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ABSTRACT

Sampling from distributions of implicitly defined shapes enables
analysis of various energy functionals used for image segmentation.
Recent work [1] describes a computationally efficient Metropolis-
Hastings method for accomplishing this task. Here, we extend that
framework so that samples are accepted at every iteration ofthe
sampler, achieving an order of magnitude speed up in convergence.
Additionally, we show how to incorporate topological constraints.

Index Terms— Markov chain Monte Carlo, MCMC, Metropolis-
Hastings, level sets, segmentation

1. INTRODUCTION

For many Bayesian inference tasks, evaluating marginal event prob-
abilities may be more robust than computing point estimates(e.g. the
MAP estimate). Image segmentation, particularly when the signal-
to-noise ratio (SNR) is low, is one such task. However, because the
space of shapes is infinitely large, direct inference or sampling is of-
ten difficult, if not infeasible. In these cases, Markov chain Monte
Carlo (MCMC) sampling approaches can be used to compute em-
pirical estimates of marginal probabilities. Recently, the work of [1]
derived an efficient MCMC method for sampling from distributions
of implicit shapes (i.e. level sets). We improve upon that algorithm
in two ways. First, we improve the convergence rate by defining a
Gibbs-like iteration in whichevery sample is accepted and, second,
we demonstrate how to efficiently incorporate both local andglobal
topological constraints on sample shapes.

Many approaches formulate image segmentation as an energy
optimization. One can derive a related Bayesian inference procedure
by viewing the energy functionalE(ℓ;x) as the log of a probability
function

pL|X(ℓ|x) ∝ exp [±E(ℓ;x)] , (1)

whereℓ is the labeling associated with some segmentation,x is the
observed image, and the± in the exponent depends on whether
one is maximizing or minimizing. In PDE-based level-set methods,
ℓ = sign(ϕ), whereϕ is the level-set function. In graph-based seg-
mentation algorithms, such as ST-Mincut [2] [3] or Normalized Cuts
[4], ℓ is the label assignment. Often, the energy functional decom-
poses into a data fidelity term and a regularization of the segmenta-
tion (Normalized Cuts being an exception). Bayesian formulations
treat the former as the data likelihood and the latter as a prior on
segmentations:

pL|X(ℓ|x) ∝ pX|L (x|ℓ) pL (ℓ) . (2)
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While both the data likelihood and prior terms are user-defined, the
form of the prior varies considerably depending on the optimization
method; a curve-length penalty is typically used in level-set methods
while a neighborhood affinity is typically used in graph-based meth-
ods. We refer to these two forms as the PDE-based energy and the
graph-based energy, respectively.

Another form of prior information incorporates the topology of
the segmented object. Hanet al. [5] first showed this using topology-
preserving level-set methods, where the topology of the segmented
object was not allowed to change. This methodology was laterex-
tended in [6] to topology-controlled level-set methods, where the
topology was allowed to change but only within an allowable set of
topologies. To our knowledge, topology-constrained sampling meth-
ods have not previously been considered.

While [7], [8], and [1] all present Metropolis-Hastings MCMC
sampling methods to generate implicitly represented shapes, the first
two have been shown to converge very slowly and cannot accom-
modate any topological changes. Recently, however, [1] presented
an algorithm called BFPS that acts directly on the level-setfunc-
tion. BFPS generates proposals by sampling a sparse set of delta
functions and smoothing them with an FIR filter. Delta locations
and heights were biased by the gradient of the energy to increase
the Hastings ratio. Empirical results demonstrated that BFPS was
orders of magnitude faster than [7] and [8], and representations, un-
like the previous two methods, could change topology. Here,we
show how to efficiently sample from a distribution over segmenta-
tions in both the PDE-based and graph-based energies. In contrast to
previous MCMC samplers, proposals at each iteration are accepted
with certainty, achieving an order of magnitude speed up in conver-
gence. Additionally, we incorporate topological control to exploit
prior knowledge of the shape topology.

2. METROPOLIS-HASTINGS MCMC SAMPLING

We begin with a brief discussion of two MCMC sampling algo-
rithms (c.f. [9] for details). For notational convenience, we drop
the dependence onx in distributions. We denotepL|X(ℓ) as thetar-
get distribution, i.e. the distribution from which we would like to
sample. MCMC methods are applicable when one can compute a
value proportional to the target distribution, but not sample from it
directly. Distributions defined over the infinite-dimensional space of
shapes fall into this category. MCMC methods address this prob-
lem by constructing a first-order Markov chain such that the station-
ary distribution of that chain is exactly the target distribution. For
this condition to hold, it is sufficient to show that the chainis er-
godic and satisfiesdetailed balance. The Metropolis-Hastings sam-
pler (MH-MCMC) [9] is one such approach. At timet in the chain,
the algorithm samples from some user-defined proposal distribution,



Fig. 1. Mapping the masked level-set function (left) onto the realline
(right). Possible ranges,r, and widths,β, are shown on the right.

ϕ̂(t) ∼ q(ϕ̂(t)|ϕ(t−1), x), and assigns the transition probability:

ϕ
(t) =

{

ϕ̂(t) w/ prob min(α(t), 1)

ϕ(t−1) w/ prob 1−min(α(t), 1)
, (3)

α
(t) =

pL|X(ℓ̂(t))

pL|X(ℓ(t−1))

q(ϕ(t−1)|ϕ̂(t), x)

q(ϕ̂(t)|ϕ(t−1), x)
, (4)

whereα(t) is the Hasting’s ratio, and the segmentation labels are
ℓ̂(t) = sign(ϕ̂(t)) and ℓ(t−1) = sign(ϕ(t−1)). As this transition
probability satisfies detailed balance, the correct stationary distri-
bution is ensured as long as the chain is ergodic. A single sample
from the target distribution is then generated by repeatingthis pro-
posal/transition step until the chain converges.

Gibbs sampling is a special case of MH-MCMC, whereα(t) =
1. Gibbs proposals typically select a random dimension and sam-
ple from the target distribution conditioned on all other dimensions.
Empirical evidence indicates that when learning appearance mod-
els (e.g. in [10]), Gibbs sampling exhibits slow convergence times.
Block Gibbs sampling, where a group of dimensions are sampled
conditioned on all other dimensions, allows for larger moves. The
proposed algorithm is related to this type of Gibbs sampling.

3. GIBBS-INSPIRED METROPOLIS-HASTINGS

BFPS [1] achieves a high acceptance ratio at each iteration by bias-
ing the proposal by the gradient of the energy functional. Here, we
design a similar proposal such that samples are accepted with cer-
tainty. Given some previous level-set function,ϕ(t−1), we generate
a proposal,̂ϕ(t) with the following steps: (1) sample a mask,m, that
selects a subset of pixels and (2) add a constant value,f , to all pixels
within this mask. We can express this as

ϕ̂
(t)(m,f) = ϕ

(t−1) + f ·m, (5)

where the mask,m, is a set of indicator variables with the same size
asϕ. The support of the mask can be of any shape and size, though
in practice we use circles of random center and radius. Deferring the
choice off , we write the proposal likelihood as

q(ϕ̂(t)|ϕ(t−1)
, x) = pM (m) pF |XMΦ(f |m,ϕ

(t−1)). (6)

Figure 1 shows a notional mask overlaid on a level-set function,ϕ,
with the height ofϕ plotted on the real line for pixels in the support
of the mask. The dotted line marks the zero-height which splits pix-
els into foreground and background. As all pixels in the support of
the mask are summed with the same constant,f , choosing anf is
equivalent to shifting the zero-height by−f . The resulting proposed
zero-height can fall into one of(|m|+ 1) different ranges, where
|m| counts the pixels in the support of the mask.

Sampling a perturbation,f , can then be decomposed into sam-
pling a range followed by a value within that range. Most energy
functionals only depend on the sign of pixels, which conveniently is

determined solely by the range. If we choosepF |R(f |r) =
1
βr

(i.e.
a uniform distribution), we can write the perturbation likelihood as

pFR|XMΦ(f |m,ϕ
(t−1)) =

1

βr

pR|XMΦ(r|m,ϕ
(t−1)), (7)

whereβr is the width or ranger (note thatr is deterministic condi-
tioned onf ). Because the value off within a ranger does not affect
the sign of the resulting level-set function, the proposed labeling can
be expressed as

ℓ̂
(t)(m,r) = sign(ϕ̂(t)(m,f ∼ pF |R(f |r)). (8)

By choosing the following Gibbs-like proposal for the ranges,

pR|XMΦ(r|m,ϕ
(t−1)) ∝ βr pL|X(ℓ̂(t)(m, r)), (9)

one can verify via Equations 4, 6, and 7 that the Hastings ratio eval-
uates to one at every iteration.

One subtlety exists in the endpoints of the first and last range.
Since these ranges extend to±∞, their correspondingβ is also∞.
We therefore restrict both ranges to be of some finite lengthβ∞.
While any finite value will suffice, in practice, we chooseβ∞ = 1.

The resulting algorithm, called the Gibbs-Inspired Metropolis
Hastings Shape Sampler (GIMH-SS), is described by the following
steps: (1) Sample a circular mask,m, with a random center and ra-
dius; (2) Sample a range,r, according to Equation 9; (3) Sample
a perturbation,f , uniformly in this range; (4) Computêϕ(t)(m, f)
using Equation 5; (5) Repeat from Step 1 until convergence. Prelim-
inary results (c.f. [11]) show that GIMH-SS draw a single sample
from a 500x300 pixel image in approximately 10 seconds. Thiscon-
vergence speed is approximately10x faster than BFPS,105x faster
than [8], and106x faster than [7].

3.1. Relation to Block Gibbs Sampling

Block Gibbs sampling first selects a mask of pixels (or dimensions)
to changes, and then samples from the target distribution conditioned
on all other pixels. In binary segmentation, a block of size|m| would
require one to evaluate an exponential number (2|m|) of different
configurations, which is intractable for a reasonably sizedmask.

The GIMH-SS algorithm similarly selects a mask of pixels. The
level-set function orders the masked pixels, in that, if a pixel of
height+h changes sign, all pixels of height0 < ϕi < h must
as well. Consequently, this algorithm samples from a subsetof the
conditional distribution, resulting in a linear number (|m| + 1) of
different configurations. We note that ergodicity is ensured because
the ordering of pixels by the level-set function changes over time.

4. TOPOLOGY-CONTROLLED SAMPLING

In this section, we extend GIMH-SS to a topology-controlledsam-
pler. The topology of a continuous, compact surface is oftende-
scribed by its genus (i.e. the number of “handles”). Digitaltopology
[12] is the discrete counterpart of continuous topology, where re-
gions are represented via binary variables on a grid.

In digital topology,connectiveness must be defined for the fore-
ground (FG) and background (BG) describing how pixels in a local
neighborhood are connected. For example, in 2D, a 4-connected re-
gion corresponds to a pixel being connected to its neighborsabove,
below, left, and right. An 8-connected region corresponds to being
connected to the eight pixels in a 3x3 neighborhood. Connectiveness
must be jointly defined for the foreground (n) and background (n) to
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BG Pixel (8-connected)

FG Pixel (4-connected)

Connected Component

Fig. 2. Examples of topological numbers with(n, n) = (4, 8).

FG Pixel (4-connected)

BG Pixel (8-connected)

Splitting of Region

Destruction of Handle

Fig. 3. Splitting a region vs. destroying a handle while a pixel is
added to BG. Topologal numbers are shown on right.

avoid topological paradoxes. As shown in [12], valid connectivities
for 2D are(n, n) ∈ {(4, 8), (8, 4)}. Given a pair of connective-
ness, the topological numbers [13] at a particular pixel,Tn (for the
FG) andTn (for the BG) count the number of connected compo-
nents a pixel is connected to in a 3x3 neighborhood. Figure 2 shows
a few neighborhoods with their corresponding topological numbers.
While these topological numbers reflect topological changes, they
do not distinguish splitting or merging of regions from the creation
or destruction of a handle. Segonne [6] defines two additional topo-
logical numbers,T+

n andT+
n , which count the number ofunique

connected components a pixel is connected to over the entireimage
domain.T+

n andT+
n depend on how pixels are connected outside of

the 3x3 region and allow one to distinguish all topological changes.

By labeling each connected component in the foreground and
background, Segonne shows thatT+

n can be computed efficiently
when a pixel is added to the foreground andT+

n when a pixel is
added to the background. In 3D, onemust calculateT+

n when adding
a pixel to the foreground, which can be computationally expensive.
We show here that this calculation is not necessary in 2D.

Consider the two pixels marked by◦ and △ in Figure 3.
Removing the◦ pixel from the foreground splits the region and
removing the△ pixel destroys a handle. We emphasize that in this
2D case, bothT+

n (◦) 6= T+
n (△) and T+

n (◦) 6= T+
n (△), which

generally is not true in 3D. In fact, in 2D, the destruction ofa handle
in the foreground corresponds directly to a merging of regions in
the background. Likewise, the splitting of regions in the foreground
corresponds directly to a creation of a handle in the background.
Because of this one-to-one mapping, we do not need to computethe
expensiveT+

n when adding a pixel to the foreground. Table 1 sum-
marizes the topological changes of the foreground and background
in 2D as a function of the four topological numbers.

Add to FG Add to BG
Tn T

+
n Tn T

+
n

FG BG FG BG

0 0 1 1 CR CH DR DH
1 1 0 0 DH DR CH CR
1 1 1 1 - - - -

≥ 2 < Tn X X CH SR X X
≥ 2 ≥ 2 X X MR DH X X
X X ≥ 2 < Tn X X SR CH
X X ≥ 2 ≥ 2 X X DH MR

Table 1. Topological changes as a function of topological numbers.
‘C’ - Create; ‘D’ - Destroy; ‘S’ - Split; ‘M’ - Merge; ‘H’ - Handle(s);
‘R’ - Region(s); ‘X’ - any value; ‘-’ - no topological change.Omitted
configurations are impossible in 2D.

Initialization GIMH-SS TP GP CCP

Fig. 4. Example samples imposing different topology constraints.

4.1. Topology-Controlled GIMH-SS

In this section, we summarize how to sample from the space of
segmentations while enforcing topology constraints (c.f. [11] for
details). While the goal is similar to [6], a simple alteration of the
level-set velocity in an MCMC framework willnot preserve detailed
balance. A naı̈ve approach generates proposals using GIMH-SS and
rejects samples that violate topology constraints. Such anapproach
wastes significant computation generating samples that arerejected
due to their topology. We take a different approach: only generate
proposed samples from the set of allowable topological changes.
Recalling the discussion of ranges in GIMH-SS, one can deter-
mine which ranges correspond to allowable topologies and which
do not. Ranges corresponding to restricted topologies havetheir
likelihood set to zero in a topology-controlled version of GIMH-SS
(TC-GIMH-SS). An efficient implementation for finding allowable
ranges can be designed by considering the masked pixels in as-
cending absolute height while maintaining the labeling of connected
components. This methodology treats the topology as a hard con-
straint. A distribution over topologies is implemented by weighting
ranges based on topologies rather than eliminating restricted ones.

5. RESULTS

The TC-GIMH-SS algorithm can be applied to any PDE-based or
graph-based energy functional that depends only on the labeling
and that can be evaluated. For deomnstration purposes, we make a
specific choice on the energy functional. Similar to [10], welearn
nonparametric probability densities over intensities andcombine
mutual information with a curve length penalty. We impose four
different topology constraints on the foreground: unconstrained
(GIMH-SS), topology-preserving (TP), genus-preserving (GP), and
connected-component-preserving (CCP). The TP sampler does not
allow any topology changes, the GP sampler only allows the split-
ting and merging of regions, and the CCP sampler only allows the
creation and destruction of handles. Typical samples from each of
these constraints are shown in Figure 4. When the topology con-
straint is incorrect for the object (e.g. using TP or GP), theresulting
sample may be undesirable (e.g. creating a strait connecting the two
connected components of the background). When the topologyis
correct, however, more robust results can be obtained. For example,
the CCP constraint removes some noise in the background.

The usefulness of the topology constraint relies on a valid initial-
ization. Histogram images [7] display the marginal probability that
a pixel belongs to the foreground or background where lighter col-
ors equate to higher foreground likelihood. The computed histogram
images are shown in Figure 5 for each of the topology constraints.
We initialize the samples either using a random circle containing the
foreground (FG Init), or a random circle placed anywhere in the im-
age (Random Init). While not always the case, marginal statistics
are often robust to incorrect topology constraints. For example, in
the FG initialization case, the strait in the TP and GP constraints is
no longer visible. Additionally, if the initialization only captures one
connected component of the background (which is possible with ran-
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Random
Init

GIMH-SS TP GP CCP

Fig. 5. Histogram images using different initializations.

GIMH-SS TP GP CCP

Fig. 6. Low SNR image using FG Init. Histograms are shown above,
and quantiles (thresholded histograms) are shown below.

dom initialization), certain samplers that prohibit region splits (TP
and CCP) will not be able to capture the entire region. This isre-
flected in the histogram image with the gray center.

Consider the low SNR image of Figure 6. The work in [1]
demonstrated that sampling improves results when comparedto op-
timization based methods in low SNR cases. When the problem is
less likelihood dominated, as in this case, the prior has greater im-
pact. The top row of Figure 6 shows the histogram images obtained
using each of the topological constraints. One can see remnants of
the straits in the TP and GP cases. Thresholding the normalized his-
togram image at a valuet reveals thetth quantile of the segmentation.
For example, ift = 0.9, the resulting foreground of the thresholded
histogram contains pixels that are in the foreground for at least 90%
of the samples. We show the 95%, 50%, and 5% quantile segmen-
tations in Figure 6. Since reducing the threshold never shrinks the
foreground segmentation, we can overlay these quantiles ontop of
each other. The 95% quantile shows the straits in the TP and GP
cases which results from the wrong prior topology. However,using
a correct CCP constraint improves results as compared to theuncon-
strained case by removing a lot of the background noise.

The CCP constraint is particularly useful when an unknown
number of handles exist (e.g. deformable objects). Objectswith a
known number of handles in 3D projected onto a 2D plane can have
any number of handles. We show two example images of a human
and the resulting thresholded histogram image in Figure 7. In the
first image, the handles formed by the arms are not captured well
with TP and GP. In the second image, the vignetting causes theun-
constrained and the GP to group some background with foreground.

6. CONCLUSION

We have presented a new MCMC sampler for implicit shapes. We
have shown how to design a proposal such that every proposed sam-
ple is accepted. Unlike previous methods, GIMH-SS efficiently sam-
ples PDE-based and graph-based energy functionals and doesnot re-
quire the evaluation of the gradient of the energy functional (which
may be hard to compute). Additionally, GIMH-SS was extended
to include hard topological constraints by only proposing samples
that are topologically consistent with some prior. Publicly avail-
able source code for the TC-GIMH-SS algorithm can be found at

Original GIMH-SS TP GP CCP

Fig. 7. Example images illustrating the utility of topology priors.

http://people.csail.mit.edu/jchang7/.
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