

Project I: Filter Design

6.341 Discrete-Time Signal Processing

Jason Chang
Fall 2007

Part A. Lowpass Filter Design

A.1. Understanding Filter Specifications

Definitions, Variables, and Abbreviations
PG – Passband Gain
γ – Minimum Passband Gain
δ – Ripple Magnitude
Δ – Desired Minimum Passband Gain

(a) If you normalize this filter so that the maximum passband gain is unity, what is the new
minimum passband gain, γ?

() ()

() ()
()

1max ' 1
max 1

min 1min '
max 1

1
1

PGPG
PG

PG
PG

PG

δ
δ

δγ
δ

δγ
δ

+
= = =

+

−
= = =

+

−
=

+

(b) Given a minimum passband gain specification of −Δ dB, express γ in terms of Δ so that the
two are equal.

[] ()
20

10dB 20log dB dB

10

γ γ

γ
Δ−

= = −Δ

=

(c) Express δ in terms of Δ. Use this relation in your design of FIR filters.

()

20

20

20 20

20 20

20

20

10
1 10
1

1 10 10

1 10 1 10

1 10
1 10

γ
δ
δ

δ δ

δ

δ

Δ

Δ

Δ Δ

Δ Δ

Δ

Δ

−

−

− −

− −

−

−

=
−

=
+

− = +

+ = −

−
=

+

Fall 2007 Chang, Jason

Page 1 of 46

A.2. Design and Compare Filters

Design Specifications

1. Passband edge = 0.15π
2. Stopband edge = 0.21π
3. Maximum gain in the passband = 0 dB
4. Minimum gain in the passband = –1 dB
5. Maximum gain in the stopband = –40 dB

Questions per Filter
(a) The order of the filter.

(b) A plot of the magnitude response (in dB) from ω = 0 to ω = π. Plot a detail of the magnitude

response, focusing on the passband ripple (with linear scale). Plot the group delay (in
samples) using grpdelay. (Use subplot to fit the three plots onto the same page for each
filter.)

(c) A pole-zero diagram produced with zplane.
NOTE: I used the [Z, P, K] values returned from the filter creation functions from Matlab to

avoid roundoff error. As seen in class, a filter implemented in cascade is much less prone to
errors, and thus the pole-zero plot will be much more accurate.

(d) A plot of the impulse response using filter and stem for 50 samples. (Use subplot to fit the

pole-zero diagram and the impulse response onto the same page.)

(e) A paragraph of your observations and comments about this section.

Fall 2007 Chang, Jason

Page 2 of 46

A.2.1 – Butterworth

The following code was used in Matlab to design the Butterworth Filter.

% Define the filter parameters
Wp = 0.15;
Ws = 0.21;
Rp = 1;
Rs = 40;

% Estimate the IIR filter order perfectly
[N, Wn] = buttord(Wp, Ws, Rp, Rs);

% Find the filter with the perfectly estimated order
[B, A] = butter(N, Wn);
[Z, P, K] = butter(N, Wn);

(a) The order of the filter is 15

(b-d) Plots Attached

(e) The Butterworth filter has the highest order amongst the IIR filters to achieve the same
specifications. The main advantage of using a Butterworth filter is that the passband is very flat.
The magnitude plot shows this clearly. However, one undesirable feature of the Butterworth
filter is that its transition band does not drop off very quickly compared to the other IIR filters.
The main reason for using a Butterworth filter is because of its flat passband and because they
are the easiest IIR filters to design. However, as with all IIR filters, the non-linear phase (and
thus varying group delay) of the filter is very undesirable. Although the group delay for the
Butterworth filter does not change as significantly as some other IIR filters, it is still not very
good.

On another note, the pole-zero plot does show that the filter created is indeed a Butterworth
filter. Clearly, all the zeroes are located at -1, which is the criterion used when designing a
Butterworth filter.

Fall 2007 Chang, Jason

Page 3 of 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-500

0

500

M
ag

ni
tu

de
 (d

B
)

Normalized Frequency (xπ rad/sample)

Butterworth Filter

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.5

1

1.5

M
ag

ni
tu

de

Normalized Frequency (xπ rad/sample)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-20

0

20

40

60

Normalized Frequency (×π rad/sample)

G
ro

up
 d

el
ay

 (s
am

pl
es

)

Fall 2007 Chang, Jason

Page 4 of 46

Fall 2007 Chang, Jason

Page 5 of 46

A.2.2 – Chebyshev Type I

The following code was used in Matlab to design the Chebyshev Type I Filter.

% Define the filter parameters
Wp = 0.15;
Ws = 0.21;
Rp = 1;
Rs = 40;

% Estimate the IIR filter order perfectly
[N, Wn] = cheb1ord(Wp, Ws, Rp, Rs);

% Find the filter with the perfectly estimated order
[B, A] = cheby1(N, Rp, Wn);
[Z, P, K] = cheby1(N, Rp, Wn);

(a) The order of the filter is 7

(b-d) Plots Attached

(e) The Chebyshev Type I filter, unlike the Butterworth filter, has ripples in its passband.
However, similar to the Butterworth filter, this Chebyshev Type I filter does not have ripples in
the stopband. There are a few things that make this filter less desirable then the Butterworth.
Obviously, ripples are an undesirable affect if they can be avoided. In addition to the passband
ripples, the group delay of this Chebyshev Type I filter in the passband is also much greater
(reaching more than a 50 sample delay). By compromising a little in the passband ripples and
allowing a bit of group delay, the Chebyshev Type I filter is able to reduce the order of the filter
by approximately ½ and still meet the design specifications.

Similar to the Butterworth filter, this filter also places all zeroes at z=-1. However, the poles are
chosen more carefully here to reduce the order of the filter as much as possible while still
maintaining the desired gains and ripples.

Fall 2007 Chang, Jason

Page 6 of 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1000

-800

-600

-400

-200

0

M
ag

ni
tu

de
 (d

B
)

Normalized Frequency (xπ rad/sample)

Chebyshev Type I Filter

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de

Normalized Frequency (xπ rad/sample)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

100

Normalized Frequency (×π rad/sample)

G
ro

up
 d

el
ay

 (s
am

pl
es

)

Fall 2007 Chang, Jason

Page 7 of 46

Fall 2007 Chang, Jason

Page 8 of 46

A.2.3 – Chebyshev Type II

The following code was used in Matlab to design the Chebyshev Type II Filter.

% Define the filter parameters
Wp = 0.15;
Ws = 0.21;
Rp = 1;
Rs = 40;

% Estimate the IIR filter order perfectly
[N, Wn] = cheb2ord(Wp, Ws, Rp, Rs);

% Find the filter with the perfectly estimated order
[B, A] = cheby2(N, Rs, Wn);
[Z, P, K] = cheby2(N, Rp, Wn);

(a) The order of the filter is 7

(b-d) Plots Attached

(e) The Chebyshev Type II filter is basically the opposite of the Chebyshev Type I filter. Instead
of having ripples in the passband, the Chebyshev Type II filter has ripples in the stopband and a
fairly flat magnitude in the passband. It achieves the filter design specifications with the same
order filter as the Chebyshev Type I, but with more desirable features. We usually care more
about what happens in the passband then the stopband because the signals that we want are in the
stopband. Therefore, any filter with a flat passband is very desirable. The only filter that we
have designed that is flatter then the Chebyshev Type II was the Butterworth, but it was also
twice the order. In addition to this trait, the Chebyshev Type II filter also has the smallest group
delay. This is desirable because the less change in group delay a filter has, the less distorted the
input signal well get.

We can see a lot of why the Chebyshev Type II filter does much better then the Butterworth and
the Chebyshev Type I filters from the pole-zero plot. As you can see, the zeroes of this filter are
not all constrained to be at -1. Therefore, the design method can place zeroes near the unit circle
to pull down the magnitude of the filter near the stopband. These zeroes near the unit circle
cause the magnitude to ripple near their locations, and thus providing us with a Chebyshev Type
II filter.

Fall 2007 Chang, Jason

Page 9 of 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-300

-200

-100

0

100

200
M

ag
ni

tu
de

 (d
B

)

Normalized Frequency (xπ rad/sample)

Chebyshev Type II Filter

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.5

1

1.5

M
ag

ni
tu

de

Normalized Frequency (xπ rad/sample)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Normalized Frequency (×π rad/sample)

G
ro

up
 d

el
ay

 (s
am

pl
es

)

Fall 2007 Chang, Jason

Page 10 of 46

Fall 2007 Chang, Jason

Page 11 of 46

A.2.3 – Elliptic

The following code was used in Matlab to design the Elliptic Filter.

% Define the filter parameters
Wp = 0.15;
Ws = 0.21;
Rp = 1;
Rs = 40;

% Estimate the IIR filter order perfectly
[N, Wn] = ellipord(Wp, Ws, Rp, Rs);

% Find the filter with the perfectly estimated order
[B, A] = ellip(N, Rp, Rs, Wn);
[Z, P, K] = ellip(N, Rp, Rs, Wn);

(a) The order of the filter is 5

(b-d) Plots Attached

(e) The Elliptic filter is the lowest order IIR filter that we designed that was still able to meet the
specifications. The in itself is a great advantage because lower order filters are easier, faster, and
cheaper to implement. Unlike the previously designed IIR filters, the Elliptic filter has ripples in
both the passband and stopband. In the passband, it uses poles near the unit circle to pull the
magnitude up. In the stopband, it uses zeroes on the unit circle to pull the magnitude down at
specific points.

The Elliptic filter is actually the lowest ordered filter that can achieve a set of design
specifications. Much like the Parks-Mclellan filters that will be discussed next, the Elliptic filter
has equiripple in both the passband and stopband. When a filter has equiripple, it is usually the
optimal solution. In the three previous IIR filters, flat passbands or stopbands meant that more
optimization could have been done to lower the order and still stay within the design constraints.
The Elliptic filter does just that and achieves the design with the lowest order.

Fall 2007 Chang, Jason

Page 12 of 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-350

-300

-250

-200

-150

-100

-50

0
M

ag
ni

tu
de

 (d
B

)

Normalized Frequency (xπ rad/sample)

Elliptic Filter

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de

Normalized Frequency (xπ rad/sample)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

Normalized Frequency (×π rad/sample)

G
ro

up
 d

el
ay

 (s
am

pl
es

)

Fall 2007 Chang, Jason

Page 13 of 46

Fall 2007 Chang, Jason

Page 14 of 46

A.2.4 – Parks-Mclellan Filter

The –1 dB ripple in the passband and the -40 dB attenuation do not produce an equally weighted
FIR filter in the two bands. Therefore, we need to calculate the ripple weight constant. First, we
need to calculate the ripple magnitude, δ, given that the desired minimum passband gain, Δ, is -1
dB for a normalized filter.

1
20

1
20

21 10 5.750113 10
1 10

pδ
−

−
−

−
= = ×

+

Next, we calculate the ripple specification for the stopband after normalization.

()

40
20

2

40 dB 10 0.01
1

0.01 1 1.057501 10

s

p

s p

δ
δ

δ δ

−

−

− = = =
+

= + = ×

The following code was used in Matlab to design the Parks-Mclellan Filter.

% Define the filter parameters
Wp = 0.15;
Ws = 0.21;
Rp = (1-10^(-1/20)) / (1+10^(-1/20));
Rs = (10^-(40/20)) * (1+Rp);

% Estimate the FIR filter order (usually underestimated)
N = firpmord([Wp, Ws], [1, 0], [Rp, Rs]);

% Find the filter with the 'fixed' filter order
B = firpm(N+5, [0, Wp, Ws, 1], [1, 1, 0, 0], [Rs, Rp]);
A = 1+Rp;

(a) The order of the filter is 52

(b-d) Plots Attached

(e) The Parks-Mclellan filter is the most optimal FIR filter possible. In this case, optimal means
the lowest order FIR filter that meets all design specifications. Much like the Elliptic filter, the
equiripple in the passband and stopband of the Parks-Mclellan filters should indicate to us that it
is indeed an optimal solution.

It should be noted here that Matlab’s firpmord function, which estimates the order needed to
achieve filter specifications, underestimated the necessary filter order. In all the previous IIR
cases, the filter order estimation functions worked perfectly. This is because Matlab uses the
analog equivalent version of these IIR filters and does a bilinear transformation. In the case of
FIR filters, no analog equivalent exists, so Matlab must use a less accurate approximation. When
desgning Parks-Mclellan filters, the engineer must manually adjust the order until specifications
are met.

Though this seems like an inconvenience, there are still many advantages to having an optimal
FIR filter. FIR filters can have generalized linear phase, which implies that it will also have

Fall 2007 Chang, Jason

Page 15 of 46

constant group delay. The only real draw back to using an IIR filter is that it does not have this
trait. With non-constant group delay, your input signal could be very distorted and shifted even
though the magnitude does not affect it. In most cases, we only care about constant group delay
in the passband (and sometimes the transition band) because the amplitude of the distortion
caused by signals in the stopband are very small anyway.

While the Parks-Mclellan filter does have generalized linear phase and meets the specifications,
it does so by a great cost. The minimum order needed to achieve all of these things was 52. If
we look at the minimum order of an IIR filter, the Elliptic filter achieved the same specifications
with only an order of 5. This enormous factor is one reason why engineers still use IIR filters.
An increased order means increased costs, computation time, and complexity. In the end, it’s
really a tradeoff for the design engineer to weight how important constant group delay is. Both
the IIR filters and the FIR filters have their own advantages and disadvantages.

Fall 2007 Chang, Jason

Page 16 of 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-80

-60

-40

-20

0
M

ag
ni

tu
de

 (d
B

)

Normalized Frequency (xπ rad/sample)

Parks-Mclellan Filter

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.7

0.75

0.8

0.85

0.9

0.95

1

M
ag

ni
tu

de

Normalized Frequency (xπ rad/sample)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

25.5

26

26.5

27

Normalized Frequency (×π rad/sample)

G
ro

up
 d

el
ay

 (s
am

pl
es

)

Fall 2007 Chang, Jason

Page 17 of 46

Fall 2007 Chang, Jason

Page 18 of 46

Part B. All-pass Filters and Fractional Delay

Given a particular transfer function, H(ejω), the group delay of the transfer function is just:

() ()jd H e
d

ωτ ω
ω
⎡ ⎤= − ∠⎣ ⎦

First, we will consider the case where the group delay is a non-integer constant.

() 0 0, τ ω τ τ= ∉

Rewriting the transfer function, we see the following:

() () () () () () ()0
j j dj H e j Cj j j jH e H e e H e e H e e
ω τ ω ω τ ωω ω ω ω−∠ − +∫= = =

Here, we will consider the specific case where the transfer function, H(ejω), is an all-pass filter,
meaning that it has a constant magnitude anywhere. This assumption can be made with no loss
of generality because we are only considering the phase in this discussion. We can always
perform filtering by H(ejω) in two steps.

1) Multiply the input magnitude, ()jX e ω , by the transfer function magnitude, ()jH e ω

2) Add the input phase, ()jX e ω∠ , with the transfer function phase, ()jH e ω∠

Therefore, we can just ignore the magnitude when we are considering the phase of the transfer
function. For our case, we will just assume the magnitude is constant.

Step 2 in the filtering process described above is equivalent to the following:

() () () ()0
jj H e j Cj jX e e X e e
ω

τ ωω ω∠ − +=

We can think of this multiplication in the frequency domain as a convolution in the time domain.
In other words, we have that the output is just:

[] [] { }
[] []
[] ()()

()

0

0

0

0 01
sin

0

jC

jjC
njC

n

e x n n
y n e x n DTFT e

e x n
τ ω

π τ
π τ

δ τ τ

τ

−

−− −
−−

−

⎧ ∗ − ∈⎪= ∗ = ⎨
∗ ∉⎪⎩

Clearly, when 0τ is an integer, the system is rational (actually it’s just a shifted version of the
sampled input). However, when 0τ is not an integer, the transfer function is equivalent to
interpolating the input with sinc functions, shifting by a non-integer factor of the sampling
period, and then resampling and the same sampling period. This obviously can not be viewed as
a rational system because it can not be written as a fraction of polynomials. Therefore, in the
following section, we will only be considering rational transfer functions.

Fall 2007 Chang, Jason

Page 19 of 46

B.1. Exactly All-pass Filters

As stated in the problem, we are interested in finding “…stable, causal systems with real
impulse responses and rational system functions.” These conditions will simplify the placement
of poles in the all-pass filters a great deal. However, the simplifications will partially depend on
what order filter we are designing. In each section, restrictions to pole locations will be stated
according to these design conditions.

In general, the following restrictions are needed:

1) Stability – ROC must include unit circle
2) Causality – All poles must be inside unit circle
3) Real Impulse Response – All complex conjugates of poles must also be a pole, and all

complex conjugates of zeroes must also be a zero.

The first two conditions combine to imply that all poles must lie within the unit circle (1r <).
The third condition implies that a pole or zero must lie on the real axis, or exist in a pair with its
complex conjugate. Both of these constraints will be kept in mind when designing the rest of the
filters.

Fall 2007 Chang, Jason

Page 20 of 46

B.1.A – Exactly All-pass Filters (Minimizing Error Energy)
Design all-pass filters of order 1 and 2 with Property 1 above and the following minimized:

()
/ 2 2

/ 4
0.5 d

π

π
ε τ ω ω= −∫

B.1.A – Order 1 All-pass Filter
The most general 1st order all-pass filter with a constant magnitude response of 1 has the form:

()
11 *

1 11 1

a

a

j
a

AP j
a

z r ez aH z
az r e z

θ

θ

−−−

− −

−−
= =

− −

From Eqn. 5.95 in OSB, we know that the group delay for this 1st order all-pass filter is given by:

() ()
2

2

1
1 2 cos

a

a a a

r
r r

τ ω
ω θ

−
=

+ − −

A 1st order filter means that there is only one pole and one zero. With this in mind, and
remembering that we are designing a filter that must have a real impulse response, it is obvious
that the pole and zero in the all-pass filter must lie on the real axis. In other words, we are
restricted to the following pole location:

() () () (), ,0 or , ,0a a a a aa r r r rθ π= = ±

This special 1st order restriction simplifies the impulse response and group delay to be:

() () ()
1 2

1 2

1 and
1 1 2 cos

a a
AP

a a a

z r rH z
r z r r

τ ω
ω

−

−

− −
= =

− + −

Therefore, all we need to do is run fmincon on the optimization parameter to find the pole. We
are using a constrained minimization because we know that the radius has to exist in the interval
[0, 1) to maintain causality and stability.

The following code was used in Matlab to minimize the parameter.

% Designing an all-pass filter of order 1
% Pole located at z = a = r*e^(-j*theta)
% x(1) = r

% Define the Group Delay
grd = @(x, w) ((1-x(1).^2) ./ (1+x(1).^2-2.*x(1).*cos(w)));

% Define the parameter to minimize
e = @(x) (quad(@(w) (abs(grd(x,w)-0.5)).^2 , pi/4, pi/2));

% Find the minimum of the minimization parameter
% Search with r=[-1,1]
for i=1:7
 % get r to jump by 0.25 from [-0.75, 0.75]
 r = (mod((i-1),7)-3)*0.25;
 a(i,:) = fmincon(e, [r], [],[],[],[],[-1],[1]);
end

Matlab’s fmincon returns two different possible pole locations:

() () () ()1 2, -0.4771,0 or , 0.7647,0a r a rθ θ= =

Fall 2007 Chang, Jason

Page 21 of 46

Because fmincon finds a local minimum, we need to actually evaluate the optimization parameter
at these different pole locations to find the global minimum.

() ()3 2
1 23.204 10 or 2.389 10a aε ε− −= × = ×

Therefore, the optimal solution for pole placement under the given restrictions leads to the pole
being at () () ()1 , -0.4771,0 0.4771,a r θ π= =

The following page contains a pole-zero plot and a plot of the group delay for the optimal filter.

()
1 1

1 1

0.4771 1 2.09620.4771
1 0.4771 1 0.4771AP
z zH z

z z

− −

− −

⎡ ⎤+ +
= = ⎢ ⎥+ +⎣ ⎦

Fall 2007 Chang, Jason

Page 22 of 46

-3 -2 -1 0 1 2
-1

-0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

B.1.A) All-pass Filter Order 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Normalized Frequency (xπ rad/sample)

G
ro

up
 d

el
ay

 (s
am

pl
es

)

Fall 2007 Chang, Jason

Page 23 of 46

B.1.A – Order 2 All-pass Filter
The most general 2nd order all-pass filter with a constant magnitude response of 1 has the form:

() () ()
1 * 1 *

1 11 1AP a b
z a z bH z H z H z

az bz

− −

− −

⎛ ⎞⎛ ⎞− −
= × = ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

We know group delay is given by just:

() () () ()

() () () () ()

j j j
AP a b

j j
a b a b

d dH e H e H e
d d
d dH e H e

d d

ω ω ω

ω ω

τ ω
ω ω

τ ω τ ω τ ω
ω ω

⎡ ⎤ ⎡ ⎤= − ∠ = − ∠ +∠⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − ∠ − ∠ = +⎣ ⎦ ⎣ ⎦

In other words, the group delay of the cascaded 2nd order all-pass filter is just the sum of the
group delays of each 1st order all-pass system. Therefore, we have the following expression for
the group delay of our 2nd order all-pass filter:

() () ()
2 2

2 2

1 1
1 2 cos 1 2 cos

a b

a a a b b b

r r
r r r r

τ ω
ω θ ω θ

⎡ ⎤ ⎡ ⎤− −
= +⎢ ⎥ ⎢ ⎥+ − − + − −⎣ ⎦ ⎣ ⎦

Again, we can make simplifications from the restrictions given in the problem. In addition to
knowing the poles have to lie inside the unit circle again, we can make a further restriction
knowing that there are only two poles in a 2nd order system. The two poles must satisfy one of
the following conditions:

1) The poles must both lie on the real axis, thus both being real
0a bθ θ= = (assuming r can take on negative values)

2) The poles must be complex conjugates of each other
 and a b a br r θ θ= = −

Therefore, the impulse response and group delay can be simplified to be either one of the
following:

() () () ()
1 1 2 2

1 11 1 2 2

1 1 ,
1 1 1 2 cos 1 2 cos

a b a b

a b a a b b

z r z r r rH z
r z r z r r r r

τ ω
ω ω

− −

− −

⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞− − − −
= = +⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟− − + − + −⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦

or

() () () ()
1 1 2 2

2 21 1 2 2

1 1 ,
1 1 1 2 cos 1 2 cos

a a

a a

j j
a a a a
j j

a a a a a a a a

z r e z r e r rH z
r e z r e z r r r r

θ θ

θ θ τ ω
ω θ ω θ

−− −

−− −

⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞− − − −
= = +⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟− − + − − + − +⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦

The optimization must now be done on both of these group delays.

The following code was used in Matlab to minimize the parameter for both cases. Again, we use
fmincon because the radius still has to be in the interval [0, 1) for causality and stability.

Fall 2007 Chang, Jason

Page 24 of 46

% Designing an all-pass filter of order 2
% Pole located at z = r*e^(-j*theta)
% x corresponds to the case when poles are both real
% x(1) = r_a
% x(2) = r_b
% y corresponds to the case when poles are complex conjugate pairs
% y(1) = r_a
% y(2) = theta_a

% Define the Group Delay
grd1 = @(x, w) ((1-x(1).^2) ./ (1+x(1).^2-2.*x(1).*cos(w))) + ...
 ((1-x(2).^2) ./ (1+x(2).^2-2.*x(2).*cos(w)));

grd2 = @(x, w) ((1-x(1).^2) ./ (1+x(1).^2-2.*x(1).*cos(w-x(2)))) + ...
 ((1-x(1).^2) ./ (1+x(1).^2-2.*x(1).*cos(w+x(2))));

% Define the parameter to minimize
e1 = @(x) (quad(@(w) (abs(grd1(x,w)-0.5)).^2 , pi/4, pi/2));
e2 = @(x) (quad(@(w) (abs(grd2(x,w)-0.5)).^2 , pi/4, pi/2));

% Find the minimum of the minimization parameter
% Search with r1=[-1,1] and r2=[-1,1]
for i=1:49
 % get r1 to jump by 0.25 from [-0.75, 0.75]
 r1 = (mod((i-1),7)-3)*0.25;
 % get r2 to jump by 0.25 from [-0.75, 0.75]
 r2 = (floor((i-1)/7)-3)*0.25;
 p1(i,:) = fmincon(e1, [r1 r2],[],[],[],[],[-1;-1],[1;1]);
end

% Find the minimum of the minimization parameter
% Search with r=[-1,1] and theta=[0,2pi]
for i=1:28
 % get r to jump by 0.25 from [-0.75, 0.75]
 r = (mod((i-1),7)-3)*0.25;
 % get r to jump by pi/2 from [0, 3pi/2]
 theta = floor((i-1)/7)*pi/2;
 p2(i,:) = fmincon(e2, [r theta],[],[],[],[],[-1;0],[1;2*pi]);
end

The following pole locations were found by Matlab as local minimums:

 Pole 1 (),r θ Pole 2 (),r θ ()
/ 2 2

/ 4
0.5 d

π

π
ε τ ω ω= −∫

1 (-0.7144, 0) (-0.7144, 0) 4.353 x 10-3
2 (-0.6017, 0) (-0.8365, 0) 4.102 x 10-3
3 (-0.4770, 0) (-1.0000, 0) 3.204 x 10-3
4 (0.9270, 0) (-0.5977, 0) 3.630 x 10-4
5 (0.7647, 0) (1.0000, 0) 2.039 x 10-2
6 (0.8824, 0) (0.8824, 0) 2.244 x 10-2

Clearly, the minimum optimization parameter occurs in case 4, where the poles exist at:

() () () (), 0.9270,0 and , 0.5977,a r b rθ θ π= =

The following page contains a pole-zero plot and a plot of the group delay for the optimal filter.

() ()()
()()

1 11 1

1 1 1 1

1 1.0787 1 1.67310.9270 0.5977 0.5541
1 0.9270 1 0.5977 1 0.9270 1 0.5977AP

z zz zH z
z z z z

− −− −

− − − −

− +⎛ ⎞⎛ ⎞− +
= = −⎜ ⎟⎜ ⎟− + − +⎝ ⎠⎝ ⎠

Fall 2007 Chang, Jason

Page 25 of 46

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

B.1.A) All-pass Filter Order 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Normalized Frequency (xπ rad/sample)

G
ro

up
 d

el
ay

 (s
am

pl
es

)

Fall 2007 Chang, Jason

Page 26 of 46

B.1.B – Exactly All-pass Filters (Minimizing Maximum Error)
Design all-pass filters of order 1 and 2 with Property 1 above and the following minimized:

[]
()

/ 4, / 2
max 0.5

ω π π
ε τ ω

∈
= −

B.1.B – Order 1 All-pass Filter
For the same reason as the 1st order all-pass filter designed in B.1.A, we know that this all-pass
filter must have the following transfer function and group delay:

() () ()
1 2

1 2

1 and
1 1 2 cos

a a
AP

a a a

z r rH z
r z r r

τ ω
ω

−

−

− −
= =

− + −

Therefore, all we need to do is run fmincon on the optimization parameter to find the pole.

The following code was used in Matlab to minimize the parameter.

% Designing an all-pass filter of order 1
% Pole located at z = a = r*e^(-j*theta)
% x(1) = r

% Define the Group Delay
grd = @(x, w) ((1-x(1).^2) ./ (1+x(1).^2-2.*x(1).*cos(w)));

% Define the parameter to minimize
% Create a range of w=[pi/4,pi/2];
wrange = pi/4 : 0.0001 : pi/2;
e = @(x) (max(abs(grd(x,wrange)-0.5)));

% Find the minimum of the minimization parameter
% Search with r=[-1,1]
for i=1:7
 % get r to jump by 0.25 from [-0.75, 0.75]
 r = (mod((i-1),7)-3)*0.25;
 a(i,:) = fmincon(e, [r], [],[],[],[],[-1],[1]);
end

Matlab’s fmincon returns two different possible pole locations:

() () () ()1 2, -0.4926,0 or , 0.7841,0a r a rθ θ= =

Because fmincon finds a local minimum, we need to actually evaluate the optimization parameter
at these different pole locations to find the global minimum.

() ()1 1
1 21.094 10 or 2.614 10a aε ε− −= × = ×

Therefore, the optimal solution for pole placement under the given restrictions leads to the pole
being at () () ()1 , -0.4926,0 0.4926,a r θ π= =

The following page contains a pole-zero plot and a plot of the group delay for the optimal filter.

()
1 1

1 1

0.4926 1 2.03020.4926
1 0.4926 1 0.4926AP
z zH z

z z

− −

− −

⎡ ⎤+ +
= = ⎢ ⎥+ +⎣ ⎦

Fall 2007 Chang, Jason

Page 27 of 46

-3 -2 -1 0 1 2
-1

-0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

B.1.B) All-pass Filter Order 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Normalized Frequency (xπ rad/sample)

G
ro

up
 d

el
ay

 (s
am

pl
es

)

Fall 2007 Chang, Jason

Page 28 of 46

B.1.B – Order 2 All-pass Filter
For the same reason as the 2nd order all-pass filter designed in B.1.A, we know that this all-pass
filter must have one of the following transfer functions and group delays:

() () () ()
1 1 2 2

1 11 1 2 2

1 1 ,
1 1 1 2 cos 1 2 cos

a b a b

a b a a b b

z r z r r rH z
r z r z r r r r

τ ω
ω ω

− −

− −

⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞− − − −
= = +⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟− − + − + −⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦

or

() () () ()
1 1 2 2

2 21 1 2 2

1 1 ,
1 1 1 2 cos 1 2 cos

a a

a a

j j
a a a a
j j

a a a a a a a a

z r e z r e r rH z
r e z r e z r r r r

θ θ

θ θ τ ω
ω θ ω θ

−− −

−− −

⎡ ⎤ ⎡ ⎤⎛ ⎞⎛ ⎞− − − −
= = +⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟− − + − − + − +⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦

Therefore, all we need to do is run fmincon on the optimization parameter to find the pole.

The following code was used in Matlab to minimize the parameter.

% Designing an all-pass filter of order 2
% Pole located at z = r*e^(-j*theta)
% x corresponds to the case when poles are both real
% x(1) = r_a
% x(2) = r_b
% y corresponds to the case when poles are complex conjugate pairs
% y(1) = r_a
% y(2) = theta_a

% Define the Group Delay
grd1 = @(x, w) ((1-x(1).^2) ./ (1+x(1).^2-2.*x(1).*cos(w))) + ...
 ((1-x(2).^2) ./ (1+x(2).^2-2.*x(2).*cos(w)));
grd2 = @(x, w) ((1-x(1).^2) ./ (1+x(1).^2-2.*x(1).*cos(w-x(2)))) + ...
 ((1-x(1).^2) ./ (1+x(1).^2-2.*x(1).*cos(w+x(2))));

% Define the parameter to minimize
% Create a range of w=[pi/4,pi/2];
wrange = pi/4 : 0.0001 : pi/2;
e1 = @(x) (max(abs(grd1(x,wrange)-0.5)));
e2 = @(x) (max(abs(grd2(x,wrange)-0.5)));

% Find the minimum of the minimization parameter
% Search with r1=[-1,1] and r2=[-1,1]
for i=1:49
 % get r1 to jump by 0.25 from [-0.75, 0.75]
 r1 = (mod((i-1),7)-3)*0.25;
 % get r2 to jump by 0.25 from [-0.75, 0.75]
 r2 = (floor((i-1)/7)-3)*0.25;
 p1(i,:) = fmincon(e1, [r1 r2],[],[],[],[],[-1;-1],[1;1]);
end

% Find the minimum of the minimization parameter
% Search with r=[-1,1] and theta=[0,2pi]
for i=1:28
 % get r to jump by 0.25 from [-0.75, 0.75]
 r = (mod((i-1),7)-3)*0.25;
 % get r to jump by pi/2 from [0, 3pi/2]
 theta = floor((i-1)/7)*pi/2;
 p2(i,:) = fmincon(e2, [r theta],[],[],[],[],[-1;0],[1;2*pi]);
end

Fall 2007 Chang, Jason

Page 29 of 46

The following pole locations were found by Matlab as local minimums:
 Pole 1 (),r θ Pole 2 (),r θ ()

/ 2 2

/ 4
0.5 d

π

π
ε τ ω ω= −∫

1 (-0.7235, 0) (-0.7235, 0) 1.257 x 10-1
2 (-0.4926, 0) (-1.0000, 0) 1.094 x 10-1
3 (0.9282, 0) (-0.6070, 0) 3.582 x 10-2
4 (0.8912, 0) (0.8912, 0) 2.7066 x 10-1
5 (0.9999, 0) (0.7841, 0) 2.6143 x 10-1
6 (1.0000, 1.5543) (1.0000, -1.5543) 5.000 x 10-1
7 (0.0004, 3.1416) (0.0004, -3.1416) 1.500 x 100

Clearly, the minimum optimization parameter occurs in case 3, where the poles exist at:

() () () (), 0.9282,0 and , 0.6070,a r b rθ θ π= =

The following page contains a pole-zero plot and a plot of the group delay for the optimal filter.

() ()()
()()

1 11 1

1 1 1 1

1 1.0774 1 1.64740.9282 0.6070 0.5634
1 0.9282 1 0.6070 1 0.9282 1 0.6070AP

z zz zH z
z z z z

− −− −

− − − −

− +⎛ ⎞⎛ ⎞− +
= = −⎜ ⎟⎜ ⎟− + − +⎝ ⎠⎝ ⎠

Fall 2007 Chang, Jason

Page 30 of 46

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

B.1.B) All-pass Filter Order 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Normalized Frequency (xπ rad/sample)

G
ro

up
 d

el
ay

 (s
am

pl
es

)

Fall 2007 Chang, Jason

Page 31 of 46

B.1 – Observations and Comments

The following are the optimal solutions for section B.1:

1st Order All-pass Filter (Part A) 2nd Order All-pass Filter (Part A)

()
1

1

0.4771
1 0.4771AP
zH z

z

−

−

+
=

+
 ()

1 1

1 1

0.9270 0.5977
1 0.9270 1 0.5977AP
z zH z

z z

− −

− −

⎛ ⎞⎛ ⎞− +
= ⎜ ⎟⎜ ⎟− +⎝ ⎠⎝ ⎠

()
/ 2 2

/ 4
0.5A d

π

π
ε τ ω ω= −∫

1st Order All-pass Filter (Part B) 2nd Order All-pass Filter (Part B)

()
1

1

0.4926
1 0.4926AP
zH z

z

−

−

+
=

+
 ()

1 1

1 1

0.9282 0.6070
1 0.9282 1 0.6070AP
z zH z

z z

− −

− −

⎛ ⎞⎛ ⎞− +
= ⎜ ⎟⎜ ⎟− +⎝ ⎠⎝ ⎠

[]
()

/ 4, / 2
max 0.5B ω π π

ε τ ω
∈

= −

It is interesting that under the two separate optimization parameters, the optimal results were still
fairly close. The 2nd order systems are actually even closer than the 1st order systems. In
general, if you minimize the maximum value of something, it does not mean that you are also
minimizing the total energy of the same thing. However, in this case, it seems to be doing just
that. It seems like the optimal solutions for both error criterion converge to the same thing.

If we look at the group delay for any of the optimal 1st and 2nd order filters, and concentrate on
the range of 4 2,π πω∈⎡ ⎤⎣ ⎦ , we see that the group delay is nearly centered around 0.5. In this
interval, the group delay is smooth, continuous, and already fairly flat. Therefore, minimizing
the maximum error makes the entire group delay within this interval closer to 0.5. In other
words, minimizing the maximum error also minimizes the total energy of the error.

It should also be noted that these optimization criteria are still not the best. We are looking over
a very specific range of frequencies (specifically, 4 2,π πω∈⎡ ⎤⎣ ⎦), which means the group delay
could be potentially very far from 0.5 outside of this interval. Actually, this is exactly what
happens with higher orders. Looking at the plots for the 1st order versus the 2nd order, you can
see that the group delay around 4 2,π πω∈⎡ ⎤⎣ ⎦ gets closer to 0.5 with the extra pole-zero pair.
However, the group delay near 0ω = is much larger (almost a factor of 100). This is clearly
due to the pole-zero pair very close to z=1. However, it illustrates that adding a pole-zero pair
may not actually make the entire transfer function have more linear phase. If this is indeed what
we are after, I think the best error criterion to evaluate over would be the total energy in the error
between the group delay and some constant over the entire interval.

() 2
00

d
π

ε τ ω τ ω= −∫

Fall 2007 Chang, Jason

Page 32 of 46

B.2. FIR Approximations to All-pass Filters

The following calculations find expressions for the magnitude of the transfer function given a
general FIR filter of Type II and IV, and of lengths 2 and 4.

FIR Filter (M=2)

Type II FIR Filter (Even Symmetry)

[] [] []

() ()
() ()

()
() ()

() ()

2

2 2 2

2

2

1
22 2

2 2

2

2 2

2 2

1

,

2 cos

2 cos

j

jj j

j j jj j

jj

j

h n a n a n

H e

H e H e e

H e a ae ae e e

H e a e

H e a

ω

ω ω ω

ω

ω ω

ω ω

ω ω

ω ω

ω ω

δ δ

τ ω
−

− −−

−

= + −

= ∠ = −

=

⎡ ⎤= + = +⎣ ⎦

=

=

Type IV FIR Filter (Odd Symmetry)

[] [] []

() ()
() ()

()
() () ()

() ()

2

2 2 2

2 2 2

4

1
42 2

4 4

4

4 2 2

4 2

1

,

2 sin 2 sin

2 sin

j

jj j

j j jj j

j jj

j

h n a n a n

H e

H e H e e

H e a ae ae e e

H e j a e a e

H e a

ω

ω ω ω

ω ω π

ω ω

ω ω

ω ω

ω ω ω

ω ω

δ δ

τ ω
−

− −−

− − −

= − −

= ∠ = −

=

⎡ ⎤= − = −⎣ ⎦

= =

=

FIR Filter (M=4)

Type II FIR Filter (Even Symmetry)

[] [] []

[] []
() ()

()
() () ()

() () ()

2

3
2

2

2 1

2 3
2

3
2 2 2

3
2 2 2

1

2 3

2 cos 2 cos

2 cos 2 cos

jj j

j j j j

jj

j

h n a n b n

b n a n

H e H e e

H e a be be ae

H e e a b

H e a b

ω

ω

ω ω

ω ω ω ω

ω ω ω

ω ω ω

δ δ

δ δ
−

− − −

−

= + −

+ − + −

=

= + + +

⎡ ⎤= +⎣ ⎦

= +

Type IV FIR Filter (Odd Symmetry)

[] [] []

[] []
() ()

()
() () ()

() () ()

2

3
2

4

4 4

2 3
4

3
4 2 2

3
4 2 2

1

2 3

2 sin 2 sin

2 sin 2 sin

jj j

j j j j

jj

j

h n a n b n

b n a n

H e H e e

H e a be be ae

H e e j a b

H e a b

ω

ω

ω ω

ω ω ω ω

ω ω ω

ω ω ω

δ δ

δ δ
−

− − −

−

= + −

− − − −

=

= + − −

⎡ ⎤= +⎣ ⎦

= +

a
…… -1

0 1
2 3 4

h4[n]

-a

b

-b

b b

……

-1 0 1 2 3 4

h2[n] a a

a

…… -2 -1
0

1 2 3
h4[n]

-a

a a

……

-2 -1 0 1 2 3

h2[n]

Fall 2007 Chang, Jason

Page 33 of 46

B.2.A – FIR Approximation to All-pass Filters (Minimizing Error Energy)
Design 2 and 4 tap FIR filters with constant group delay (M-1)/2 and the following minimized:

()()2

0
1jH e d

π ωε ω= −∫

B.2.A – 2-Tap FIR Filter
The magnitude of a 2-tap FIR filter was shown previously to be one of the following (where the
subscript denotes the type of the FIR filter):

() () () ()2 42 22 cos or 2 sinj jH e a H e aω ωω ω= =

Therefore, all we need to do is run fminsearch on the optimization parameter to find the taps.

The following code was used in Matlab to minimize the parameter.

% Designing a 2 tap FIR Filter
% x(1) = a

% Define the magnitude of the transfer function
mag2 = @(x, w) (abs(2.*x(1).*cos(w/2)));
mag4 = @(x, w) (abs(2.*x(1).*sin(w/2)));

% Define the parameter to minimize
e2 = @(x) (quad(@(w) (mag2 - 1).^2 , 0, pi));
e4 = @(x) (quad(@(w) (mag4 - 1).^2 , 0, pi));

% Find the minimum of the minimization parameter
% Search with r=[-1,1]
for i=1:7
 % get a to jump by 0.5 from [-1.5, 1.5]
 a = (mod((i-1),7)-3)*0.5;
 a2(i,:) = fminsearch(e2, [a]);
 a4(i,:) = fminsearch(e4, [a]);
end

For both the Type II and the Type IV filters, Matlab returned the same optimal answers. This
intuitively should be true because the period of the absolute value of sine and cosine are both π.
Thus, integrating over a period of π should produce the same answer for the Type II and the
Type IV filters.

Matlab returns two locally optimal solutions for a:

1 20.6366 and 0.6366a a= = −

Clearly, the two different values of a are just the negative of each other. This negation is
equivalent to a phase shift of π without changing the magnitude response. Thus, both solutions
are equally optimal for the design specifications. The actual value of the parameter we are
minimizing over is just:

()()2
1

0
1 5.951 10jH e d

π ωε ω −= − = ×∫

Fall 2007 Chang, Jason

Page 34 of 46

Our optimal filter can be any one of the following:

h1[n]

h2[n]

h3[n]

h4[n]

For any of the above four filters, the magnitude response of the transfer function is the same.
The following page contains a plot of this magnitude response.

-0.637

… …
-1 2 1

0

0.637 0.637
……

-1 2

1

0

-0.637 -0.637

……
-1 2 1 0

-0.637

0.637
… …

-1 2 1 0

0.637

Fall 2007 Chang, Jason

Page 35 of 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
B.2.A) 2-Tap FIR Filter

M
ag

ni
tu

de

Normalized Frequency (xπ rad/sample)

Fall 2007 Chang, Jason

Page 36 of 46

B.2.A – 4-Tap FIR Filter
The magnitude of a 4-tap FIR filter was shown previously to be one of the following (where the
subscript denotes the type of the FIR filter):

() () () () () ()3 3
2 42 2 2 22 cos 2 cos or 2 sin 2 sinj jH e a b H e a bω ωω ω ω ω= + = +

Therefore, all we need to do is run fminsearch on the optimization parameter to find the taps.

The following code was used in Matlab to minimize the parameter.

% Designing a 4 tap FIR Filter
% x(1) = a
% x(2) = b

% Define the magnitude of the transfer function
mag2 = @(x, w) (abs(2.*x(1).*cos(3.*w/2) + 2.*x(2).*cos(w/2)));
mag4 = @(x, w) (abs(2.*x(1).*sin(3.*w/2) + 2.*x(2).*sin(w/2)));

% Define the parameter to minimize
e2 = @(x) (quad(@(w) ((mag2(x,w) - 1).^2) , 0, pi));
e4 = @(x) (quad(@(w) ((mag4(x,w) - 1).^2) , 0, pi));

% Find the minimum of the minimization parameter
% Search with r=[-1,1]
for i=1:7
 % get a to jump by 0.5 from [-1.5, 1.5]
 a = (mod((i-1),7)-3)*0.5;
 b = (floor((i-1)/7)-3)*0.5;
 a2(i,:) = fminsearch(e2, [a b]);
 a4(i,:) = fminsearch(e4, [a b]);
end

Again, the solutions for the Type II and the Type IV filters are very similar, and both produce the
same error in the optimization.

()()2
1

0
1 3.122 10jH e d

π ωε ω −= − = ×∫

Matlab returns the following solutions for the optimal filter:

Type II: (a,b) = (–0.2122, 0.6366) and (0.2122, –0.6366)
Type IV: (a,b) = (0.2122, 0.6366) and (–0.2122, –0.6366)

These values for the taps correspond to four different filters. Each of these filters have the same
magnitude response (plotted on next page), thus they all equally optimize the design criteria.

0.6366

… …
-1

-0.6366

0 1
2 3 4

0.2122

-0.2122

h4[n]
0.6366

……
-1

-0.6366

0 1
2 3

4

0.2122

-0.2122

h3[n]

-0.6366

… …
-1

-0.6366

0
1 2

3 4

0.2122 0.2122 h2[n] 0.6366

……
-1

0.6366

0
1 2

3
4

-0.2122 -0.2122

h1[n]

Fall 2007 Chang, Jason

Page 37 of 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
B.2.A) 4-Tap FIR Filter

M
ag

ni
tu

de

Normalized Frequency (xπ rad/sample)

Fall 2007 Chang, Jason

Page 38 of 46

B.2.B – FIR Approximation to All-pass Filters (Minimizing Maximum Error)
Design all-pass filters of order 1 and 2 with Property 1 above and the following minimized:

[]
()

0,
max 1jH e ω

ω π
ε

∈
= −

B.2.B – 2-Tap FIR Filter
The magnitude of a 2-tap FIR filter was shown previously to be one of the following (where the
subscript denotes the type of the FIR filter):

() () () ()2 42 22 cos or 2 sinj jH e a H e aω ωω ω= =

Blindly running a Matlab script to optimize the error criterion leads to a rather odd solution: any
starting point that you choose for a seems to be like a minimum as long as a<1. Instead of just
running an optimization script, let’s examine why this odd phenomenon is happening.

The following plots show the magnitude of these 2-tap FIR filters over the range of [0, π].

As you can see, the only parameter we can change here is a, which will stretch or shrink the
magnitude in the vertical direction. No matter what the value of a is, the magnitude will always
have a zero in both the Type II and the Type IV filters. In both filters, we also note that the
maximum value achieved for the magnitude is just 2a. Therefore, we know that:

() ()2 4, 0, 2j jH e H e aω ω ∈ ⎡ ⎤⎣ ⎦

The error criterion is just a mathematical way of saying “minimize the maximum distance to 1”.
The maximum distance must exist at the lower or upper bounds of the magnitude which are 0
and 2a. Therefore, the following is rather obvious:

[]
()

[]
() ()()2 40, 0,

max 1 max 1 max 1, 2 1

1 , 1
2 , 1

j jH e H e a

a
a a

ω ω

ω π ω π
ε

ε

∈ ∈
= − = − = −

⎧ ≤⎪= ⎨ >⎪⎩

Fall 2007 Chang, Jason

Page 39 of 46

In other words, to minimize the error criterion, we can choose any a for which 1a ≤ . For any of
these values of a, the error criterion will always be constant and equal to 1. Therefore, the
optimal solutions for the FIR filters are just:

[] [] []()
[] [] []() []2

4

1
 1,1

1

h n a n n
a

h n a n n

δ δ

δ δ

= + −
∀ ∈ −

= − −

There are an infinite number of optimal solutions, and thus this error criterion is not a very good
parameter to optimize over. This result explains why Matlab chooses the starting search point as
the optimal solution to minimize the error criterion. When the optimal solution is chosen, we
have:

[]
()

0,
max 1 1jH e ω

ω π
ε

∈
= − =

Fall 2007 Chang, Jason

Page 40 of 46

B.2.B – 4-Tap FIR Filter
The magnitude of a 2-tap FIR filter was shown previously to be one of the following (where the
subscript denotes the type of the FIR filter):

() () () () () ()3 3
2 42 2 2 22 cos 2 cos or 2 sin 2 sinj jH e a b H e a bω ωω ω ω ω= + = +

Running a Matlab script here again produced very random answers with no clear optimal
solution. Analyzing these magnitude responses will explain these results.

Both of these magnitudes are much harder to analyze than the 2-tap filters because they are no
longer monotonically increasing or decreasing. This means that we will need to search for local
minima and maxima when optimizing the error criterion.

The problem of optimizing the Type II FIR Filter is actually exactly the same as the problem of
optimizing the Type IV FIR Filter. Let’s first explain why this is true.

The following plots are of each sine or cosine inside the absolute value of each filter.

Type II: () ()sign a sign b=

Type II: () ()sign a sign b= −

Type IV: () ()sign a sign b= −

Type IV: () ()sign a sign b=

As you can see, the Type II filter where a and b are of the same sign and the Type IV filter where
a and b have opposite sign (the two plots on the left) are symmetric about the lines 0y = and

2x π= over the interval we are interested in. The same symmetry exists in the two plots on the
right. Because of this symmetry, optimizing over the magnitude of the sum of cosines or sines
minus some constant is the same in both cases. Thus, we only need to consider one type of filter
because the optimization problem is exactly the same for the other. Let us consider the Type II
filter for a lack of a better choice.

Fall 2007 Chang, Jason

Page 41 of 46

To find local extrema, we just differentiate this function and set it equal to 0.

() () ()() () ()()

() () () ()()
() () () ()

3 3
2 2 2 2 2

3 3
2 2 2 2

3 3
2 2 2 2

2 cos 2 cos 2 cos 2 cos 0

3 sin sin 2 cos 2 cos 0

3 sin sin 0 or 2 cos 2 cos 0

jd dH e a b sign a b
d d

a b sign a b

a b a b

ω ω ω ω ω

ω ω ω ω

ω ω ω ω

ω ω
⎡ ⎤= + + =⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤− − × + =⎣ ⎦ ⎣ ⎦
− − = + =

Here, we will apply the lesser known triple-angle trigonometric formulas on both parts:

() () () () () ()3 3sin 3 3sin 4sin cos 3 4cos 3cosθ θ θ θ θ θ= − = −

(Keep in mind that we are only concerned about the region []0,ω π∈)

() ()
() () ()

() ()

() ()

3
2 2

3
2 2 2

2
2 2

2 2

1

3 sin sin 0

3 3sin 4sin sin 0

sin 12 sin 9 0

9sin 0 or sin
12

90,sin
2 12

a b

a b

a a b

a b
a

a b
a

ω ω

ω ω ω

ω ω

ω ω

ω −

− − =

⎡ ⎤− − − =⎣ ⎦
⎡ ⎤− − =⎣ ⎦

+
= = ±

⎛ ⎞+
= ±⎜ ⎟⎜ ⎟

⎝ ⎠

() ()
() () ()

() ()

() ()

3
2 2

3
2 2 2

2
2 2

2 2

1

2 cos 2 cos 0

2 4cos 3cos 2 cos 0

cos 8 cos 6 2 0

3cos 0 or cos
4

3,cos
2 2 4

a b

a b

a a b

a b
a

a b
a

ω ω

ω ω ω

ω ω

ω ω

ω π −

+ =

⎡ ⎤− + =⎣ ⎦
⎡ ⎤− + =⎣ ⎦

−
= = ±

⎛ ⎞−
= ±⎜ ⎟⎜ ⎟

⎝ ⎠

With a little algebra and trigonometry, the magnitude can be simplified to:

() () () () () ()

() () () ()

33
2 2 2 2 2 2

3
2 2 2 2

2 cos 2 cos 2 4cos 3cos 2 cos

8 cos 6 cos 2 cos

j

j

H e a b a b

H e a a b

ω ω ω ω ω ω

ω ω ω ω

⎡ ⎤= + = − +⎣ ⎦

= − +

Now we will evaluate the magnitude at each of these local extrema to find the global extrema.

() ()1 2 / 2 0
, 8 6 2 2 2jf a b H e a a b a bω

ω =
= = − + = +

() () () () ()2 2 / 2 / 2
, 8 0 6 0 2 0 0jf a b H e a a bω

ω π=
= = − + =

() () ()1 19 33 2 2/ 2 sin / 2 cos
12 4

3 2

2 2 2 2

2

,

3 3 3 3 38 6 2 8 6 2
12 12 12 12 12

9 6 3 9 6 38 6 2 6 2
144 12 18

j j
a b a b

a a

f a b H e H e

a b a b a b a b a ba a b a a b
a a a a a

a ab b a b a ab b a ba a b a b
a a a

ω ω

ω ω− −⎛ ⎞ ⎛ ⎞+ −
= ± = ±⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= = =

⎡ ⎤− − − − −⎡ ⎤= − + = − + ×⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤− + − − + −
= − + × = − + ×⎢ ⎥

⎣ ⎦

()
2 2

3

12

99 30 3,
18 12

a

a ab b a bf a b
a a

− + + −
== ×

Fall 2007 Chang, Jason

Page 42 of 46

Therefore, we can find the global minimum and maximum of the magnitude to be:

()() ()2 1 2 3min min , , 0jH e f f fω = =

()() ()
2 2

2 1 2 3
99 30 3max max , , max 2 2 ,

18 12
j a ab b a bH e f f f a b

a a
ω

⎛ ⎞− + + −
= = + ×⎜ ⎟⎜ ⎟

⎝ ⎠

It can be shown (but is not done here), that the following is true:

()()
() ()

() ()
2 2

2

2 2 ,
max 99 30 3 ,

18 12

j

a b sign a sign b
H e a ab b a b sign a sign b

a a

ω

⎧ + =
⎪

= ⎨ − + + −
× = −⎪

⎩

Thus,

() ()()2 20,maxj jH e H eω ω⎡ ⎤∈
⎣ ⎦

Therefore, for a similar argument as the 2-tap filter, the ()()2max jH e ω has to be chosen such

that it is less then or equal to 2 to belong to the set of optimal solutions. In other words, a and b,
must be chosen such that they satisfy:

1) If [(Type II FIR) and (sign(a)=sign(b))] or [(Type IV FIR) and (sign(a)=–sign(b))] then
1a b+ ≤

2) If [(Type II FIR) and (sign(a)=–sign(b))] or [(Type IV FIR) and (sign(a)=sign(b))] then

2 299 30 3 2
18 12

a ab b a b
a a

− + + −
× ≤

Any a and b that satisfy either of the above conditions will be an optimal solution. Similar to the
2-tap case, there are an infinite number of optimal solutions to the problem of minimizing:

[]
()

0,
max 1 1jH e ω

ω π
ε

∈
= − =

Fall 2007 Chang, Jason

Page 43 of 46

B.2 – Observations and Comments

The optimal solutions from section B.2.A are as follows:

2-Tap FIR Optimal Filters

h1[n]

h2[n]

h3[n]

h4[n]

4-Tap FIR Optimal Filters

If you notice, the only two taps in the 2-tap filters correspond perfectly with the middle two taps
in the 4-tap filters. Let’s consider h1[n], and explore this a little further, because we are very
close to a great finding!

If we think about the best possible magnitude response to minimize

[]
()

0,
max 1jH e ω

ω π
ε

∈
= − , then

we can think of the transfer function in two different ways. The first thought for the most
optimal solution (ignoring how many taps there were) would be the following:

[] [] () 1jh n n H e ωδ= ⇔ =

However, looking a little deeper, []nδ is just a sinc function sampled at the right places
(sampling at exactly the Nyquist rate picks off the peak and the zeroes). The figure on the next
page shows this clearly. This []nδ and sampled sinc parallelism exists in the frequency domain

as well. The transform of []nδ is a constant 1, which is basically the same as a rectangle with
width 2π (because the DTFT is periodic with period 2π). We know that the inverse DTFT of the
rectangle is just our sinc. Therefore, we can think of the ideal h[n] to just be a sampled sinc
instead of the simple []nδ .

-0.637

… …
-1 2 1

0

0.637 0.637
……

-1 2

1

0

-0.637 -0.637

……
-1 2 1 0

-0.637

0.637
… …

-1 2 1 0

0.637

0.6366

… …
-1

-0.6366

0 1
2 3 4

0.2122

-0.2122

h4[n]
0.6366

……
-1

-0.6366

0 1
2 3

4

0.2122

-0.2122

h3[n]

-0.6366

… …
-1

-0.6366

0
1 2

3 4

0.2122 0.2122 h2[n] 0.6366

……
-1

0.6366

0
1 2

3
4

-0.2122 -0.2122

h1[n]

Fall 2007 Chang, Jason

Page 44 of 46

In the problem statement, we are restricted to even length filters. If we could use odd length
filters, the optimal solution would have been just a delta function because the transform would be
constant.

However, the delta function would have been optimal for a much deeper reason: it is actually an
infinitely long sequence of the sampled sinc (just that all samples besides the middle one are
zero). When we start using even length FIR filters, we no longer can have a perfectly sampled
sinc because we only have a finite number of taps. The even length samples do not lie on the
zeroes, and thus, we have to cut off the samples at a certain length (in our case, 2 and 4).

Therefore, our optimal even length FIR filter, is formed in the same way as the optimal odd
length FIR filter: just sample the sinc for as many samples as our length. This hypothesis
matches exactly with our optimal even length FIR filters!

() ()

() ()
() ()

sin

2

2
3

sinc

sinc 0.5 sinc 0.5 0.6366

sinc 1.5 sinc 1.5 0.2122

t
tt π

π

π

π

=

= − = ≈

= − = − ≈ −

It is no coincidence that our “optimal” even length FIR filters have exactly the same values as
sampling the sinc function right in between the integer samples. From this argument, it is trivial
to construct any even length FIR filter because all we do is pick off values from the sinc. The
length of the filter just describes how many values to sample the sinc at.

Fall 2007 Chang, Jason

Page 45 of 46

Unlike section B.2.A, there is not much to say about section B.2.B. From the optimal designs in
section B.2.B, we saw that there were always an infinite number of solutions. This is based on a
bad optimization criterion. Section B.2.A was a better way to optimize the filters because it
worried about the average magnitude response, and tried to get that as close to unity as possible.
Worrying about the maximum error is sometimes a good way to optimize, but was a poor design
criterion in this case. According to this criterion, a filter that has zero magnitude response
everywhere is as good as an ideal notch filter that has zero magnitude at one point. Obviously,
the ideal notch filter is a much better approximation to the ideal all-pass filter. However,
because this criterion only worries about the maximum error, the better choice is no more
optimal then the worse choice. In this specific case, the optimization criterion was not good
because the maximum distance included a zero of the function. If the interval was instead
chosen to be over the range of [π/4, 3π/2], the results may have been more interesting.

Fall 2007 Chang, Jason

Page 46 of 46

