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Abstract

Directional data, naturally represented as
points on the unit sphere, appear in many
applications. However, unlike the case of Eu-
clidean data, flexible mixture models on the
sphere that can capture correlations, handle
an unknown number of components and ex-
tend readily to high-dimensional data have
yet to be suggested. For this purpose we
propose a Dirichlet process mixture model
of Gaussian distributions in distinct tangent
spaces (DP-TGMM) to the sphere. Impor-
tantly, the formulation of the proposed model
allows the extension of recent advances in ef-
ficient inference for Bayesian nonparametric
models to the spherical domain. Experiments
on synthetic data as well as real-world 3D
surface normal and 20-dimensional semantic
word vector data confirm the expressiveness
and applicability of the DP-TGMM.

1 Introduction

Many applications of interest involve measurements of
directional data. In 3D scenes, unit-length surface nor-
mals extracted from point clouds [17, 24, 44] reside in
a 2D manifold (i.e., the unit sphere in R3). In biol-
ogy, protein backbone measurements are described and
classified based on their angular configurations in the
so-called Ramachandran plots [37]. Directional data
also exists outside of the 3D world. E.g., the words
counts in a corpus of documents can be viewed as di-
rectional data once normalized to have unit `2 norm.
Word-frequency vectors are often clustered using the
cosine similarity [10], which measures the cosine of the
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Figure 1: The graphical model of the proposed Dirich-
let process tangential Gaussian mixture model (DP-
TGMM) and an illustrative drawing for K = 2 clus-
ters, k and j, in their respective tangent spaces to the
sphere S2. For more details refer to Sec. 3.2.

angle formed by two vectors. This measure essentially
treats the word-frequency vectors as directional data,
and has been shown to be superior to Euclidean dis-
tance for document clustering [46]. Another example
of directional data is semantic word vectors [32], which
associate a high-dimensional vector with each word in
a given corpus. The semantic word vectors capture the
semantic context of the associated words, and should
not to be confused with the word-frequency vectors
of documents. Again, cosine similarity is used as the
distance measure to find words with similar meaning.

One common task in many of these applications is to
group the data into similar clusters. Due to the non-
linearity of the hyper-sphere, clustering on the spher-
ical manifold is often treated in an ad-hoc manner
by either ignoring the geometry of the sphere or us-
ing overly-restricted models. In this work, we present
a flexible Bayesian nonparametric (BNP) model for
data residing on a hyper-sphere that respects the in-
herent geometry of the manifold. As shown in Fig. 1,
our approach draws on the Dirichlet process Gaussian
mixture model (DP-GMM), and models full covariance
matrices on (linear) tangent spaces to the sphere, as
opposed to the isotropic covariances associated with a
von-Mises-Fisher (vMF) distribution [1, 2, 38, 49]. Im-
portantly, the covariances of the Gaussians, capturing
intra-cluster correlations, have analytical conjugate
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Table 1: Properties of different typically-used clustering algorithms for directional data.

k-means spkm vMF-MM TGMM DP-vMF-MM DP-GMM DP-TGMM
[21] [10, 49] [1] [12, 42] [2] [6] (proposed)

Spherical geometry · X X X X · X
Bayesian inference · · X X X X X
Anisotropic covariance · · · X · X X
Bayesian nonparametric · · · · X X X
Parallelizeable X X X X · X X

priors that enable efficient inference. Additionally,
the approach transparently scales to high-dimensional
data. We extend the efficient inference method of [6], a
parallelized restricted Gibbs sampler with sub-cluster
split/merge moves, to account for the geometry of the
sphere. Moreover, we show how to combine sufficient
statistics from tangent spaces around different points
of tangency to propose merges efficiently.

To highlight the differences of the proposed Dirich-
let process tangential Gaussian mixture model (DP-
TGMM), we quantitatively compare it with four other
methods on synthetic directional data with ground-
truth labels. We demonstrate the scalability and effi-
ciency of the inference algorithm as well as the applica-
bility of the DP-TGMM to real-world directional data
by modeling 3D surface normals extracted from point
clouds. Furthermore, we show its scalability to higher
dimensions by clustering the 20-dimensional semantic
word vectors of 41k words extracted from the English
Wikipedia corpus [48].

2 Related Work

We now discuss relevant work related to clustering di-
rectional data on a hyper-sphere. Many directional
distributions exist (e.g., [3, 28, 31]). However, we fo-
cus our discussion on work using the von-Mises-Fisher
(vMF) distribution [14] due to its popularity.

Several algorithms model directional data using a fi-
nite mixture of vMF distributions. Banerjee et al. [1]
perform Expectation Maximization (EM) for a finite
vMF mixture model to cluster text and genomic data.
In the limit, when the vMF concentration parame-
ter approaches infinity, this method simplifies to the
spherical k-means (spkm) algorithm [10]. Zhong [49]
extends the spkm algorithm to online clustering.

The vMF distribution has also been used in BNP mix-
ture models. Bangert et al. [2] formulate a Dirichlet
process (DP) [13] vMF mixture model. Their infer-
ence relies heavily on the conjugacy of the prior of
the vMF mean and is difficult to generalize to non-
conjugate priors. Furthermore, scaling this method
to large datasets is problematic because the inference
procedure is based on the Chinese Restaurant Pro-

cess [36], which cannot be parallelized. Reisinger et
al. [38] formulate a finite latent Dirichlet allocation
model [5] for directional data using vMF distributions
with fixed vMF concentration parameters. This is akin
to using a GMM with a fixed variance, which is known
to perform poorly if the model variance does not match
the noise characteristics.

In general, using vMF distributions has two major
flaws. First, the lack of a closed-form conjugate prior
for the concentration parameter in the vMF distribu-
tion complicates posterior inference. Slice sampling
methods [2] partially address this issue, but at the cost
of extra computation. Often, the concentration pa-
rameter is still arbitrarily fixed and not inferred from
the data (e.g., [38]). More importantly though, the
vMF distribution is isotropic. That is, similar to a
spherical Gaussian distribution, a vMF distribution
cannot capture different variances in each dimension of
the data or correlations between the dimensions. We
note that the Fisher-Bingham distribution [28] gen-
eralizes the vMF distribution to anisotropic (i.e., el-
liptical) distributions on the sphere. While Peel et
al. [34] propose an EM-based inference for finite mix-
tures of Fisher-Bingham distributions in 3D, exten-
sions to higher dimensions are difficult due to the nor-
malizer of the probability density function.

In other applications, the inherent geometry of the
problem is ignored and, without taking the spheri-
cal geometry into account, algorithms developed for
Euclidean geometry are used; e.g., k-means [21], the
finite Gaussian mixture model (GMM) [4], as well as
the Dirichlet process GMM [13, 30].

The work in protein-configuration modeling from Ra-
machandran plots [37] exemplifies this well. First Dahl
et al. [9] introduced modeling the angular data as a
DP-GMM, ignoring the spherical manifold of the an-
gular data. To solve this issue Lennox et al. [29] model
the data on the 3D sphere as a DP-vMF mixture, but
require an approximation to the vMF posterior. Work
by Ting et al. [47] uses an HDP with normal-inverse-
Wishart base measure to share data between proteins,
but does not respect the manifold of the data.

Approaches utilizing a single tangent space to define
distributions over the hyper-sphere have been pro-
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posed for rotation estimation and tracking [8, 19]. Fi-
nite mixture models of Gaussians in separate tangent
spaces have been explored to estimate rigid-body mo-
tion in robotics [12] and for human body-pose regres-
sion [42]. While Simo-Serra et al. [42] show a way to
reduce (but not increase) the number of clusters within
their EM inference framework, both models are finite
mixture models in contrast to our DP-based infinite
mixture model.

In contrast to previous approaches, the proposed DP-
TGMM allows for anisotropic distributions on the
sphere, lends itself to consistent Bayesian inference,
and adapts the model complexity to the observations.
We develop a corresponding inference algorithm that
can be parallelized and respects the geometry of the
unit sphere. Table 1 highlights the differences between
the proposed and previous approaches.

3 BNP Mixtures of Spherical Data

Classical Statistics rely on the Euclidean structure
of RD. Thus, due to the nonlinearity of the sphere,
the statistical analysis of spherical data requires spe-
cial care [15, 31]. In this section we introduce the
Dirichlet process tangential Gaussian mixture model
(DP-TGMM), a mixture model for data lying on the
unit sphere, SD−1 = {x : xTx = 1 ; x ∈ RD}. Im-
portantly, the model (as well as the inference algo-
rithm; cf. Sec. 4) respects that the sphere is a (D−1)-
dimensional nonlinear Riemannian manifold. Before
introducing the probabilistic model, we now give a
brief introduction to the geometric concepts used in
the DP-TGMM. The interested reader can consult [11]
for a more detailed discussion.

While SD−1 is nonlinear, every point, p ∈ SD−1, is as-
sociated with a linear tangent space, denoted TpSD−1:

TpSD−1 , {x̆ : pT x̆ = 0} . (1)

Elements of TpSD−1 are called tangent vectors and
may be viewed as “arrows” based at p and tangent
to SD−1. Note that dim(TpSD−1) = D − 1 and that
the point of tangency, p, may be identified with the
origin of TpSD−1 (i.e., a zero-length tangent vector).

Due to their linearity, tangent spaces often provide
a convenient way to model spherical data. In fact,
this is also true for more general manifolds [16, 23, 35,
43]. This linearity, together with mappings between
SD−1 and TpSD−1 (cf. Sec. 3.1), enables the modeling
and clustering of data points via a zero-mean Gaussian
distribution in a cluster-dependent tangent space. We
illustrate this model in Fig. 2, where x̆ denotes the
point x ∈ SD−1 mapped to TpSD−1.

TpS2

S2

p

x

x̆
N (0,Σ)

Figure 2: Left: The blue plane illustrates TpS2, the
tangent space to the sphere S2 at p ∈ S2. A tangent
vector x̆ ∈ TpS2 is mapped to x ∈ S2 via Expp. Right:
We describe the data as zero-mean Gaussian in TµS2.

3.1 Geometric Properties of SD−1 & TpSD−1

In statistical modeling, distances are of paramount im-
portance. On SD−1, rather than using the Euclidean
distance of the ambient space, RD, an appropriate
measure is the geodesic distance between points, which
is simply the angle between them:

dG : (p, q) 7→ arccos(pT q) , (2)

where p, q ∈ SD−1. The probability measure we will
define on SD−1 will exploit this distance measure. A
point, x ∈ SD−1 \ {−p}, is mapped to a point, x̆ ∈
TpSD−1, via the Riemannian logarithm:

Logp : x 7→ x̆ = (x− p cos θ) θ
sin θ (with 0

sin 0 = 1) (3)

where θ = dG(p, x). Conversely, x̆ ∈ TpSD−1 is
mapped to x ∈ SD−1 by the Riemannian exponential:

Expp : x̆ 7→ x = p cos(||x̆||2) + x̆
||x̆||2 sin(||x̆||2) . (4)

The `2 norm ||x̆||2 in TpSD−1 is equal to the distance
between p and x: ||x̆||2 = θ = dG(p, x). However, this
is true only since p is the point of tangency. In gen-
eral, the distance between two other points in TpSD−1

is not equal to the geodesic distance between their cor-
responding points in SD−1. Thus, while a single zero-
mean Gaussian in the tangent space around a point,
p, provides an effective model for the within-cluster
deviations from p (provided it is the Karcher mean
of this cluster – see below), using a Gaussian mixture
model whose (non-zero mean) components live on the
same tangent space is a poor choice. Thus, in the
proposed model, each mixture component exists in its
own tangent space, and each tangent space is unique
with certainty due to the continuous base measure.

Of special importance is the issue of selecting points of
tangency. In this context we utilize the notion of the
(so-called1) Karcher mean [20, 26], which generalizes

1See a recent discussion by Karcher [27].
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the notion of the sample mean from RD to Riemannian
manifolds. Particularly for SD−1, it is defined as a
local minimizer of the following function:

〈x〉 = arg minp∈SD−1

∑N

i=1
d2
G(p, xi) (5)

where dG(·, ·) is given by Eq. (2). In practice, an iter-
ative approach [35] (also included in our supplemental
material) efficiently computes the Karcher mean.

3.2 Probabilistic DPMM for Spherical Data

The well known Dirichlet process [13] has been exten-
sively used to model data in Euclidean spaces. A DP
mixture model (DPMM) uses the DP as a prior to
weight a countably-infinite set of clusters, where the
distribution of weights is controlled by a concentration
parameter, α. Here, we formulate the Dirichlet pro-
cess tangential Gaussian mixture model (DP-TGMM)
which extends DPMMs to data on the unit sphere,
SD−1, in a manner that explicitly respects the intrinsic
geometry. The graphical model is depicted in Fig. 1.

The generative DPMM first samples the infinite-length
cluster proportions, π, from a stick-breaking process
[41]. Then cluster assignments, z = {zi}Ni=1, are sam-
pled from the categorical distribution defined by π:

π ∼ GEM(1, α) , zi ∼ Cat(π1, π2, . . . ) . (6)

Associated with each cluster, k ∈ {1, . . . ,∞}, is a
mean location on the sphere, µk, and a covariance, Σk,
in the corresponding tangent space, TµkSD−1. These
parameters are drawn from the following priors:

µk ∼ Unif(SD−1) , Σk ∼ IW(∆, ν) , (7)

where Unif and IW are the uniform and inverse-
Wishart distributions, respectively. Note that SD−1

has a finite surface area which is used as the normaliz-
ing constant of Unif. This will later play a role in the
inference procedure.

An observation, xi, is drawn by sampling from a zero-
mean Gaussian with covariance Σk in its correspond-
ing tangent space, TµkSD−1, followed by mapping the
point to SD−1 via the exponential map (Eq. (4)):

xi ∼ Expµzi
(N (0,Σzi)) ∀i ∈ {1, . . . , N} ; (8)

see Fig. 2. The Gaussian on TµziS
D−1 induces a prob-

ability measure on SD−1. Note this statement is valid
despite the fact that the Gaussian has infinite support
in TµziS

D−1 while the sphere is compact and the fact
that Expµzi

is not injective (note, however, that it is

injective when restricted to Logµzi
(SD−1 \ {p})).

We now describe efficient MCMC inference for afore-
mentioned geometry-respecting model.

4 Manifold-Aware MCMC Inference

Markov chain Monte Carlo (MCMC) techniques [39]
provide a computational mechanism for sampling from
complex Bayesian models. Unfortunately, in DP mix-
ture models, MCMC methods are often slow. When
parameters are marginalized, inference scales poorly
because algorithms cannot be parallelized. When pa-
rameters are instantiated, the algorithm is paralleliz-
able, but typically requires approximations and ex-
hibits slow convergence. The recent DP sub-cluster
algorithm of [6] addresses these issues by combining
Metropolis-Hastings (MH) split/merge moves with a
restricted Gibbs sampler, which is not allowed to add
or remove clusters. The resulting Markov chain is
guaranteed to converge to the desired posterior distri-
bution. Additionally, this approach allows paralleliza-
tion and the support of non-conjugate priors.

The DP sub-cluster algorithm proposes splits effec-
tively via the MH framework [22] by exploiting an in-
ferred auxiliary two-component, “sub-cluster” model
for each regular cluster. The sub-clusters are inferred
within the restricted Gibbs sampler. Excluding the
varying complexity of posterior parameter sampling
(O(KD2) for a GMM), the computational complexity
per MCMC iteration is O(NK + K2), K is the max-
imum number of non-empty clusters. While the algo-
rithm from [6] was originally suggested for DP models
in RD, we show here that it can be extended to the
DP-TGMM. This extension requires: (1) respecting
the geometry of SD−1 when computing posterior dis-
tributions; and (2) combining sufficient statistics from
different tangent spaces to propose splits efficiently.
Additionally, we propose a MH algorithm to sample
from the true posterior of the mean location on SD−1.

4.1 Restricted Gibbs Sampling

We now discuss restricted Gibbs sampling of the la-
bels z , {zi}Ni=1, means µ , {µk}Kk=1 and covariances
Σ , {Σk}Kk=1 for K clusters. We note that each Σk is
defined over a separate tangent space, TµkSD−1.

The covariances for each cluster are first sampled.
Conditioned on the mean, µk, the data, x , {xi}Ni=1,
are modeled via a zero-mean Gaussian distribution in
the tangent plane, TµkSD−1, as defined in Eq. (8).
Hence, the same analysis as in the Euclidean space
applies, and we sample Σ from the IW posterior [18]:

Σk ∼ p(Σk|x, z, µ̂k) = IW(∆ + Sk, ν +Nk) (9)

where Ik , {i : zi = k} is the set of indices with label
k, Nk , |Ik| counts the points assigned to cluster k,
and Sµk is the scatter matrix at TµkSD−1, defined as:

Sµk ,
∑

i∈Ik
Logµk(xi)Logµk(xi)

T . (10)
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Note, however, that the geometry of SD−1 ren-
ders the frequently-required computation of Sµk in-
efficient. The bottleneck of the calculation is at-
tributed to the computationally-intensive evaluation
of {Logµk(xi)}i∈Ik that depends on the point of tan-
gency, µk, which constantly changes during inference.

To circumvent this issue, we exploit the fact that
Logµk(xi) ≈ Logµk(〈x〉k) + Log〈x〉k(xi), and make the
following approximation for the scatter matrix:

Sµk ≈ S〈x〉k +NkLogµk(〈x〉k)Logµk(〈x〉k)T , (11)

where 〈x〉k is the Karcher mean of xIk and S〈x〉k is the
scatter matrix computed in the tangent plane of 〈x〉k.
This approximation is more efficient because the com-
putation of S〈x〉k can be reused when µk changes. We
will also use this approximation for proposing merges.

Conditioned on the sampled covariance matrix, Σk,
we then sample µk. Ideally, we would sample directly
from the following posterior distribution of µk:

p(µk|x, z,Σk) ∝ p(µk)p(x|µk, z,Σk) (12)

= p(µk)
∏

i∈Ik
N (Logµk(xi); 0,Σk).

Unfortunately, due to the nonlinearity of SD−1, this
distribution cannot be expressed in a closed form. In-
stead, we utilize the MH framework to sample µk. It
is well known in the literature that the closer the pro-
posal distribution is to the target posterior distribu-
tion, the faster the convergence. We therefore use the
following proposal as an approximation to Eqn. (12):

q(µk|x, z,Σk) = p(µk)N (Log〈x〉k(µk); 0, Σk
Nk

) (13)

See the supplemental material for more details. The
proposed mean µ̂k is accepted according to the MH
algorithm, with probability Pr (accept) = min (1, r),
where the Hastings ratio, r, is

r = p(x|z,µ̂k,Σk)p(µ̂k)q(µk|x,z,Σk)
p(x|z,µk,Σk)p(µk)q(µ̂k|x,z,Σk) (14)

=
N (Log〈x〉k

(µk);0,Σk/Nk)

N (Log〈x〉k
(µ̂k);0,Σk/Nk)

∏
i∈Ik

N (Logµ̂k
(xi);0,Σk)

N (Logµk
(xi);0,Σk) .

We have used the fact that the distribution of means,
p(µk), is uniform over the sphere.

Finally, given means, µ, and covariances, Σ, we sample
new labels, z, for all data, x, as

zi
∝∼
∑K

k=1
πkN (Logµk(xi); 0,Σk)1[zi=k] , (15)

where
∝∼ denotes sampling from the distribution pro-

portional to the right side, and the indicator function
1[zi=k] is 1 if zi = k and 0 otherwise.

4.2 Sub-Cluster Split/Merge Proposals

We now describe the MH split-and-merge proposals
that are specialized to the geometry of SD−1. The
previously-defined posterior distributions for direc-
tional data uniquely define posterior inference in the
sub-clusters [6]. When constructing split-and-merge
moves, joint proposals over the entire latent space,
{z,µ,Σ}, must be constructed. The proposed labels,
ẑ, will be constructed from the inferred sub-clusters.
Ideally, the parameters, µ and Σ, will be proposed
from the true posteriors. However, as discussed pre-
viously, no conjugate prior exists for µ. Hence we
propose the parameters from

µ̂a ∼ q(µa|x, z) = N (Log〈x〉a(µa); 0,Σ?a) , (16)

Σa ∼ p(Σa|x, z, µ̂a) , (17)

where Σ?a , arg maxΣ IW(∆+S〈x〉a , ν+Na). The scat-
ter matrix, S〈x〉a , in T〈x〉aSD−1 is computed according
to Eq. (11), and p(Σa|x, z, µ̂a) is the true posterior
denoted in Eq. (9). We note that Eqn. (16) uses the
covariance Σ?a instead of Σa because Σa depends on µ̂a
through the point of tangency.

The DP Sub-Cluster algorithm then deterministically
constructs moves from the sub-clusters. We extend
the algorithm to the DP-TGMM by splitting cluster a
into clusters b and c with:

ẑIa = split-a(z), (µ̂b, µ̂c) = (µ̂a`, µ̂ar),

(Σ̂b, Σ̂c) ∼ p(Σ̂b|x, z, µ̂b)p(Σ̂c|x, z, µ̂c) , (18)

and by merging clusters b and c into cluster a with:

ẑIb∪Ic = merge-bc(z), µ̂a ∼ q(µa|x, z),

Σ̂a ∼ p(Σ̂a|x, z, µ̂a) , (19)

where split-a(z) splits cluster a into clusters b and c
deterministically based on the sub-cluster labels, and
merge-bc(z) merges clusters b and c into cluster a. We
show in the supplement that this choice of proposals
results in the following Hastings ratio for a split:

rsplit = αΓ(N̂b)Γ(N̂c)
Γ(Na)

p(x|ẑ,µ̂)p(µ̂b)
p(x|z,µ) q(µa|x, z) . (20)

As shown in [6], any proposed deterministic merge
move will be rejected with very high probability. As
such, the DP Sub-Cluster incorporates a set of ran-
domized split/merge proposals that are generated from
a data-independent, two-dimensional Dirichlet distri-
bution. We use this formulation as well, and introduce
the following randomized split/merge proposals. The
random splits are proposed as:

ẑIa ∼ DirMult(α/2, α/2),

(µ̂b, µ̂c) ∼ q(µ̂b|x, ẑ)q(µ̂c|x, ẑ),

(Σ̂b, Σ̂c) ∼ p(Σ̂b|x, z, µ̂b)p(Σ̂c|x, z, µ̂c) , (21)
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Figure 3: Mean and standard deviation over ten sampler runs of normalized mutual information (NMI) and
cluster-count for synthetic datasets of 30 isotropic (top) and anisotropic (bottom) clusters on S2. The colors for
the different algorithms are consistent across all plots. In the sphere-plots to the right it can be observed that,
in contrast to the DP-TGMM, the DP-GMM fails to separate (top) or incorrectly splits (bottom) clusters.

and the random merges according to:

ẑIb∪Ic = merge-bc(z), µa ∼ q(µ̂a|x, z),

Σa ∼ p(Σ̂a|x, z, µ̂a) . (22)

We show in the supplementary material that these re-
sult in the following Hastings ratios:

rrand
split = αΓ(α/2)2Γ(α+Na)Γ(N̂b)Γ(N̂c)

Γ(α)Γ(Na)Γ(α/2+N̂b)Γ(α/2+N̂c)

· p(x|ẑ,µ̂)p(µ̂b)
p(x|z,µ)

q(µa|x,z)
q(µ̂b|x,ẑ)q(µ̂c|x,ẑ) (23)

rrand
merge = Γ(α)Γ(N̂a)Γ(α/2+Nb)Γ(α/2+Nc)

αΓ(α/2)2Γ(α+N̂a)Γ(Nb)Γ(Nc)

· p(x|z,µ̂)
p(x|ẑ,µ)p(µb)

q(µb|x,z)q(µc|x,z)
q(µ̂a|x,ẑ) . (24)

Note that while 〈x〉b, 〈x〉c, Sµb , and Sµc must be re-
computed for the random split proposal, we efficiently
approximate these quantities for the deterministic split
and the random merge from the statistics of clusters b
and c as described in the supplemental.

5 Experimental Results

In the following we compare the DP-TGMM infer-
ence algorithm on synthetic data with ground-truth
labels against four related algorithms. Subsequently,
we evaluate the clustering on real data, namely, surface
normals extracted from Kinect depth images, and 20-
dimensional semantic word vectors [32]. All MCMC
inference algorithms are evaluated based on one sam-
ple from the Markov chain after burn-in.

5.1 Comparisons on Synthetic Data

We generate ground-truth data on the 3D unit sphere
by sampling from a 30-component mixture model with
equi-probable classes. The cluster means are drawn

from a uniform distribution on the unit sphere and
covariances from an IW prior. As depicted to the
right in Fig. 3 the datasets for evaluation encompass
an isotropic as well as an anisotropic dataset.

We compare the DP-TGMM with two commonly-
used optimization-based clustering algorithms, k-
means [21] and spherical k-means (spkm) [10], as well
as with the finite symmetric Dirichlet approximation
(FSD-TGMM) [25] to the DP-TGMM. Additionally,
we show the performance of the DP-GMM, a BNP in-
finite GMM, that does not exploit the geometry of the
sphere. DP-GMM inference uses the sub-cluster-split
algorithm [6]. All algorithms are initialized with a ran-
dom labeling of the data. We use normalized mutual
information (NMI) [45] between the groundtruth and
the inferred labels as a measure for clustering quality
which penalizes the use of superfluous clusters. Addi-
tionally, we show the number of clusters per iteration,
which changes only for the BNP models.

From the middle plots in Fig. 3 it can be seen that
the inference for the DP-TGMM finds the true num-
ber of clusters in both cases, while the DP-GMM does
not. The FSD-TGMM method gives an incorrect es-
timate of the number of clusters, which is consistent
with what was observed in [7]. This motivates the need
for our proposed sub-cluster inference algorithm. The
depiction of the clustering results on the sphere to the
right of Fig. 3, shows that the DP-GMM fails to sep-
arate isotropic clusters and splits anisotropic clusters
incorrectly. The parametric algorithms, k-means and
spkm, were set to the true number of clusters, which
is unknown in many problems of interest.

The evolution of the NMI with iterations, depicted in
the left plots of Fig. 3, shows that the optimization-
based methods quickly converge to a (sub-optimal)
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Figure 4: In the top row we show RGB images of the scene (only) for reference. We visualize the segmentation
implied solely by the clustering of normals using the spkm algorithm with k = 7 (2nd row), using the DP-GMM
(3rd row) and the proposed DP-TGMM (bottom row). Note how spkm and DP-GMM fail to properly segment
the scenes. The colors encode the association to inferred clusters and black denotes missing depth data.

solution. The sampling based algorithms generally
achieve better solutions. The DP-TGMM finds the
best fit to the data as it explicitly allows for anisotropic
distributions and respects the geometry of the sphere.

5.2 Surface Normals in Point-cloud Data

Surface normals extracted from point-clouds exhibit
clusters on the unit sphere since planes in a scene cre-
ate sets of normals pointing into the same direction.
Hence, clustering these normals amounts to segment-
ing the scene into planes with similar orientation. We
extract surface normals from raw Kinect depth images
of the NYU V2 dataset [33] using the algorithm de-
scribed in [24] and apply total variation regularization
[40] to smooth the initial normal estimate.

We show a set of examples scenes in Fig. 4 and the
segmentation into planes with equal orientation as im-
plied by the clustering of normals on the unit sphere
obtained using three different algorithms. In the sec-
ond row we display results from clustering with spkm
where k = 7, in the third clusterings obtained using
the DP-GMM sub-cluster algorithm and in the last
row the segmentation obtained with the DP-TGMM
inference algorithm. Note that the scene images in the
first row are only for reference – only surface normals
were used as input to the algorithms. The DP-GMM
as well as the DP-TGMM inference was initialized to
two clusters with the hyper-parameters of the IW prior

set to ν = 10k and ∆ = (12◦)2νI3×3. Each scene con-
tains around 300k data points on S2.

The differences in segmentation illuminate the short-
comings of spkm and DP-GMM. The spkm algorithm
finds a decent segmentation, but we get spurious clus-
ters since the number of clusters is generally unknown.
The inferred DP-GMM tends to under-segment the
data because it ignores the manifold of the data and
hence does not properly split clusters of normals in
the presence of significant noise in the real data. For
example in column two and five of Fig. 4 the floor and
the wall are not separated into distinct clusters. By re-
specting the manifold as well as adopting a BNP model
the DP-TGMM infers the intuitively correct segmen-
tation as can be seen in the last row of Fig. 4.

5.3 Clustering of Semantic Word-Vectors

We extract 20-dimensional semantic word vectors [32]
from the English Wikipedia corpus and filter out all
words with less than 100 counts to arrive at a set of
41k semantic word vectors for English words. Note
that we normalize the word vectors to unit length be-
fore clustering. This is motivated by the fact that [32]
utilizes the cosine similarity to find the semantically
closest word to a given location in the vector space.
The use of the cosine similarity is equivalent to the
assumption that all the information about semantic
proximity resides in the angular difference.
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funding symphonic orthodoxy malls parliamentary tomatoes
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(a) Top: most likely words for 6 clusters. Bottom: log prob-
ability and histogram over condition numbers for clusters.

“Europeans”

“non-Europeans”

“currencies”“countries”

(b) Dimensionality reduction in the tangent space by
projecting onto the eigenvectors of the two largest
eigenvalues of the cluster’s covariance matrix.

Figure 5: Evaluation of DP-TGMM inference on 20D semantic word vectors trained on the Wikipedia corpus.

Therefore, by clustering the semantic word-vectors by
their directions we obtain clusters of semantically sim-
ilar words as can be observed in the table of Fig. 5a.
The table lists the ten most likely words of a subset
of the clusters obtained when running the DP-TGMM
inference algorithm. We start the algorithm from 20
centroids and run it for 800 iterations. After about 250
iterations the algorithm converges to 96 clusters. Note
that this clustering is different from conventional topic
modeling, which relies on document-level word counts.
Semantic word-vectors depend on nearby words, and
our clustering disregards document groupings.

To validate our hypothesis that real directional data
exhibits anisotropic distributions on the sphere, we
compute the condition number of the inferred clus-

ter covariance matrices κ(Σk) = max[σ(ΣK)]
min[σ(ΣK)] where

σ(ΣK) is the set of all eigenvalues of Σk. The con-
dition number thus serves as a measure for how ellip-
tical the clusters are: κ(Σk) ≈ 1 means the cluster
is isotropic whereas κ(Σk) � 1 indicates an elliptical
or anisotropic distribution. The spread-out histogram
over condition numbers shown in Fig. 5a indicates that
the inferred covariances are indeed anisotropic.

To demonstrate the analysis our model affords, we
show in Fig. 5b the conceptual distribution of words
in an inferred cluster when projected onto the 2D co-
ordinate system defined by the two largest eigenval-
ues of the cluster’s covariance matrix in the tangent
space. We show 20 words that are at the extremes of
both axes. In one direction the meaning of the words
changes from non-European to European countries.
On the other coordinate axes we find a progression
from a mix of different countries to their currencies.
We note that such analysis is made possible by model-

ing the data as a mixture of anisotropic distributions.

6 Conclusion

In this work we introduce the DP-TGMM, a DP mix-
ture model over Gaussian distributions in multiple
tangent spaces to the unit sphere in RD. Aimed at
modeling directional data, this Bayesian nonparamet-
ric model does not only adapt to the complexity of
the data but also describes anisotropic distributions
on the sphere. Experiments on synthetic data demon-
strate that the proposed model is more expressive
in describing directional data than other commonly-
used models. Moreover, we have shown the scala-
bility and effectiveness of the inference algorithm as
well as the applicability and versatility of the model
on batches of 300k real-world 3D surface normals
and on 20-dimensional semantic word-vectors for 41k
English words. All inference code can be found at
http://people.csail.mit.edu/jstraub/.

Future work should investigate the extension of this
model to other Riemannian manifolds. Another
promising research direction is embedding DP-TGMM
in a hierarchical structure (akin to the Hierarchical
DP-GMM for RD-valued data) to allow information
sharing between batches of data in applications such
as protein backbone configuration modeling.
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