
Supplemental Material for
“Topology-Constrained Layered Tracking with Latent Flow”

Jason Chang and John W. Fisher III

In Section A, we rigorously prove that propagating particlelocations with the sampler shown in
the paper does not require weight updates. Next, in Section B, we give a more detailed derivation of
the Permutation-based Gaussian Inspired Metropolis Hastings shape sampler presented in the paper.
In Section C, we validate the filter approximations used in the Gaussian process flow sampling. As
stated in the paper, we have additionally developed a heuristic for dynamically learning the smoothness
parameters for the Gaussian processes. This heuristic is described in Section D. The edge sharpening
process that was shown to slightly improve results in the paper is discussed in Section E. Lastly, we
present quantitative flow performance evaluation on the Middlebury dataset in Section F. For additional
tracking results and insights, please view the included movie.

A Efficient Particle Filtering without Weight Updates

We denotey as the set of hidden variables, andx as the set of observed variables in a Markov chain. The
graphical model representing this relationship is shown inFigure 1. A typical approach for this type of
filtering problem is to use a particle filter [3] where at time,t, the distribution,p(yt|x0:t), is represented
by a set of weighted samples,{yts, w

t
s}. Here,wt

s is the importance weight associated with particles.
The weights are chosen such that expectations over functions of the true distribution can be approximated
with weighted sums of functions of the particles. More precisely, if a sample particle,yts is drawn from
some density,q(yt), the weight is chosen to be

wt
s ≡ w(yts) =

p(yts|x
t
s)

q(yts)
. (1)

This set of weights allows one to calculate expectations of some function,h(·), of the desired distribution

1

N

N
∑

s=1

wt
sh(y

t
s) ≈ Eq

[

w(yt)h(yt)
]

= Eyt|x0:t

[

h(yt)
]

. (2)

Particle filtering propagates particles and correspondingweights through time. In typical algorithms, a
particle,yts is propagated to the new time point using the distribution over temporal dynamics,p(yt+1|yt).
In this case, the resulting weight updates must reflect the new data likelihood term

yt+1
s ∼ p(yt+1|yt) , wt+1

s = p(xt+1|yt+1
s)wt

s. (3)

Figure 1: Markov chain that particle filtering can be used on.

1

As stated in the paper, particle weights decay over time for many likelihood-dominated applications, in-
dicating a poor representation of the desired distribution. Sequential resampling techniques are typically
utilized to mitigate this issue. We show here that if particles are propagated with both the observation
and prior distributions, weight updates are not needed. This type of sampler can alternatively be thought
of as a causal Gibbs sampler.

At time t, assume we have a set of samplesyts, drawn from some densityq(yt) and with corresponding
importance weights,wt

s. If at timet+ 1, samples is drawn from

yt+1
s ∼ p(yt+1|xt+1, yt = yts). (4)

We show that the previous weights accurately represent the importance weights without updates:

∑

s

wt
sh(y

t+1
s) ≈ Eq

[

w(yt)h(yt+1)
]

(5)

= Eq

[

Eyt+1|xt+1,yt

[

w(yt)h(yt+1)|yt
]]

(6)

=

∫

yt
q(yt)

∫

yt+1

p(yt+1|xt+1, yt)w(yt)h(yt+1)dyt+1dyt (7)

=

∫

yt

∫

yt+1

p(yt|x1:t)p(yt+1|xt+1, yt)h(yt+1)dyt+1dyt (8)

=

∫

yt

∫

yt+1

p(yt+1, yt|x1:t+1)h(yt+1)dyt+1dyt (9)

=

∫

yt+1

p(yt+1|x1:t+1)h(yt+1)dyt+1 (10)

= Eyt+1|x1:t+1

[

h(yt+1)
]

. (11)

Therefore, assuming the previous weights were correct importance weights, by sampling particle loca-
tions using both prior and data evidence, the weights do not need to be updated and resampling does not
need to be performed.

B Permutation-based Gibbs Inspired Metropolis Hastings

The GIMH algorithm [2] attempted to sample from the space of implicit shapes defined over some level
set function,π(φ). An assumption in the work was made that the underlying segmentation was only
a function of the sign of the level set function. Consequently, it was stated that the target distribution
was of the formπ(φ) = f(sgn(φ)). That is, two different level set functions with the same sign at
every pixel evaluate to the same likelihood. Unfortunately, this is not a valid distribution overφ. If we
denoteℓ = sgn(φ), and observe thatℓ is deterministic conditioned onφ, the level set distribution can be
expressed as

π(φ) = π(φ)π(ℓ|φ) = π(ℓ, φ) = π(ℓ)π(φ|ℓ). (12)

While π(ℓ) is chosen to be the user-specified distribution,π(φ|ℓ) is not defined. This is equivalent to
assuming thatπ(φ|ℓ) is uniform forall level set functions with sgn(φ) = ℓ. Since there are an infinite
number of such level set functions, this distribution is notabsolutely integrable and is therefore invalid.
We thank Janick Cardinale and Ivo Sbalzarini for noticing errors in the resulting marginal statistics which
ultimately lead to the discovery of this oversight.

2

B.1 Theoretical Sampler

Our Permutation-based GIMH algorithm addresses this issueby explicitly using a random ordering,o, on
all pixels. In this section, we discuss the generalM-ary sampler. Following this discussion, we explain
how it is applied to our layered model. The label assigned to pixel i is denotedℓi, and can take on values
in {1, · · · ,M}. We begin with some definitions.

Definition B.1 (Valid Ordering) Let oi be the order index assigned to pixeli. If the vectoro is a per-
mutation of the integers1 to N , then it is a valid ordering. Additionally, ifoi < oj , we say that pixeli is
placed before pixelj in the ordering.

Definition B.2 (Relative Ordering) Let o define a valid ordering on the pixels, andW be a subset of
all the pixels. The ordering of the pixels withinW implied byo is defined to be the relative ordering of
pixels inW .

Definition B.3 (Consistent Ordering) Leto define a valid ordering on the pixels. A consistent ordering
is defined to be an ordering that places all pixels withℓi = k in a contiguous order for allk. More
formally, for consistent orderings, ifak = min{i|ℓi=k} oi and bk = max{i|ℓi=k} oi, thenℓi = k ∀i ∈
{i|oi ∈ [ak, bk]}. If o is a consistent ordering for the labelsℓ, we say thato is consistent withℓ.

We note that, in general, a relative ordering need not be consistent. However, if the total ordering on
pixels is consistent, the derived relative ordering must also be consistent. We are now ready to define
the joint distribution over labels and orderings. We denotethis joint target distribution withπ(ℓ, o) =
π(ℓ)π(o|ℓ). We are free to choose any valid conditional distribution oforderings, and find the that a
uniform distribution over all consistent orderings works well. DenotingNj as the number of pixels with
labelj, the joint distribution can be expressed as

π(ℓ)π(o|ℓ) =
π(ℓ)

M !
∏

j Nj!
. (13)

The first factorial term overM computes the number of permutation of theM possible labels, and the
product of factorials computes the number of permutations within a label.

We formulate a Metropolis-Hastings Markov chain Monte Carlo (MH-MCMC) sampler to sample
from Equation 13. In MH-MCMC algorithms, one constructs a Markov chain with the stationary dis-
tribution being the target distribution. If the chain is simulated for a long period of time, the chain will
converge to the stationary distribution, and the values when the process is stopped will correspond to a
sample from the target distribution. Conditioned on the previous values,ℓ(t) ando(t), we sample values
from a user-specified proposal distribution,q(ℓ̂, ô|ℓ(t), o(t)). These values are accepted with probability:

Pr
[

{ℓ(t+1), o(t+1)} = {ℓ̂, ô}
]

= min

[

1,
π(ℓ̂, ô)

π(ℓ(t), o(t))
·
q(ℓ(t), o(t)|ℓ̂, ô)

q(ℓ̂, ô|ℓ(t), o(t))

]

= min [1, H] . (14)

Otherwise, the old values are kept. The ratio within the minimization is often referred to as the Hastings
Ratio, which we denote asH.

We construct a particular proposal distribution here that will correspond to an efficient MH-MCMC
sampler. Our proposal distribution is composed of four steps:

1. Select two random labels,k, andl, uniformly.
2. Sample a subset of pixels,W ∼ q(W), that only contains pixels with labelsk or l.

3

3. Sample a new set of labels,ℓ̂ ∼ q(ℓ̂|W, ℓ(t), o(t)) that possibly changes labels withinW to k or l
and that preserves the consistency of therelativeordering.

4. Sample a new consistent ordering uniformly from all orderings that preserves the relative ordering
of the pixels inW , and is consistent with the proposed label.

We note that the number of permutations with a subset of indices following a specific order isN !
C!

, where
N is the length of the full permutation, andC is the size of the ordered subset. The probability of
generating from this proposal can then be expressed as

q(ℓ̂, ô|ℓ(t), o(t)) =

[

2

M(M − 1)

]

·

[

q(W)

]

·

[

q(ℓ̂|W, ℓ(t), o(t))

]

·

[

2

M !
·

N̂Wk
!N̂Wl

!

N̂k!N̂l!
∏

j 6=k,lNj!

]

, (15)

whereNWk
is the number of pixels of withinW with label ℓ(t) = k, andN̂Wk

is the number of pixels
within W with label ℓ̂ = k. The resulting Hastings ratio can be expressed as

H =
π(ℓ̂) 1

M !
∏

j N̂j !

π(ℓ(t)) 1
M !

∏
j Nj !

·

2
M(M−1)

· q(W) · q(ℓ(t)|W, ℓ̂, ô) · 2
M !

·
NWk

!NWl
!

Nk!Nl!
∏

j 6=k,l Nj !

2
M(M−1)

· q(W) · q(ℓ̂|W, ℓ(t), o(t)) · 2
M !

·
N̂Wk

!N̂Wl
!

N̂k !N̂l!
∏

j 6=k,l Nj !

(16)

=
π(ℓ̂)Nk!Nl!

π(ℓ(t))N̂k!N̂l!
·

q(ℓ(t)|W, ℓ̂, ô) ·NWk
!NWl

!N̂k!N̂l!

q(ℓ̂|W, ℓ(t), o(t)) · N̂Wk
!N̂Wl

!Nk!Nl!
(17)

=
π(ℓ̂)NWk

!NWl
!

π(ℓ(t))N̂Wk
!N̂Wl

!
·

q(ℓ(t)|W, ℓ̂, ô)

q(ℓ̂|W, ℓ(t), o(t))
(18)

Consequently, if we choose the proposal of labels in Step 3 tobe

q(ℓ̂|W, ℓ(t), o(t)) ∝ π(ℓ̂)
1

N̂Wk
!N̂Wl

!
, (19)

the Hastings ratio evaluates to one, and every proposed sample is accepted. Also, similar to GIMH,
because proposed labels must preserve the relative ordering of the pixels inW , there exist only|W |+ 1
possible label moves. Since the number of moves is linear in the size ofW , they can be sampled directly
by simply enumerate the possible moves.

It is interesting to note that this relationship holds for any data-independent proposal distribution
of the subset,W . In particular, in the binary case (M = 2), if W is chosen to be a random single
pixel, PGIMH simplifies to the typical Gibbs sampler since the denominator of Equation 19 evaluates
to 0! · 1! = 1. Thus, PGIMH is essentially a generalization of Gibbs sampling that allows larger local
moves.

B.2 An Efficient Implementation

The previous section described an algorithm for correctly sampling from target distributions. However,
the computational complexity of a naı̈ve implementation can be quiet bad. We note that the GIMH
algorithm has computational complexityO(|W | log |W |) for each iteration. In PGIMH, Step 1 and 2 can
be computed in constant time (depending on the choice ofq(W)). Step 3 requires sorting the pixels inW
which isO(|W | log |W |) followed by enumerating the possible moves which isO(|W |). Finally, Step
4 requires one to sample a new consistent order which takesO(N) time, whereN ≫ |W |. The naı̈ve
implementation exhibitsO(|W | log |W | +N) complexity, which is clearly undesirable. In this section,
we describe an exact implementation of the above algorithm that performs a proposal inO(|W |).

4

It is well known in the MCMC sampling literature that one can mix any combination of valid proposal
distributions while still preserving the stationary distribution of the chain. We consider mixing the above
sampler with a Gibbs iteration to sample an ordering conditioned on the labels. While this may seem like
it adds complexity to the model, it actually allows us to simplify the implementation. We draw on the
following key observation: when a naı̈ve PGIMH iteration ispreceded by a Gibbs iteration that samples
a consistent ordering, the relative ordering of the pixels within W will be uniformly distributed over all
consistent relative orderings. Thus, this iterative procedure can be exactly reproduced with the method
described in Algorithm 1. We note that because a random relative ordering is sampled at each iteration of

Algorithm 1 An iteration of samplingπ(ℓ) via PGIMH

1. Select two random labels,k, andl, uniformly.
2. Sample a subset of pixels,W ∼ q(W), that contains only contains pixels with labelsk or l.
3. Sample a consistent relative ordering of pixels inW uniformly using a Knuth shuffle [4] on each

Wk andWl.
4. Sample a new set of labels,ℓ̂ ∼ q(ℓ̂|W, ℓ(t), o(t)) that possibly changes labels withinW to k or l

and that preserves the consistency of therelativeordering from the previous step.

PGIMH, the explicit ordering,o, does not actually need to be maintained. Additionally, since the Knuth
shuffle can be performed inO(|W |) time, and the total ordering does not need to be updated, the overall
complexity of an iteration is nowO(|W |).

W is often selected by first sampling a random circle center anda random radius around it (from
some pre-specified range of valid radii).W is then chosen as the subset of pixels in the circle that have
labelsk andl. When sampling from a binary distribution, Algorithm 1 can be simplified by omitting the
subset selection and settingW to be the entire circle of pixels.

In the layered model presented in the paper, each layer maintains a binary support image. Thus, each
iteration starts by first selecting a random layer, followedby an iteration of PGIMH. This procedure can
be repeated tens of thousands of times in less than a second ona single core.

B.3 Topology Constraints

As stated in the paper, imposing hard topology constraints on the sampler is a simple extension that
follows straightforwardly from the work of [2]. When the possible label changes are enumerated, a
simple topology check is performed to find whether the particular change is an allowable topology. If it
is not, the move is simply assigned zero probability inπ(ℓ̂), and Equation 19 takes care of the rest. For
more details on how the topology checks are implement, please refer to [2] and our publicly available
source code.

C Approximate Inference

In this section, we show the approximations used to perform the sampling-based inference in the algo-
rithm.

5

C.1 Approximate Filter-Based Gaussian Process Sampling

We first describe the approximate sampler for the the Gaussian process flow. AssumeΣ is the covariance
matrix resulting from a stationary covariance kernel,k, so that each component of the covariance can be
written as the difference of the locations:

Σi,j = k(i− j). (20)

Then, the result of multiplying a vector,x, byΣ (i.e. y = Σx) can be calculated with the convolution of
k andx:

yi = [Σx]i =
∑

j
Σi,jxj =

∑

j
k(i− j)xj , (21)

where[·]i denotes theith component of the resulting vector.
We now consider the iterative approximate inference technique used to sampleg|f , where we have

omitted the layer subscriptm and the time superscriptt for notational convenience. As stated in the
paper, the distributions of these random variables are

p(g) = N (g ; 0,Σg) (22)

p(f |g) = N
(

f ; g, σ2
f I
)

. (23)

By noting that the observation space and inference space areexactly the same, we can manipulate the
typical Gaussian process regression [7] to get

p(g|f) = N
(

g ; µ∗
g,Σ

∗
g

)

, (24)

µ∗
g = Σg

[

Σg + σ2
f I
]−1

f , Σ∗
g = Σg − Σg

[

Σg + σ2
f I
]−1

Σg (25)

Using the filtering approximation of Equation 21, the mean vector can be approximated with

µ∗
g ≈ hµ ∗ f, (26)

wherehµ is the covariance kernel corresponding to the covariance matrix Σg

[

Σg + σ2
f I
]−1

. We note that
while Equation 21 is exact, this expression is only an approximation because the kernel corresponding
to the covariance matrix is not stationary. The approximation is exact in the limiting case of the data,x,
having infinite extent. Consequently, the approximation degrades near image boundaries. We find this
kernel by using the Fourier domain and three additional facts: (1) convolutions correspond to multiplica-
tions in the Fourier domain; (2) the identity matrix corresponds to an all-pass filter; and (3) inverting the
matrix before multiplying corresponds to dividing in the Fourier domain. This results in the following
filter

hµ = F−1

{

F {k}

F {k}+ σ2
f

}

, (27)

whereF {·} andF−1 {·} denote the Fourier and inverse Fourier transform. We approximate this filter
by using discrete Fourier transforms.

While this shows how to find the mean of the posterior Gaussianprocess, we need to be able tosample
from the posterior. We first remind the reader of the useful property of Gaussian random variables:

g ∼ N
(

µ∗
g,Σ

∗
g

)

≡ µ∗
g +N

(

0,Σ∗
g

)

. (28)

That is, the randomness ing can be completely captured by the second term involving the covariance.
Additionally, it is well known that ify ∼ N (0, I) (i.e. a vector of standard normals), then multiplying
this vector by a matrixA results in correlated Gaussian variables:

Ay = N
(

0, AA⊤
)

. (29)

6

While this relationship is most often used to generate multivariate normals by settingA to be the
Cholesky decomposition of the covariance matrix, the identity holds for any matrix,A. We first find
the corresponding filter that is equivalent to multiplying avector withΣ∗

g as

hΣ,2 = F−1

{

F {k} −
F {k}2

F {k}+ σ2
f

}

. (30)

Then using Equation 29, we choose a particularA so that it is symmetric, resulting in:

hΣ = F−1

{
√

F {k} −
F {k}2

F {k}+ σ2
f

}

. (31)

Using this filter, we can approximately generate a sample from the Gaussian process of Equation 23
with:

[hµ ∗ f] +N (0, I) ∗ hΣ (32)

C.2 Approximate Marginalization of Independent Flow

Equations 22-25 in the paper briefly describe the approximation used to marginalize out the independent
flow f . We describe this derivation in more detail here.

p(ℓtm|g
t
m, ℓ

t
\m, ℓ

t−1, at−1
m , xt, zt) (33)

∝ p(xt, ℓtm|g
t
m, ℓ

t
\m, ℓ

t−1
m , at−1

m , zt) (34)

= p(xt|ℓt, gtm, ℓ
t−1
m , at−1

m , zt)p(ℓtm|g
t
m, ℓ

t−1
m , at−1

m , zt) (35)

=

∫

p(f t
m|g

t
m)p(ℓ

t
m|fℓ

t−1
m)p(atm|fa

t−1
m)p(xt|ℓt, at, zt)df t

m (36)

= QL(ℓ
t
m)

∏

i

∫

p(f t
m,i|g

t
m,i)QS(ℓ

t
m,i|fℓ

t−1
m,i)p(a

t
m,i|fa

t−1
m,i)p(x

t
i|ℓ

t
i, a

t
i, z

t)df t
m (37)

= QL(ℓ
t
m)

∏

i

∫

N (f t
m,i; g

t
m,i, σ

2
f)QS(ℓ

t
m,i|fℓ

t−1
m,i)p(a

t
m,i|fa

t−1
m,i)p(x

t
i|ℓ

t
i, a

t
i, z

t)df t
m (38)

We note that evolving an image (e.g.a) with a flow (e.g.f) can be expressed as

fai = ai+fi = ai+gi+fi−gi = gai+fi−gi. (39)

Using this relationship, we can express the following

p(ℓtm|g
t
m, ℓ

t
\m, ℓ

t−1, at−1
m , xt, zt) (40)

∝ QL(ℓ
t
m)

∏

i

∫

N (f t
m,i; g

t
m,i, σ

2
f)QS(ℓ

t
m,i|gℓ

t−1
m,i+fi−gi

)p(atm,i|ga
t−1
m,i+fi−gi

)p(xt
i|ℓ

t
i, a

t
i, z

t)df t
m (41)

= QL(ℓ
t
m)

∏

i

∫

N (f t
m,i − gtm,i; 0, σ

2
f)QS(ℓ

t
m,i|gℓ

t−1
m,i+fi−gi

)p(atm,i|ga
t−1
m,i+fi−gi

)p(xt
i|ℓ

t
i, a

t
i, z

t)df t
m (42)

= QL(ℓ
t
m)

∏

i

∫

N (j; 0, σ2
f)QS(ℓ

t
m,i|gℓ

t−1
m,i+j)p(a

t
m,i|ga

t−1
m,i+j)p(x

t
i|ℓ

t
i, a

t
i, z

t)dj (43)

7

We denoteLt
m,i(j) the same as in the paper:

Lt
m,i(j) = QS(ℓ

t
m,i|g

t−1
m,i+j)p(a

t
m,i|ga

t
m,i+j)p(x

t
i|ℓ

t
i, a

t
i, z

t). (44)

Using this notation, and making a discrete approximation tothe integral allows us to approximate the
likelihood as

p(ℓtm|g
t
m, ℓ

t
\m, ℓ

t−1, at−1
m , xt, zt) (45)

∝ QL(ℓ
t
m)

∏

i

∫

N (j; 0, σ2
f)L

t
m,i(j)dj (46)

≈ QL(ℓ
t
m)

∏

i

∑

j

N (j; 0, σ2
f)L

t
m,i(j) (47)

= QL(ℓ
t
m)

∏

i

∑

j

hf(j)L
t
m,i(j), (48)

which is exactly Equation 25 in the paper.

D Flow Parameter Learning

As stated in the paper, the smoothness constraints on the flowfield can greatly affect the tracking results.
If we are tracking an object moving under rigid transformations, we may desire to constrain the flow
to be very smooth, whereas the flow for a deformable object mayneed to be more loosely constrained.
There are three parameters to estimate, the variance of the covariance kernel,ρ2g, the absolute variance
scaling for the covariance ofg, σ2

g , and the variance of the independent flow,σ2
f . Although we did not

state this in the paper, we can express the covariance ofg asΣi,j = σ2
g exp

[

− (i−j)2

2ρ2g

]

.

We use the optical flow measurement of [5] as an initial guess to the flow, and design a heuristic for
fitting flow parameters to the measured optical flow. Given theoptical flow for each layer,m, and its
corresponding support, we begin by estimating the optimalρ2g for each layer. We sample random pairs
of locations, and for each pair, we record the distance between the points and their corresponding values.
We then find the empirical correlation of these observationsas a function of distance,ρ(d). We then
minimize theL2 norm of the difference between the empirical covariances and the parametrized squared
exponential kernel, weighted by the number of observationsfor each distance. We note that empirical
correlations may be negative even though the underlying Gaussian process is always attractive. Thus,
we ignore negative empirical correlations. We find the bestρg from a discrete set of possible values by
minimizing

argmin
ρg

∑

d

1I[ρ(d) > 0]

(

Ndρ(d)− exp

[

−
d2

2ρ2g

])2

, (49)

whereNd is the number of observations at distanced apart.ρg should be tuned to how much a particular
object can deform. An example of the best fit covariance kernel is shown in Figure 2b. Once we learn
that an object can evolve with a very unsmooth flow field, we should allow it to do so in future frames as
well. Thus, we set this parameter at timet to be the minimum value of the previously used smoothness
versus the value that optimizes Equation 49 for the current frame. Similarly, the current optimal value is
taken to be the minimum of Equation 49 for the x- and y-directional flow.

Because users may want to track only one object of many, a layer may sometimes contain multiple
moving objects. For example, consider the frame shown in Figure 2a, where the ground truth annota-
tion only tracks the deer and the cheetah on the right is marked as the background. While the actual

8

(a) Original (b) FG Fitting (c) FG Observation Count (d) BG Fitting

Figure 2: (a) Annotation to track a deer. Notice how the cheetah on the right is grouped with the
background. (b) The optimal fit for the foreground region overlaid with observations. (c) The number of
observations of each distance for the foreground region. (d) The optimal covariance kernel for the entire
background region and the cheetah contained in the background.

background may have very smooth motions, the untracked cheetah may evolve with a very deformable
motion. Additionally, because these two objects are represented with one layer, the necessary flow field
for this composited layer must be adequately loose to allow the modeling of both the background and
the cheetah. The observations of the entire layer, however,will be dominated by pairs of pixels in the
background rather than the cheetah. We therefore take random circles of radius 100 throughout the sup-
port of the layer, and find the corresponding optimalρg for each circle. The optimal values for the entire
background and for the cheetah are shown in Figure 2d. The resulting optimalρg for the current time
frame is then chosen as the minimum of allρg values found in all circles for each layer.

Conditioned on this covariance kernel, we then find the optimal absolute variance,σ2
g , and the vari-

ance of the independent flow,σ2
f , by finding the values that minimize theL2 norm between the mean

flow field and the optical flow. We note that the actual value found in this step does not seem to affect
results very much; however, we do find that we must use the sameσ2

f for all layers. If different values
are used, the layers with a larger value ofσ2

f tend to have higher likelihood. We believe that this is due
to the marginalization of the independent flow, allowing larger values to explain more observation.

E Edge Sharpening

As mentioned in the paper, we sharpen the edges of frames prior to tracking to slightly improve results.
This improvement is due to the fact that we do not explicitly model edge effects and motion blur. While
this image acquisition phenomenon could potentially be incorporated in the model, we find that a simple
procedure for fixing edges works well. We run each frame through three Sobel filter (one for each color
channel). Then, we threshold each image using the thresholddescribed in [6]. We define an edge pixel
as a pixel that is declared to be an edge in any of the color channels. Finally, we set each edge pixel to
the color of the nearest non-edge pixel. An example of this process is shown in Figure 3.

F Middlebury Flow Evaluation

As stated in the paper, while our method does infer a dense flowfield, the purpose of the flow is not
to be accurate on a subpixel level. Rather, the particular Gaussian process formulation was chosen for
purposes of efficient inference in object tracking. Any realization of the flow will not be locally smooth
because of the independence assumption in the composite flowfield.

Regardless, we show quantitative results on the Middleburyoptical flow dataset [1] for our algorithm.
We note that in our actual formulation, we assume that objects have been tracked. In the Middlebury
dataset, because other algorithms do not have access to thissegmentation data, we also do not use it.

9

Figure 3: Edge sharpening results. Original image (left), edge detection (middle), edge sharpened image
(right). Bottom row shows a detail of the image.

Video Without Initialization With Initialization

Dimetrodon 0.6864 0.3195
Grove2 1.0042 0.4917
Grove3 1.5564 1.0516

Hydrangea 0.5151 0.4302
RubberWhale 0.4103 0.4053

Urban2 6.1440 0.8631
Urban3 4.5784 0.8631
Venus 1.1397 0.6317

Table 1: Average endpoint error for training set of Middlebury dataset [1].

Rather, we treat the entire image as one layer and hope that the independent flow can capture the
necessary discontinuities. Additionally, while our method is designed to track objects moving in natural
scenes, the frames from [1] are all synthetically created orpictures in a laboratory setup. As such, their
motion vectors are only a few pixels in magnitude as comparedto the tens of pixels common in natural
scenes. Estimated flow using our algorithm with the optical flow initialization of [5] and initialization
with zero flow are evaluated quantitatively in Table 1 and shown in Figure 4. The flow field for each
sequence is calculated as the mean flow over 100 samples, and each result is computed using the same
set of parameters. We note that from Figure 4, it seems like the flow near the center of objects is estimated
quite well while the flow near object boundaries is overly smoothed. This is a result of treating the entire
scene as one layer. Additionally, we find that using optical flow as an initialization can greatly help the
inference scheme for large regions of similar color.

References

[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski. A database and evaluation methodology
for optical flow. InICCV, 2007.

[2] J. Chang and J. W. Fisher III. Efficient topology-controlled sampling of implicit shapes. InICIP, 2012.

[3] M. Isard and A. Blake. A mixed-state condensation tracker with automatic model-switching. InICCV, 1998.

[4] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, Boston, 1969.

10

Dimetrodon

Grove2

Grove3

Hydrangea

RubberWhale

Urban2

Urban3

Venus

Figure 4: Inferred flow on the Middlebury dataset [1]. The first column shows the initial frame, the
second column shows the inferred flow without any initialization, the third column shows the inferred
flow with the optical flow of [5] as an initialization, and the fourth column is the ground truth flow.
These results are obtained assuming the video is composed ofasingle layer, which would never be used
in actual tracking.

11

[5] C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss. Human-assisted motion annotation. InCVPR, 2008.

[6] W. K. Pratt. Digital Image Processing. John Wiley & Sons, 2007.

[7] C. E. Rasmussen and C. K. I. Williams.Gaussian Processes for Machine Learning. The MIT Press, 2006.

12

