittsa

known number of handles in 3D projected onto a 2D plane caa hav
any number of handles. We show two example images of a huma

and the resulting thresholded histogram image in Figuren7thé

first image, the handles formed by the arms are not capturdd we
with TP and GP. In the second image, the vignetting causesrthe
constrained and the GP to group some background with fanegro

6. CONCLUSION

We have presented a new MCMC sampler for implicit shapes. We
have shown how to design a proposal such that every propased s

ple is accepted. Unlike previous methods, GIMH-SS effitjesam-
ples PDE-based and graph-based energy functionals anddioes
quire the evaluation of the gradient of the energy functigwich

may be hard to compute). Additionally, GIMH-SS was extended[13]

to include hard topological constraints by only proposiagples
that are topologically consistent with some prior. Pullialail-

able source code for the TC-GIMH-SS algorithm can be found at

sampling using level setsJEEE ICCV Workshops, pp. 296—
303, 2009.

r19] W. K. Hastings, “Monte Carlo sampling methods using

Markov chains and their applications,Biometrika, vol. 57,
no. 1, pp. 97-109, 1970.

J. Kim, J. W. Fisher Ill, A. Yezzi, M. Cetin, and A. S. \sky,

“A nonparametric statistical method for image segmentatio
using information theory and curve evolution.|EEE Trans.
Image Proc., vol. 14, no. 10, pp. 1486-1502, 2005.

J. Chang and J. W. Fisher IIl, “Efficient topology-canited
sampling of implicit shapes,” May 2012, arXiv:1205.3766v1
[cs.CV].

T. Y. Kong and A. Rosenfeld, “Digital topology: introdtion
and survey,” Comput. Vision Graph. Image Process., vol. 48,
pp. 357-393, December 1989.

G. Bertrand, “Simple points, topological numbers and
geodesic neighborhoods in cubic gridBdttern Recogn. Lett.,
vol. 15, pp. 1003-1011, October 1994.



