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In Section A, we rigorously prove that propagating partideations with the sampler shown in
the paper does not require weight updates. Next, in SectjomeBgive a more detailed derivation of
the Permutation-based Gaussian Inspired Metropolis kgstshape sampler presented in the paper.
In Section C, we validate the filter approximations used m @aussian process flow sampling. As
stated in the paper, we have additionally developed a hevits dynamically learning the smoothness
parameters for the Gaussian processes. This heuristicesibed in Section D. The edge sharpening
process that was shown to slightly improve results in theepapdiscussed in Section E. Lastly, we
present quantitative flow performance evaluation on thed\dioury dataset in Section F. For additional
tracking results and insights, please view the includedienov

A Efficient Particle Filtering without Weight Updates

We denotey as the set of hidden variables, ands the set of observed variables in a Markov chain. The
graphical model representing this relationship is showligure 1. A typical approach for this type of
filtering problem is to use a particle filter [3] where at timgthe distributionp(y*|z%), is represented
by a set of weighted sample§y’, w!}. Here,w! is the importance weight associated with particle
The weights are chosen such that expectations over fuisaticthe true distribution can be approximated
with weighted sums of functions of the particles. More pseby, if a sample particle;’ is drawn from
some densityy(y*), the weight is chosen to be
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This set of weights allows one to calculate expectationswfesfunction/.(-), of the desired distribution

S () ~ By [0 b)) = By [h(0)]. @

Particle filtering propagates particles and correspondieights through time. In typical algorithms, a
particle,y! is propagated to the new time point using the distributioere@mporal dynamics(y*™|y").
In this case, the resulting weight updates must reflect thvedaga likelihood term
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Figure 1: Markov chain that particle filtering can be used on.

yot ~ p(y™t YY)



As stated in the paper, particle weights decay over time famynikelihood-dominated applications, in-
dicating a poor representation of the desired distributgequential resampling techniques are typically
utilized to mitigate this issue. We show here that if paetschre propagated with both the observation
and prior distributions, weight updates are not neededs fiipe of sampler can alternatively be thought
of as a causal Gibbs sampler.

Attimet, assume we have a set of samplgsirawn from some density(y") and with corresponding
importance weightsy?. If at timet + 1, samples is drawn from

t+1

Yt~ p(yH e gt = l). (4)

We show that the previous weights accurately representriperitance weights without updates:
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Therefore, assuming the previous weights were correct itapoe weights, by sampling particle loca-
tions using both prior and data evidence, the weights do @ed mo be updated and resampling does not
need to be performed.

B Permutation-based Gibbs Inspired Metropolis Hastings

The GIMH algorithm [2] attempted to sample from the spacengdlicit shapes defined over some level
set function,r(¢). An assumption in the work was made that the underlying setatien was only
a function of the sign of the level set function. Consequgiitivas stated that the target distribution
was of the formr(¢) = f(sgn¢)). That is, two different level set functions with the samensag
every pixel evaluate to the same likelihood. Unfortunatedis is not a valid distribution oves. If we
denotel = sgn¢), and observe thdtis deterministic conditioned op, the level set distribution can be
expressed as

m(¢) = m(@)(l|p) = m(L, ) = w(£)7(¢]C). (12)

While 7(¢) is chosen to be the user-specified distributinfy|¢) is not defined. This is equivalent to

assuming thatr(¢|¢) is uniform forall level set functions with sg@) = ¢. Since there are an infinite

number of such level set functions, this distribution is alesolutely integrable and is therefore invalid.
We thank Janick Cardinale and Ivo Sbalzarini for noticingesin the resulting marginal statistics which
ultimately lead to the discovery of this oversight.



B.1 Theoretical Sampler

Our Permutation-based GIMH algorithm addresses this isgeeplicitly using a random ordering, on

all pixels. In this section, we discuss the gendralary sampler. Following this discussion, we explain
how it is applied to our layered model. The label assignedxel p is denoted’;, and can take on values
in{1,---, M}. We begin with some definitions.

Definition B.1 (Valid Ordering) Leto; be the order index assigned to pixellf the vectoro is a per-
mutation of the integersto NV, then it is a valid ordering. Additionally, if; < o;, we say that pixed is
placed before pixel in the ordering.

Definition B.2 (Relative Ordering) Let o define a valid ordering on the pixels, amld be a subset of
all the pixels. The ordering of the pixels withii implied byo is defined to be the relative ordering of
pixels inW.

Definition B.3 (Consistent Ordering) Leto define a valid ordering on the pixels. A consistent ordering
is defined to be an ordering that places all pixels with= £ in a contiguous order for alk. More
formally, for consistent orderings, ifi, = ming,— 0; and b, = maxg s,y 0;, thent; = k Vi €
{i|o; € [ax, bk]}. If 0 is a consistent ordering for the labelswe say thab is consistent witH.

We note that, in general, a relative ordering need not beistams. However, if the total ordering on
pixels is consistent, the derived relative ordering muso dle consistent. We are now ready to define
the joint distribution over labels and orderings. We dertbie joint target distribution withr (¢, 0) =
m(¢)m(o|l). We are free to choose any valid conditional distributioroaferings, and find the that a
uniform distribution over all consistent orderings workslwDenoting/N; as the number of pixels with
labelj, the joint distribution can be expressed as

m(£)

w(0)m(o|l) = ML N (13)

The first factorial term oveM computes the number of permutation of thepossible labels, and the
product of factorials computes the number of permutatioitisimva label.

We formulate a Metropolis-Hastings Markov chain Monte 6gMH-MCMC) sampler to sample
from Equation 13. In MH-MCMC algorithms, one constructs arkés chain with the stationary dis-
tribution being the target distribution. If the chain is silated for a long period of time, the chain will
converge to the stationary distribution, and the valuesnathe process is stopped will correspond to a
sample from the target distribution. Conditioned on thevimas values/® ando, we sample values
from a user-specified proposal distributigif, 6|¢®), o). These values are accepted with probability:
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Otherwise, the old values are kept. The ratio within the mination is often referred to as the Hastings
Ratio, which we denote a5.

We construct a particular proposal distribution here thiltaerrespond to an efficient MH-MCMC
sampler. Our proposal distribution is composed of fourstep

1. Select two random labels, and/, uniformly.
2. Sample a subset of pixeld] ~ ¢(W), that only contains pixels with labeksor (.
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3. Sample a new set of labels~ ¢({|WV, (1), o) that possibly changes labels withifi to % or [
and that preserves the consistency ofréative ordering.

4. Sample a new consistent ordering uniformly from all oires that preserves the relative ordering
of the pixels ini¥/, and is consistent with the proposed label.

We note that the number of permutations with a subset of @sdicllowing a specific order %’r,' where
N is the length of the full permutation, ard is the size of the ordered subset. The probability of
generating from this proposal can then be expressed as

- 2 A 2 Ny, ! Ny !
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where Ny, is the number of pixels of withifi” with label (¥ = &, and Ny, is the number of pixels
within W with label¢ = k. The resulting Hastings ratio can be expressed as
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Consequently, if we choose the proposal of labels in Steo@ to
- 1
q(W, 69 o1y w(ﬁ)i (19)
Ny, !Ny,

the Hastings ratio evaluates to one, and every proposedisasaccepted. Also, similar to GIMH,
because proposed labels must preserve the relative ayd#rihe pixels inl¥/, there exist onlyIW| + 1
possible label moves. Since the number of moves is linedeisize ofiV, they can be sampled directly
by simply enumerate the possible moves.

It is interesting to note that this relationship holds foy atata-independent proposal distribution
of the subsetJV. In particular, in the binary caseél{ = 2), if W is chosen to be a random single
pixel, PGIMH simplifies to the typical Gibbs sampler since ttenominator of Equation 19 evaluates
to0!- 1! = 1. Thus, PGIMH is essentially a generalization of Gibbs samgpihat allows larger local
moves.

B.2 An Efficient Implementation

The previous section described an algorithm for corre@mmsling from target distributions. However,
the computational complexity of a naive implementation ba quiet bad. We note that the GIMH
algorithm has computational complexi®¥( |1V |log |I¥|) for each iteration. In PGIMH, Step 1 and 2 can
be computed in constant time (depending on the choigél®f)). Step 3 requires sorting the pixelslin
which isO(|W|log |W]) followed by enumerating the possible moves whicldigiV|). Finally, Step

4 requires one to sample a new consistent order which 1Qkég) time, whereN > |W|. The naive
implementation exhibit€ (|1 | log |W| 4+ N) complexity, which is clearly undesirable. In this section,
we describe an exact implementation of the above algorittangerforms a proposal id(|IV]).
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Itis well known in the MCMC sampling literature that one caixiainy combination of valid proposal
distributions while still preserving the stationary diistition of the chain. We consider mixing the above
sampler with a Gibbs iteration to sample an ordering coowléd on the labels. While this may seem like
it adds complexity to the model, it actually allows us to slifyithe implementation. We draw on the
following key observation: when a naive PGIMH iteratiopreceded by a Gibbs iteration that samples
a consistent ordering, the relative ordering of the pixathiw I will be uniformly distributed over all
consistent relative orderings. Thus, this iterative pdoce can be exactly reproduced with the method
described in Algorithm 1. We note that because a randomvelatdering is sampled at each iteration of

Algorithm 1 An iteration of samplingr(¢) via PGIMH

1. Select two random labels, andl, uniformly.

2. Sample a subset of pixeld] ~ ¢(W), that contains only contains pixels with labélsr .

3. Sample a consistent relative ordering of pixel$linuniformly using a Knuth shuffle [4] on each
Wy, andW.

4. Sample a new set of labels~ ¢(¢|IV, () o®) that possibly changes labels withifi to & or I
and that preserves the consistency ofreiative ordering from the previous step.

PGIMH, the explicit orderingy, does not actually need to be maintained. Additionally;sithe Knuth
shuffle can be performed @(|1V|) time, and the total ordering does not need to be updatedy#rald
complexity of an iteration is now(|IV|).

W is often selected by first sampling a random circle centeraarahdom radius around it (from
some pre-specified range of valid radif). is then chosen as the subset of pixels in the circle that have
labelsk andl. When sampling from a binary distribution, Algorithm 1 caam$implified by omitting the
subset selection and settifig to be the entire circle of pixels.

In the layered model presented in the paper, each layer awasra binary supportimage. Thus, each
iteration starts by first selecting a random layer, followegdan iteration of PGIMH. This procedure can
be repeated tens of thousands of times in less than a secansiogle core.

B.3 Topology Constraints

As stated in the paper, imposing hard topology constraintthe sampler is a simple extension that
follows straightforwardly from the work of [2]. When the mikle label changes are enumerated, a
simple topology check is performed to find whether the paldicchange is an allowable topology. If it
is not, the move is simply assigned zero probabilityr(rﬁ), and Equation 19 takes care of the rest. For
more details on how the topology checks are implement, plester to [2] and our publicly available

source code.

C Approximate Inference

In this section, we show the approximations used to perftiersampling-based inference in the algo-
rithm.



C.1 Approximate Filter-Based Gaussian Process Sampling

We first describe the approximate sampler for the the Gaugsacess flow. Assume is the covariance
matrix resulting from a stationary covariance kerrglso that each component of the covariance can be
written as the difference of the locations:

Yig = k(i —j). (20)
Then, the result of multiplying a vectar, by X (i.e. y = ¥ ) can be calculated with the convolution of
k andzx:
Y; = [E SC]Z = Zj EZ'JSUJ' = Zj k(l — j).Tj, (21)

where[-]; denotes thé’" component of the resulting vector.

We now consider the iterative approximate inference tegphaused to samplg f, where we have
omitted the layer subscript: and the time superscriptfor notational convenience. As stated in the
paper, the distributions of these random variables are

plg) =N(g; 0,%) (22)
p(flg) =N(f; g.031). (23)

By noting that the observation space and inference spacexactly the same, we can manipulate the
typical Gaussian process regression [7] to get

plglf) =N(g; 15, 35) (24)
* -1 * -1
py =% [Sg+ofl] f,  Ei=%,-%[S,+07l] 5, (25)
Using the filtering approximation of Equation 21, the meactoecan be approximated with
i~ by f, (26)

whereh,, is the covariance kernel corresponding to the covariantexa, [, + 07| ~!. We note that
while Equation 21 is exact, this expression is only an appmakon because the kernel corresponding
to the covariance matrix is not stationary. The approxioreis exact in the limiting case of the data,
having infinite extent. Consequently, the approximatiogrddes near image boundaries. We find this
kernel by using the Fourier domain and three additionakfgdf) convolutions correspond to multiplica-
tions in the Fourier domain; (2) the identity matrix corresgds to an all-pass filter; and (3) inverting the
matrix before multiplying corresponds to dividing in theufier domain. This results in the following

filter
e F{k}
= F {]—“{k}Jra]%}’ (27)

whereF {-} and 7! {-} denote the Fourier and inverse Fourier transform. We agpmate this filter
by using discrete Fourier transforms.

While this shows how to find the mean of the posterior Gaugsiacess, we need to be ablesample
from the posterior. We first remind the reader of the usefapprty of Gaussian random variables:

g~ N (s, 30) =t + N(0,55) . (28)

That is, the randomness incan be completely captured by the second term involving tivaréance.
Additionally, it is well known that ify ~ N (0,1) (i.e. a vector of standard normals), then multiplying
this vector by a matriX4 results in correlated Gaussian variables:

Ay=N(0,AA"). (29)
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While this relationship is most often used to generate waidiiite normals by settingl to be the
Cholesky decomposition of the covariance matrix, the itetiolds for any matrix,A. We first find
the corresponding filter that is equivalent to multiplyingetor with} as

hggzaFl{}{k}—-i%%%é%;?}. (30)

Then using Equation 29, we choose a particulao that it is symmetric, resulting in:

hzzfl{\/ff{k}—%}. (31)

Using this filter, we can approximately generate a sample filoe Gaussian process of Equation 23
with:

[hy, * f1+N(0,1) * hy (32)

C.2 Approximate Marginalization of Independent Flow

Equations 22-25 in the paper briefly describe the approximaised to marginalize out the independent
flow f. We describe this derivation in more detail here.

O(p([[' Et |gm7€tm7£fnl7 2117Zt) (34)
_ / ULt DU | £ 0 Y plat,] fal Yp(atlf, at, 21)dft, (36)
= (e ] / © gt Qs L FEplah ol o pat €, <), (37)

gt H/N mmgmz?af)QS( ‘fﬁt 1) ( fn,z|fa£n ) ( twﬂ a;, = )df;, (38)

We note that evolving an image (e®.with a flow (e.g.f) can be expressed as
fai=ivf, = Qivgitfi—g; = 9Qitfi—g,- (39)
Using this relationship, we can express the following
Pl G Oy € a2, 21 (40)

OCQL gt H/N mz’gmwaf)QS(gl;n, |g€fnzl+f1 1)p< mz‘gamz—l—fl 1) ( twm Qi 2 )dfrtn (41)
= Qulti) TT [ NS = g 0,53)Qs(Eh ol Il Ly Dol 5, (42)

= Qut) [T [ NG0.0)@s(6 ot 1 (et loat (el 2 @3)



We denotel], ,(j) the same as in the paper:

mi(7) = Q30 1|9 i1 )P (ann 31900 5. )P(@01 G, 0z, 2°). (44)

Using this notation, and making a discrete approximatioth&integral allows us to approximate the
likelihood as

p(ﬁfn‘gfn’ﬁt o 17 fnlvx 7zt) (45)
x Qo) [T [ N0 0028, ) (46)
~Qu(l,) H ZN (750, 07) L3, (7) (47)

= Q1 Hth ‘ (48)

which is exactly Equation 25 in the paper.

D Flow Parameter Learning

As stated in the paper, the smoothness constraints on thédlovzan greatly affect the tracking results.
If we are tracking an object moving under rigid transformoasi, we may desire to constrain the flow
to be very smooth, whereas the flow for a deformable object megg to be more loosely constrained.
There are three parameters to estimate the variance obtagiance kernelp?, the absolute variance
scaling for the covariance af, a , and the variance of the independent flow, Although we did not

state this in the paper, we can express the covariang@st,; ; = ag exp [— (i,; ;;2 :

We use the optical flow measurement of [5] as an initial guesise flow, and design a heuristic for
fitting flow parameters to the measured optical flow. Givendptcal flow for each layenn, and its
corresponding support, we begin by estimating the optjmﬁlzkbr each layer. We sample random pairs
of locations, and for each pair, we record the distance letilge points and their corresponding values.
We then find the empirical correlation of these observatama function of distancey(d). We then
minimize theL, norm of the difference between the empirical covariancelslam parametrized squared
exponential kernel, weighted by the number of observationgach distance. We note that empirical
correlations may be negative even though the underlyings&an process is always attractive. Thus,
we ignore negative empirical correlations. We find the gdtom a discrete set of possible values by
minimizing

21\

arg mm Z (Ndp(d) — exp {—%}) , (49)
whereN, is the number of observatlons at distadcgpart.p, should be tuned to how much a particular
object can deform. An example of the best fit covariance kesrghown in Figure 2b. Once we learn
that an object can evolve with a very unsmooth flow field, weusthallow it to do so in future frames as
well. Thus, we set this parameter at tim® be the minimum value of the previously used smoothness
versus the value that optimizes Equation 49 for the curramé. Similarly, the current optimal value is
taken to be the minimum of Equation 49 for the x- and y-diatai flow.

Because users may want to track only one object of many, a lagg sometimes contain multiple
moving objects. For example, consider the frame shown inr€i@a, where the ground truth annota-
tion only tracks the deer and the cheetah on the right is ndaakethe background. While the actual
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Figure 2: (a) Annotation to track a deer. Notice how the chleain the right is grouped with the
background. (b) The optimal fit for the foreground regionrtaid with observations. (c) The number of
observations of each distance for the foreground regignl'tie optimal covariance kernel for the entire
background region and the cheetah contained in the badkdrou

background may have very smooth motions, the untrackedaimeeay evolve with a very deformable
motion. Additionally, because these two objects are regmtesi with one layer, the necessary flow field
for this composited layer must be adequately loose to allewbodeling of both the background and
the cheetah. The observations of the entire layer, howexihe dominated by pairs of pixels in the
background rather than the cheetah. We therefore take manutoles of radius 100 throughout the sup-
port of the layer, and find the corresponding optimgalor each circle. The optimal values for the entire
background and for the cheetah are shown in Figure 2d. Thétirgsoptimalp, for the current time
frame is then chosen as the minimum of glivalues found in all circles for each layer.

Conditioned on this covariance kernel, we then find the ogitabsolute variancer,g, and the vari-
ance of the independent flow,%, by finding the values that minimize thie, norm between the mean
flow field and the optical flow. We note that the actual valuenfibin this step does not seem to affect
results very much; however, we do find that we must use the sdrfar all layers. If different values
are used, the layers with a larger valueaﬁftend to have higher likelihood. We believe that this is due
to the marginalization of the independent flow, allowingy&arvalues to explain more observation.

E Edge Sharpening

As mentioned in the paper, we sharpen the edges of framastpti@acking to slightly improve results.
This improvement is due to the fact that we do not explicitlydal edge effects and motion blur. While
this image acquisition phenomenon could potentially berparated in the model, we find that a simple
procedure for fixing edges works well. We run each frame thindiaree Sobel filter (one for each color
channel). Then, we threshold each image using the threslesictibed in [6]. We define an edge pixel
as a pixel that is declared to be an edge in any of the colomelanFinally, we set each edge pixel to
the color of the nearest non-edge pixel. An example of thesgss is shown in Figure 3.

F Middlebury Flow Evaluation

As stated in the paper, while our method does infer a densefiédaly the purpose of the flow is not
to be accurate on a subpixel level. Rather, the particulars&an process formulation was chosen for
purposes of efficient inference in object tracking. Any ielon of the flow will not be locally smooth
because of the independence assumption in the compositédldw

Regardless, we show quantitative results on the Middlebptigal flow dataset [1] for our algorithm.
We note that in our actual formulation, we assume that objeate been tracked. In the Middlebury
dataset, because other algorithms do not have access &etjnizentation data, we also do not use it.



Figure 3: Edge sharpening results. Original image (leftjyeedetection (middle), edge sharpened image
(right). Bottom row shows a detail of the image.

| Video || Without Initialization | With Initialization |
Dimetrodon 0.6864 0.3195
Grove2 1.0042 0.4917
Grove3 1.5564 1.0516
Hydrangea 0.5151 0.4302
RubberWhale 0.4103 0.4053
Urban2 6.1440 0.8631
Urban3 45784 0.8631
\Venus 1.1397 0.6317

Table 1: Average endpoint error for training set of Middlgbdataset [1].

Rather, we treat the entire image as one layer and hope that #hindependent flow can capture the
necessary discontinuitiesAdditionally, while our method is designed to track obgattoving in natural
scenes, the frames from [1] are all synthetically creategpiaciures in a laboratory setup. As such, their
motion vectors are only a few pixels in magnitude as comptréde tens of pixels common in natural
scenes. Estimated flow using our algorithm with the optiaal/finitialization of [5] and initialization
with zero flow are evaluated quantitatively in Table 1 andvaih@n Figure 4. The flow field for each
sequence is calculated as the mean flow over 100 samplesaendesult is computed using the same
set of parameters. We note that from Figure 4, it seems lik#dkv near the center of objects is estimated
quite well while the flow near object boundaries is overly sthed. This is a result of treating the entire
scene as one layer. Additionally, we find that using optical/fas an initialization can greatly help the
inference scheme for large regions of similar color.
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second column shows the inferred flow without any initidtiiza, the third column shows the inferred
flow with the optical flow of [5] as an initialization, and theurth column is the ground truth flow.
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in actual tracking.
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