

Music Search Engine

By

Li Cao

Jason Chang
Tiffany Yeh

ECE 445, SENIOR DESIGN PROJECT

SPRING 2007

TA: Alex Spektor

May 1, 2007

Project No. 33

ii

ABSTRACT

Music is often recognized not by its name, but rather by a familiar melody. It is currently impossible to
automate a search for a particular song with only a tune. This project designs a music search engine
where a user can find a song by playing the tune on a keyboard or humming a tune into a microphone.

First and foremost, we implemented an effective algorithm [1] to convert polyphonic music into an
identifiable monophonic tune. Audio processing hardware was then used to extract the pitch of the input.
Finally, a fast and effective search algorithm was implemented to provide the user with accurate results.
Extensive testing was completed on the system to test its robustness and accuracy. Though not all tunes
in a song are searchable, a short input of notes can identify a song as the top choice 83.6% of the time.

iii

TABLE OF CONTENTS

1. INTRODUCTION ..1
 1.1 Purpose ...1
 1.2 Specifications..1
 1.3 Subprojects ...1
 1.3.1 Building the Database ...1
 1.3.2 Acquiring User Input ..1
 1.3.3 Real-time Pitch Extraction..2
 1.3.4 Serial-to-USB Conversion ..2
 1.3.5 Searching the Database ...2

2. DESIGN PROCEDURE...3
 2.1 Building the Database...3
 2.2 Acquiring User Input ..4
 2.3 Real-time Pitch Extraction..5
 2.4 Serial-to-USB Conversion ..6
 2.5 Searching the Database...6

3. DESIGN DETAILS ..8
 3.1 Building the Database...8
 3.2 Acquiring User Input ..9
 3.3 Real-time Pitch Extraction..11
 3.4 Serial-to-USB Conversion ..12
 3.5 Searching the Database...13
 3.5.1 Acquiring User Input from Virtual Keyboard ..14
 3.5.2 Acquiring User Input from USB...15
 3.5.3 Search Algorithm..15

4. DESIGN VERIFICATION..17
 4.1 Building the Database...17
 4.2 Acquiring User Input ..17
 4.3 Real-time Pitch Extraction..19
 4.4 Serial-to-USB Conversion ..19
 4.5 Searching the Database...20
 4.6 Conclusions...21

5. COST ...23
 5.1 Parts ..23
 5.2 Labor...23

6. CONCLUSIONS...24
 6.1 Accomplishments ...24
 6.2 Uncertainties ...24
 6.3 Ethical Considerations ..24
 6.4 Future Work..24

 APPENDIX A – Piano Key Frequencies ..25

 APPENDIX B – Software Flowcharts...26
 FIGURE B.1 – Building the Database...26

iv

 FIGURE B.2 – Real-time Pitch Extraction..27
 FIGURE B.3 – Search..28

 APPENDIX C – Code...29
 APPENDIX C.1 – Building the Database..29
 APPENDIX C.1.1 – main.m...29
 APPENDIX C.1.2 – wav2ascii.m...37
 APPENDIX C.1.3 – do_output.m...38
 APPENDIX C.1.4 – discretize_freqs.m..39
 APPENDIX C.1.5 – output_wav.m ..40
 APPENDIX C.1.6 – chain_code_freqs.m...41
 APPENDIX C.1.7 – postscriptNew.m..42
 APPENDIX C.2 – Real-time Pitch Extraction ..43
 APPENDIX C.2.1 – musicsearch.h ..43
 APPENDIX C.2.2 – musicsearch.c...44
 APPENDIX C.2.3 – lab4fft.c..49
 APPENDIX C.2.4 – core.h ...52
 APPENDIX C.2.5 – sinetables.h ..53
 APPENDIX C.3 – Search ..56
 APPENDIX C.3.1 – main.def ...56
 APPENDIX C.3.1 – main.h ..57
 APPENDIX C.3.1 – main.cpp ..58
 APPENDIX C.3.1 – search.frm ..61

 REFERENCES ...93

1

1. INTRODUCTION

1.1 Purpose

Present day music search engines are text-based searches, and since the conception of the search engine,
the main goal of developers has been to improve search time and produce more relevant results.
However, there are other ways of improving a search. One way to improve a musical search is to change
the type of input data. Thus, the goal of our project is different: to change a music search engine from
being text-based to being musically based. The purpose is to allow users to hum or play a melody or
tune and use the tune to accurately search a large song database. This is advantageous in a number of
situations. Since many songs are remembered by tune and not by title, artist, or even the lyrics, it is
inconvenient and often impossible to textually search for the exact song in such cases. This is a common
problem encountered when everyday listeners attempt to search oldies tunes or songs performed by less
popular or foreign artists. For this reason, we have developed a Music Search Engine that searches a
song database with a user-inputted tune and outputs a list of matching song titles.

1.2 Specifications

There were four main specifications we defined for our project.

1) Power all circuits with the 5V supply voltage from a computer’s USB terminal (i.e. no external
voltage supply).

2) Contain all hardware within 1.0 ft3 and neatly contained in project boxes.
3) Limit our search time to less than 10 sec.
4) Be successful in the search 90% of the time.

These specifications are aimed towards satisfying the consumer. Less power consumption and external
supplies are obviously desired to reduce burden. A small form factor is also important because we do not
want this system to take up an entire desk and deter people from purchasing it due to its largeness. Also,
a short search time should be very important; if it takes longer than 10 sec to return a search, users can
become impatient. And lastly, the system of course must perform well. We think that finding the song
90% of the time is performing up to high enough standards.

1.3 Subprojects

The entire search engine will be split up into four subprojects that were completely somewhat
separately. Each subproject was tested individually to make sure that it was working before it was
integrated with the entire system.

1.3.1 Building the Database
For the search to be performed quickly, we decided to prebuild a database of song melodies. This
subproject involved extracting the pitch of the singing voice from a group of songs and storing them
such that the search would be able to look at them effectively.

1.3.2 Acquiring User Input
Users of the search engine are given three ways to input a search string: virtual keyboard, device line-in,
and microphone. The virtual keyboard is entirely software based, and can be used if there is no access to
a music device or microphone. Our line-in input allows users to plug in any instrument with a line-out,
such as a digital keyboard, and play their search string. Finally, users can hum or sing the tune into a
microphone. For the hardware inputs, users must choose their input method using a toggle switch, and
their input signal is sent through a prefilter and preamplifier to prepare it for DSP processing.

2

1.3.3 Real-time Pitch Extraction
The TI TMS320CS54x DSP board is programmed to sample the output of the previous circuit and take a
4096-point FFT of the user’s input signal through a BNC connector. It will then determine the pitch the
user sang or played, convert that into the closest corresponding piano note, and send that note to the DSP
board’s serial output upon command from the host computer. This is all done in real-time.

1.3.4 Serial-to-USB Conversion
Serial-to-USB is achieved using MAX232 and CP2102 chips. The MAX232 takes serial input from the
DSP board and converts it into TTL asynchronous serial, which is converted again into USB signal for
the computer.

1.3.5 Searching the Database
The music search engine software program asks for and receives data from the DSP board through USB.
The processed user input is compiled into a search string, and run through an algorithm to determine
which song in the database best matches this input. The final results are displayed on screen for the user.

3

2. DESIGN PROCEDURE

Our system can be thought of as four separate subprojects combined into one system. Figure 2.1 is a
general block diagram of how our system is organized.

Fig. 2.1. General Block Diagram

2.1 Building the Database

The building of the search database was done completely before the user had any interaction with our
product. The main concern here was to build an accurate database. After much consideration and
research, it was decided that the main pitch extraction from the polyphonic audio would be too much to
develop and implement in the time frame. Thus, we decided to use the algorithm proposed in [1], [2].

It is also important to note a few things about this algorithm. When considering Signal to Noise Ratio
(SNR) in a song for our purposes, the signal is the voice, and the noise is all the background instruments.
When the SNR is fairly high (~10dB), this algorithm does extremely well in extracting the pitch of the
voice. However, when the SNR is unity or smaller (<0dB), this algorithm does not do very well. A lot of
noise peaks and extra notes are inserted into the prediction, as well as missing notes altogether. In most
common songs, there is some portion of the song where the voice is louder then the background
(SNR>0dB). However, in most places of the song (especially the chorus), the background is louder than
the voice (SNR<0dB). Thus, this algorithm does not do so well in extracting the pitch of the voice in
most cases. Because of this, we must clean the data prior to sending it in, and after it finishes to
eliminate as much noise as possible. This algorithm was definitely not an ideal pitch extraction
algorithm. However, it was the best performing algorithm that could be found. Thus, we decided to use
it. In future systems, a more accurate pitch extraction algorithm could improve results.

There is a lot of background information required to understand the pitch extraction algorithm to its
fullest extent. This includes (but is not limited to) sampling theory, Fourier Transforms, correlations,
time-frequency relationships, and Hidden Markov Models. However, the authors of this algorithm
kindly provided source code in this algorithm, and thus, no time on this project was spent in developing
or implementing it. For a completely understanding of how the algorithm works, please refer to [1], [2].

There are a few things that need to be addressed in how to integrate this algorithm with the rest of the
system. Mainly, it should be noted that the algorithm takes in raw ASCII values of the sound wave that
are scaled to have maximum amplitude of around 300. Also, the input into this algorithm can only be
approximately 60,000 samples, and works best with a wave sampled at 16kHz. In addition to these input
constraints, the output of the algorithm is actually two files, the first of which is of importance to us.
This output file contains the lag (in milliseconds) to the peak in the correlation that corresponds to the
voice. This lag is given for every 10ms of input data. Therefore, we must convert the lag of the peak to
the actual frequency of the pitch. We use the following equation to do this (where fi is the frequency of
the pitch, Fs is the sampling frequency, and ti is the lag of the pitch):

4

 s
i

i

F
f

t
= (2.1)

It should also be noted that almost the entirety of human singing pitches lie above 100Hz and below
3kHz. This will be important for cleaning the input data to the pitch extraction algorithm.

The last major design constraint we need to consider is storage. In a real-world application of this
system, the database would contain millions of songs. Thus, an effective compression needs to be
implemented. However, because of the importance to preserve the data, we would like to use a lossless
compression. Therefore, we chose to use a compression coding scheme similar to the image
compression technique called run-length coding. Run-length coding is described in more detail in [3].
Basically, it codes the value, and then the length of the value. In this case, we will store the frequency
information along with how long the note is held for. This coding method was the most logical lossless
compression we could think of.

Figure 2.2 is a general block diagram of how we build our database.

Fig. 2.2. Building the Database Block Diagram

2.2 Acquiring User Input

Aside from the direct virtual keyboard input, there are two ways in which the user can input a melody.
The first is the microphone input that powers and extracts the voltage levels produced by the user’s
voice (typically ~ 0.5 mV). The other input is an audio line-in that is an analog signal from an
instrument such as an electronic keyboard. The user chooses the input by toggling a switch. The selected
input is then sent through a preamplifier circuit (Figure 2.3) that produces a gain such that the DSP will
be able to recognize the signal.

R1

R2

0 00 00

+

-

OUT
OPAMP

0

Fig. 2.3. Building the Database Block Diagram [3]

5

The following equation is used to calculate the actual the gain of the circuit shown in Figure 2.3.

 2

1

1vout

v

vin

A R
A

A R
= = + (2.2)

The DSP needs approximately 1-2V peak to peak to recognize the signal correctly. The gain for the
circuit will be chosen such that this specification is met.

2.3 Real-time Pitch Extraction

2

1

0

 0,..., 1
i

N

N
nk

k n

n

X x e k N
π

−
−

=

= = −∑ (2.3)

 2 2

k k kH A B= + (2.4)

The job of the real-time pitch extraction algorithm was to pick out the dominant pitch the user was
singing or playing in real time by calculating the FFT and power spectrum of an input audio signal. We
had to design our FFT for expected input signals ranging from 150 – 1000 Hz (the expected frequency
range for normal human voices). Also, the FFT had to be able to distinguish every half-step between
notes, which is approximately 8 Hz at the lowest end of the spectrum.

 () ()h k g Mk= (2.5)

sampling rate

frequency resolution=
downsampling factor × NFFT

 (2.6)

To meet these requirements, we had to adjust the sampling rate by downsampling and the FFT size. By
increasing the downsampling factor, M in equation 2.5, and FFT size, we could obtain our target
frequency resolution. However, high frequency harmonics from singing that also have high power
would produce harmful aliasing if the downsampling factor was too high, and the algorithm would run
too slowly if the FFT size was too large.

OPAMP

+

-

OUT

R1

0

C1

Output to DSP

C2

R2

Fig. 2.4. Schematic of a standard Sallen-Key filter using an op-amp [5]

 1 2 2C C= × (2.7)

0

1
1 2

(2 2)
R R

f Cπ
= =

× ×
 (2.8)

We decided to implement a hardware low-pass Sallen-Key [5] type prefilter to get rid of high frequency
harmonics. This allowed us to downsample by a higher factor without worry of aliasing. Also, by not

6

including the filter in the DSP algorithm, we ensured the pitch extraction algorithm would run as fast as
possible.

The pitch data for each sample cycle is sent out via the serial output buffer, which is read by the
computer. However, the computer must first request data by sending a signal to the DSP. Each time the
computer polls the DSP, it receives one set of pitch data. This way, we can control the speed of sampling
user input to every 100 ms. We decided to implement this slow sampling rate in order to try and
eliminate wavering from microphone input. When someone tries to hold a note, their voice sometimes
wavers between the desired pitch and a half-step above or below. Continuous polling would record the
user fluctuating rapidly between two adjacent notes, which is not desirable for our search
implementation. By polling at a relatively slow rate, we dampen this fluctuation while maintaining
responsiveness for fast songs.

2.4 Serial-to-USB Converter

Serial data transmitted from the DSP is converted to USB so that it can easily communicate with newer
PC’s that lack relatively outdated serial ports. This is achieved by sending and receiving serial data
to/from a MAX232 chip that converts serial to asynchronous (also referred to as TTL level) data. Serial
data is approximately 2.5 V, whereas asynchronous is inverted and approximately 5V. The
asynchronous data is then sent to the CP2102 breakout board (featuring a USB controller, voltage
regulator and preprogrammed internal EEPROM for device description) that converts the data to USB
communication and a USB (B to A) cord connects the device to a USB port on a computer. Finally, the
necessary drivers, given by [6], must be installed on the user’s laptop/PC for proper device recognition.

2.5 Searching the Database

The implemented search algorithm was specifically designed such that it would work well with an
imperfect database and/or minor mistakes from the user inputted search string. Also, our system
specifications say that our search should be independent of the key the song is in or the user is in. This
means that instead of searching for specific notes, we must search for the difference between
consecutive notes. To understand this, a little music theory is needed.

All songs are in the key of something. This key defines (among other things) which notes on the scale
should be sharp/flat. The key of C major is defined with no sharps or flats. The key of C# has the exact
same scale, except that everything is shifted by one half-step. Therefore, for every half-step change in
key, a resulting half-step change is applied to the rest of the song. In other words, if we only look at the
difference between notes instead of the actual notes, we drop only the key information without losing
anything else. Therefore this method gives us exactly what we want without any other losses.

Thus, our search algorithm searches for differences in notes. In addition, because we assume that the
input string is much more accurate than the database, we always try to find the entire string within the
song. Skipping of a note in the input is also permitted to find the string, however these results will be
weighted differently. For each song, we find how many occurrences of the search string exist throughout
the entire song. Then, to find the percent that the specific song is what the user is searching for, we use
the following equations (where Oj is the j

th occurrence of the string input, ni is the number of
occurrences found in song i, N is the total number of occurrences found in all the songs, and Ri is the
percentage that song i is the song the user is searching for):

7

i j

j

n O=∑ (2.9)

 i

i

N n=∑ (2.10)

 100 i
i

n
R

N
= × (2.11)

As stated previously, if the user decides that skipping notes is also allowed, then we must weight the
number of occurrences accordingly. We found that a linear scheme in weighting the occurrences to the
number of skipped notes worked the best. In other words, we see that the number of occurrences found
in song i is now defined by the following equation (where sj is the number of skipped notes for the jth
occurrence of the string input, and α is a parameter chosen by the user).

j

i

j j

O
n

s α
=

×
∑ (2.12)

It should be noted that α should be chosen such that it corresponds with the level of certainty that the
input string is indeed part of the song the user is looking for. If the certainty is extremely high, the user
would want to increase α to make sure that skipped notes are penalized more. If the certainty of the input
string is rather small, then the user would want to decrease α to make sure that skipped notes are not
penalized a great deal. As α decreases, a wider variety of songs will be returned, each of which will have
less percentage of being correct.

8

3. DESIGN DETAILS

3.1 Building the Database

Referring to Figure 2.2, we see that building the database is just comprised of a few smaller steps. The
logical flow chart for building the database is shown in Figure B.1. We will also briefly go through some
of the steps here.

We designed the entire algorithm in Matlab for its ease of signal manipulation in the frequency domain.
The actual pitch extraction algorithm was optimized for speed in C++. Matlab’s built-in audio signal
processing packaged includes the functions: “wavread” and “wavwrite” which make it easy to deal with
*.wav files. Therefore, we first used the free program, Winamp, to convert the songs to the correct wav
format.

As stated in Section 2.1, the algorithm used to extract the pitch of the singing voice is not very accurate
when the SNR<0dB. Therefore, we tried to clean the input and output as much as possible to produce
better results for the database. To eliminate as much noise as possible from background, we first put the
input signal through a bandpass filter with a low cutoff frequency of 100Hz, and a high cutoff frequency
of 3kHz.

Fig. 3.1. Building the Database Detailed Block Diagram

Also, because of the algorithm constraints stated in Section 2.1, we much preprocess the sound wave to
ASCII data, and break it up into smaller chunks. We feed each chunk through the algorithm, and then
recombine them when they are done. Using equation 2.1, we convert the output of the algorithm to the
frequency of the voice.

We then worry about cleaning the output. Many times, the algorithm picks up a very short noise spike.
To clean the data, we first pass it through a 15 point median filter. This filter reduces short noise pulses
without distorting the correct pitches. In addition to the median filter, we also check each consecutive
note. If the next note is greater than an octave away from the current note, then we interpret it as noise.
In most cases, this is valid because a singer rarely jumps more than an octave in between notes. These

9

two methods were able to clean the output data significantly so that a low SNR input could still produce
a somewhat respectable output.

After we clean the data, the final step is to losslessly code the frequencies such that they are easily
searched. Instead of storing the actual frequency of the note, we will store the index of that frequency on
a piano. Please refer to Table A.1 for the mapping sequence. Table 3.1 gives an example of how the
mapping of frequencies to indices is done. As stated in Section 2.1, we then use run-length coding to
store the data. For each note, we store the note frequency index and the length that the note is held.
Because each lag is outputted for every 10 ms of input data, the number we are storing for the time the
note is held is actually the number of 10 ms chunks. In other words, if a note is held for 1 sec, we would
store 100. In addition to run-length coding, we also store the total number of notes within the entire file.
This makes it easier in the search application to actually declare the size of the array before reading all
the data.

The final output to the database will be in the following format (from Table 3.1):

 TABLE 3.1 Database Coding Format

Line 1 (number of elements) 4

Line 2 (frequency index for note 1) 40

Line 3 (time for note 1) 10

Line 4 (frequency index for note 2) 41

Line 5 (time for note 2) 30

Line 6 (frequency index for note 3) 42

Line 7 (time for note 3) 30

Line 8 (frequency index for note 4) 43

Line 9 (time for note 4) 25

To understand the actual logical flow of how this algorithm was programmed, please refer to Figure B.1.
For the source code, please refer to Appendix C.1.

3.2 Acquiring User Input

We powered all circuits using the 5V source voltage supplied by the USB terminal. For the
preamplifier, we needed to establish the necessary gain. First we connected and powered the
microphone using the following circuit.

Fig. 3.2. Microphone circuit

10

We then measured both the microphone and audio line-in output peak-to-peak AC voltage levels (Table
3.2).
 TABLE 3.2 Microphone Output Voltage

Singing level P-P Voltage
Humming (softest) 4.0 mV

Normal singing 6.5 mV

Loud singing 8.1 mV

Line-in stereo* 8.2 mV
*Mid-range keyboard volume

Next we measured the minimum P-P voltage necessary for the DSP to respond. We found this level to
be approximately 1V. We then divided the necessary voltage level by the lowest (humming) input
voltage to calculate the gain of our preamp using Equation 2.2:

v

Vout
A

Vin
=

1.0

.004

250

V

V

V

V

=

=

After determining a gain of 250, we began by establishing resistor values that would achieve the gain.
As expressed in Equation 2.2, we needed to choose resistor values R2 and R1 that yielded a ratio of 250.
We first chose values of 1MΩ and 4kΩ (for R2 and R1 respectively) to establish the correct ratio.
However, upon testing, we noticed that humming was not loud enough for DSP detection, and we
needed to raise the gain. Realizing that our preamplifier’s actual gain was less than theoretical gain, we
raised our gain to 400 by replacing the 1M resistor with a 1.6M resistor. However, the larger gain
produced distorted sounds at higher volumes (loud singing/line-in), so we adjusted the theoretical gain
to 300 by decreasing the resistance of R2 to 1.2MΩ so that the output signal was not distorted.

1.2
1

4
v

M
A

k

Ω
= +

Ω

301
V

V
=

Our final circuit for the preamplifier is depicted in Figure 3.3.

1.2m

15k

4k

0

6.2k

0

10u

0

100k10u

0

100k

0

5

10u

+

-

OUT
OPAMP

0

Vin

Fig. 3.3. Preamplifier circuit [4]

11

This yielded the actual 250 V/V gain necessary to produce a 1V P-P voltage level for the DSP, as
depicted by Figure 3.3 (middle C gain).

Fig. 3.3. Middle C Gain

3.3 Real-time Pitch Extraction

The two conditions of our DSP algorithm were to recognize frequencies up to 1000 Hz and to resolve
inputs separated by 8 Hz. We were able to vary three parameters, including the downsampling factor,
FFT size, and low-pass prefilter cutoff frequency.

Fig. 3.4. Schematic of Sallen-Key prefilter using an op-amp with cutoff frequency 1000 Hz. [5]

The input signal first passes through a low-pass Sallen-Key filter, Figure 3.4, constructed using a
LM324 op-amp. Since we do not expect any of our users to sing above 1000 Hz, we choose that
frequency to be our filter cutoff, f0. From Equation 2.8, we calculated resistors R1 and R2 to be 1.2 MΩ.

The DSP board has a native sampling rate of 44100 Hz. We downsampled this by 8 times to 5512.5 Hz,
giving us a Nyquist frequency of 2756.25 Hz. Because our prefilter’s cutoff frequency was 1000 Hz, the
frequencies above 2756.25 Hz are greatly attenuated and contribute minimal aliasing.

Finally, we chose an FFT of size 4096. Combined with a sampling rate of 5512.5 Hz, each well of our
FFT is 1.346 Hz in width. This is enough to resolve a 2.7 Hz difference between notes.

0

Vin

+

-

OUT
OPAMP

0.02u

0.01u

1.2M 1.2M

0

Output
to DSP

12

The DSP board continuously takes samples at 44100 Hz and places them in a sample buffer. Once the
sample buffer fills, it interrupts our program to transfer those samples into an input buffer of length
4096. At the beginning of our program, we wait for the input buffer to be filled. Then every eighth
sample in the input buffer is transferred to a FFT buffer of length 4096. The rest of the positions are
simply zero-padded before performing the FFT.

Next, we had to make sure our algorithm could find the pitch of the user’s input from the FFT. We
weren’t able to simply choose the frequency with the highest amplitude in the power spectrum, because
harmonics of low frequency notes fall within our filter range, and would often be stronger than the
fundamental frequency in power. Our final algorithm starts with finding the strongest frequency of the
power spectrum. Then it checks if that result is actually a harmonic. For example, if the highest power
peak exists at 750 Hz, we can check if it is actually a 3rd harmonic by dividing by 3 to get 250 Hz, and
then looking around 250 Hz for a peak in the power spectrum. The lowest frequency with a peak in the
power spectrum is assumed to be the fundamental frequency or the pitch of the user input.

Now that the fundamental frequency is known, we convert it into the closest corresponding piano note
based on Table A.1, and send it as output through the DSP board’s serial port, provided a couple of
conditions are satisfied. The algorithm continually checks the serial input buffer for data from the
computer. If the serial input buffer contains a ‘1’, then something will be placed in the serial output
buffer. If the note played is above C3 and below C6, and the amplitude of the peak at the fundamental
frequency is above a set threshold, then the number of the note is placed in the buffer. Otherwise, the
string “00” is placed in the buffer. The entire logical flow of the Real-time Pitch Extraction is included
in Figure B.2.

3.4 Serial-to-USB Conversion

The following figure depicts our Serial-to-USB converter circuit.

Fig. 3.5. Serial-to-USB converter

13

We based our serial-to-USB circuit on the datasheets from [7], [8] which provided a rough idea on how
to design the components together. For the MAX232, the capacitance for all 5 capacitors used in the
circuit could either be 1 uF or 10 uF. We chose 10 uF and the circuit worked well, although 1 uF would
have worked just as effectively. We connected non-inverted handshaking signals directly from the
RS232 DB-9 to the USB breakout board to establish appropriate communication between the board and
the serial input. The RX (receive data) and TX (transmit data) terminals of the DB-9 were transmitted
through the MAX232 where the data was converted to TTL then transmitted to the TX and RX
terminals, respectively, of the USB breakout board. The breakout board is finally connected to the
computer via a USB A-B male/male cord which allows the computer to receive serial data through a
USB port.

3.5 Searching the Database

Searching the database involved quite a few steps. The following block diagram (Figure 3.6) briefly
describes what was done in order to complete a successful search.

USB Data

Virtual

Keyboard

Frequency

Difference

Find

Occurences

Calculate

Percentages

User

input

Fig. 3.6. Block Diagram of Search

The following (Figure 3.7) is a picture of the completed search program that interfaces with the user.
The entire interface was writing in Visual Basic 6.0.

Fig. 3.7. Screenshot of the Search

As you can see, the user can select to input a search string either from the USB Data, or from the virtual
keyboard. The first step that we need to do is acquire the search string.

14

3.5.1 Acquiring User Input from Virtual Keyboard
Getting the data from the virtual keyboard was rather straightforward. Each key on the virtual keyboard
was part of an object array (indexed from 0 to 36). When a key was pressed, we subtracted its index
from the previous pressed key's index to find the offset. This offset corresponds to exactly what we need
to search with. In addition, each time a key is pressed, we also play a sound file that corresponds to that
note. While the key is held down, we repeatedly play that note. When the key is released, we play a null
sound (a value of 0) to stop the sound. All of these sound playing functions were completely easily
through the Windows sndPlaySound API.

It should be noted that there was actually a considerable amount of work devoted to developing these
key sounds. We created the sounds in Matlab using wavwrite. However, problems arose such that if we
created a sound file of an arbitrary length and then repeated it, a high frequency popping sound would
occur in between the repetitions. To understand why this occurs, we look at the following sampled sine
wave in Figure 3.8.

Fig. 3.8. Sampled Sine Wave (before period finishes)

As you can see, when the first repetition of the sound wave finishes, there is a quick jump from its
current value to the starting zero of the next repetition. The sudden jump causes the popping sounds that
were described previously. To resolve this issue, instead of making the sounds an arbitrary length, we
extend it so that it finishes on the end of a period. Therefore, it will look like the following wave in
Figure 3.9.

Fig. 3.9. Sampled Sine Wave (full period)

15

3.5.2 Acquiring User Input from USB
The other way to acquire the user inputted search string is via USB communications. The drivers for the
USB device create a virtual serial port in which it communicates to and from. Therefore, using the
MSComm device provided with Visual Basic 6.0, we are easily able to communicate with the DSP
hardware. As stated in the previous section

When the user clicks on “Start Recording”, we begin polling the DSP for data every 100ms. To poll the
DSP, the search program sends the ASCII code for ‘1’, and then waits to receive two ASCII codes
corresponding to the frequency index. The reason that we poll the DSP for data is described in more
detail in Section 3.3. However, it is important to note that each time the DSP is polled, the current
frequency index that is being inputted is sent to the computer. When the current frequency index is
different from the previous one, it indicates that the note just changed, so we store the value. Once the
user decides that the entire string has been inputted, he or she can click on the “Stop Recording” button
to tell the DSP to stop. Once this is done, acquiring data from the USB port is complete.

3.5.3 Search Algorithm
After the input acquisition is completed, we then begin searching the actual database for the string.
Because speed was an important factor in writing the search algorithm, it was optimized in C++ instead
of coding it with Visual Basic 6.0. This involved building C++ dynamic link libraries to interface with
VB6. For more information on calling C++ functions from VB6, please refer to [9]. The search works as
the following.

1) Read and store the entire song from the database so we can access the information quickly.

2) Calculate the average length of a note in the song, using this as an indication of the tempo. Do

this by looking at the middle minute of the song (where m is the middle sample).
i) Calculate the total time (t) of the middle minute (where ti is the length of note i).

3000

3000

m

i

i m

t t
+

= −

= ∑ (3.1)

ii) Calculate the total number of notes (k) within the middle minute.

3000

3000

1
m

m

n

n

k
+

−

= ∑ (3.2)

ii) Calculate the average length of a note (<t>) within the middle minute.

avg

t
t t

k
= = (3.3)

3) Define a window to search for the note (where β is a window weighting factor, usually 3β ≈).

n avg

W tβ= (3.4)

4) Define a window to search for the entire input (where l is the length of the input).

 1.5
s avg

W t l= (3.5)

5) Start at each note of a song, and search for each note. If the next note is not found within Wn

of the last note, then give up on starting here, and start at the next note.

6) When the entire string is found, if the time for the string is less than Wn then increase the

number of occurrences (ni) with Equation 2.12

16

7) Calculate the percentage that each song is correct using Equation 2.11.

The logical flow of the search algorithm can be found in Figure B.3.

In addition to being able to perform the search (and choose the search parameters α and β), the user also
has a few other options to aid in the search process. Specifically, the user can do the following things:

1) Clear the last inputted note
2) Clear the entire search string
3) Playback the search string
4) Playback songs returned by the search

These features were all straightforwardly implemented, and can be found in the source code Appendix
C.3.

17

4. DESIGN VERIFICATION

One of the most important things in our system was to test it properly. The following tests validated the
success of each subproject as well as validating our system as a whole.

4.1 Building the Database

To test that our database building algorithm was working properly, we created sound files that contained
a simple tune (such as “Mary Had a Little Lamb”), and made sure that the algorithm was tracking the
input perfectly. To our demise, the database did track the voice perfectly when it existed. However when
the voice stopped for a split second, the algorithm would generate noise for when the voice was not
there. The result was a semi-noisy signal, most of which was cleaned by our filtering techniques.

The following figure is a simulation we ran to test our database algorithm on the C Major scale.

Fig. 4.1. Simulation of Building the Database on a C Major Scale

4.2 Acquiring User Input

We tested the prefilter/preamplifier circuit by measuring both the input and output voltage levels and
capturing these on the oscilloscope. After verifying that the amplification was working for the
frequency of middle C (262 Hz), we tested a wide range of frequencies and vocal volumes (Table 4.1) to
ensure that the combination of our prefilter and preamp would produce the necessary voltage level for
the DSP.

18

 TABLE 4.1 Preamp & Prefilter I/O relationship

Vin, p-p f (Hz) Vout, p-p

4.0 mV

150
300
500

1000
2000

1.0 V
1.0 V
1.0 V
0.5 V
0.1 V

6.5 mV

150
300
500

1000
2000

1.6 V
1.6 V
1.6 V
0.8 V
0.2 V

8.0 mV

150
300
500

1000
2000

2.0 V
2.0 V
2.0 V
1.0 V
0.2 V

Sample scope captures are displayed in Figures 4.2-4.5.

Fig. 4.2. Preamplifier & Prefilter 300Hz

(Gain = 250)

Fig. 4.3. Preamplifier & Prefilter 900Hz

(Gain = 126)

Fig. 4.4. Preamplifier & Prefilter 2kHz

(Gain = 32.6)

Fig. 4.5. Preamplifier & Prefilter 2.5kHz

(Gain = 18.5)

19

4.3 Real-time Pitch Extraction

In testing this part of our design, we wanted to make sure our setup would allow us to distinguish
between every note we expected to receive. We also wanted to make sure to always output the
fundamental frequency and never a harmonic.

At first, a function generator was used to simulate input to the DSP board. This type of input does not
contain any harmonics, but it did allow us to make sure each note, including the low notes, could be
distinguished. We set the DSP to continuously output the note of each sample through the serial port,
and monitored the output using hyperterminal on the computer.

The human singing voice, however, contains plenty of high frequency harmonics (above the raw
sampling rate), and this was a huge issue when we tested using the microphone as input. Because of this,
we had to build an anti-aliasing prefilter, redesign our FFT parameters, and construct an algorithm to
find the fundamental frequency.

Fig. 4.6. Frequency sweep of prefilter, 0 – 10 kHz, step size 50 Hz. x-axis division 1 kHz.

We setup a frequency sweep on the frequency generator from 0 – 10 kHz, with step size 50 Hz, and
connected it to the prefilter. Signals passing through the prefilter begin to be attenuated at around 1.5
kHz, as shown in Figure 4.6.

Now, when we tested the design by singing into the microphone input, we would always get the note
corresponding to our fundamental frequency. However, one problem we faced was that, as untrained
singers, we could not properly hold a note for a long duration. Often the output would waver between
neighboring notes. This problem is not in our algorithm, but rather it is a problem of the original input.
We did not have this issue when testing the line-in of a digital keyboard.

4.4 Serial to USB

We began by measuring the input and output data terminals of the MAX232. The following figure
shows that the MAX232 is indeed converting the signal to TTL logic. As expected, the input signal (the
lower waveform) is inverted and then amplified to 5V.

20

Fig. 4.7. MAX232 scope plot.

After determining that the chip was working properly, we tested the serial-to-USB conversion using
Windows HyperTerminal. We entered serial data on one computer using a regular keyboard and output
the data from the serial port to the serial to USB converter. We then observed if what we were typing
showed up on the other PC’s HyperTerminal. For example if we typed “asdf”, we would expect “asdf”
to be displayed on the HyperTerminal window of the connected computer. When this happened, we
were certain that our serial-to-USB converter was working properly.

4.5 Searching the Database

To test the search algorithm, we hardcoded entries into our database and searched for those. Specifically,
we manually created database entries for common tunes such as “Mary Had a Little Lamb”, “Twinkle
Twinkle Little Star”, “Take Me Out to the Ballgame”, etc. We tested each song by searching small
portion tunes from it, and were able to identify each song as the first place in the results. A sample of the
hardcoded “Mary Had a Little Lamb” database file is given here in Table 4.1.

 TABLE 4.2 Mary Had a Little Lamb

Line # Value

1 272

2 44

3 10

4 42

5 10

6 40

7 10

8 42

9 10

10 44

11 40

12 42

13 40

14 44

15 10

… …

21

After creating these entries, we then proceeded to search for them. We tested all the advanced features
of the search including skipping notes and windowing factors. Specific inputs were chosen to test each
feature, and the search was slowly debugged and verified.

4.6 Conclusions

We tested many tunes from many of the songs in our database. The biggest goal was to retrieve the
actual song. For each of the following songs, two search strings were tested and the better results are
shown. This is an accurate representation of a user actually using the database, because many times the
user can remember more than just one part of a song. The testing group was chosen to span a wide
variety of music to not put weight on any particular type. The following table shows the results of
testing our system.

 TABLE 4.3 System Testing

Song Name Search String Length
Best Search Ranking
(with & without skip)

Search Time
(sec)

Deep Blue Something - Breakfast at Tiffany's 8 1 0.18
Paul McCartney - Yesterday 10 2 0.17
Mamas and Papas - Puff the Magic Dragon 6 3 0.19
Norah Jones - Come Away With Me 12 2 0.20
Dido - White Flag 15 1 0.25
Paulina Rubio – Ni Una Sola Palbra 16 2 0.30
Red Hot Chili Peppers – Otherside 10 NOT FOUND 0.20
Josh Kelley – Perfect 10 9 1 0.18

Using these results, we can generalize the robustness and effectiveness of our search engine. We need to
consider two categories for our design specifications, the search time and the search effectiveness.

When considering the search time, we have obviously met the specification that all searches must be
completed within 10 sec. However it is also useful to consider the search time with respect to the length
of the search input. It is straightforward to show that the search algorithm is directly proportional to the
length of the search string. The following table shows the average search time per input note.

 TABLE 4.4 Search Time per Note

Song Name Search String Length Search Time Search Time / Length

Deep Blue Something - Breakfast at Tiffany's 8 0.18 0.0225
Paul McCartney - Yesterday 10 0.17 0.0170
Mamas and Papas - Puff the Magic Dragon 6 0.19 0.0317
Norah Jones - Come Away With Me 12 0.20 0.0167
Dido - White Flag 15 0.25 0.0167
Paulina Rubio – Ni Una Sola Palbra 16 0.30 0.0188
Red Hot Chili Peppers – Otherside 10 0.20 0.0200
Josh Kelley – Perfect 10 9 0.18 0.0200

Average Search Time per Note 0.0204 sec

The other design specification we need to consider is the success rate of our search. We will rate a songs
success rate as how high it is places. Because our database contained 35 songs, we will divide each
songs by the inverse highest ranking by the total number of songs to find its success rate. In other words,
the success rate of each song is given by the following equation.

22

35 1

100
35

rank
Success

− +
= × (4.1)

The following table summarizes the success rates.

 TABLE 4.5 Success Rate

Song Name Best Search Ranking (with & without skip) Success Rate (%)

Deep Blue Something - Breakfast at Tiffany's 1 100.00
Paul McCartney - Yesterday 2 97.14
Mamas and Papas - Puff the Magic Dragon 3 94.29
Norah Jones - Come Away With Me 2 97.14
Dido - White Flag 1 100.00
Paulina Rubio – Ni Una Sola Palbra 2 97.14
Red Hot Chili Peppers – Otherside NOT FOUND 0.00
Josh Kelley – Perfect 10 1 100.00

Average Success Rate 85.7%

Our design specifications were to have a 90% success rate or better. Clearly we did not meet this design
specification. This is due highly to the poor output of the pitch extraction algorithm in building the
database. Every other component was tested separately to be almost entirely perfect. The only downfall
in our entire system was this algorithm because it performed very poorly for low SNRs. Because we did
not focus on the development of the actual algorithm for this class, it was hard to fix this problem.

23

5. COST

Since our product is marketed towards the general public, we wanted to keep our costs low. Our most
expensive component was the DSP, which pushed the total cost to $133.26 (Table 5.1). This was
unavoidable due to the complexity of the board. The cost of all other components combined came to
approximately $70.

5.1 Cost Analysis

 TABLE 5.1 Cost of Parts

Labor

$35/hr x 2.5 x 20 hrs/week x 14 weeks = $24,500 / person
$24,500 x 3 persons = $73,500 total

Part Cost Number Used Total Cost
Resistors $0.05 20 $1.00

Capacitors $0.10 25 $2.50

USB Breakout $19.95 1 $19.95

MAX232 $3.83 1 $3.83

Project box $3.00 1 $3.00

1.5” x 2.5“ Circuit board $2.50 2 $5.00

3.5 mm Male/Male stereo cable $5.00 1 $5.00

USB B to A Male/Male cable $6.00 1 $6.00

Serial Male/Male cable $6.00 1 $6.00

Microphone $15.00 1 $15.00

Screws, bolts, stands $0.10 30 $3.00

DSP (TI TMS320C54x) $61.69 1 $61.69

LM324 $1.29 1 $1.29

Total $133.26

24

6. CONCLUSIONS

6.1 Accomplishments

We accomplished three out of our four specifications. These consisted of containing all hardware within
1 ft2, limiting search time to less than 10 seconds even with modifications like window sizing and note
skipping, and also building a circuit solely powered by the 5V from the USB line. The hardware
containment was achieved through strategic placement of circuitry boards and wires inside a 3x3x6 inch
box, with holes drilled for easy user access to input/output terminals. A short search time was
accomplished by switching from VB to C++ as well as using efficient search algorithms and techniques.
Finally, because the computer supplied an ample amount of current (>100mA), we were able to achieve
the 5V USB specification by using components that required exactly 5V as their voltage source [4], [7],
[8].

6.2 Uncertainties

The fourth specification was difficult to measure quantitatively, and for the better songs (‘better’
referring to accurately encoded songs), the 90% rate was surpassed with perfect inputs. However, for
certain songs the success rate fell below this threshold due to the skipping of key notes during song
encoding. Fortunately, for every song there was at least one correct melody snippet that would yield a
top match for that song, but in many cases such a melody snippet took many trials and familiarity with
the song to figure out. Because search results for each song varied so greatly, we were unable to find a
conclusive pattern in determining which part of a song or what kind of melody should have been used to
yield the best results.

6.3 Ethical Considerations

There was one main ethical consideration we took into account for this project. We affirm that all music
obtained for our database was obtained legally either from CDs we owned or in rarer cases, iTunes. The
music industry has faced a serious dilemma with illegal music file sharing over the past decade, and we
have taken all necessary steps not to promote this problem. The Music Search Engine is intended solely
for the use of searching for song titles/artists and not for the promotion of file sharing or illegal
downloads.

6.4 Future Work

There are many improvements that could be made to our project given more time. The most obvious
improvement would be decreasing the time it took to encode each song from the current time of 4-5
hours for a 4 minute song. The algorithm for the encoding was extremely intricate and complex so
additional research would be required in order to take steps towards improving speed. On a similar
note, we would like to improve the accuracy of the encoding algorithm. In some cases there were
important vocal notes that were not captured while being replaced with unwanted noise. Improvement
in this area would also require much more research and experimentation. Finally, due to the size and
expense of the DSP board, we could possibly eliminate the use of the DSP by converting this step to a
software component. This would cut down on costs and leave our project with a much smaller hardware
component which is obviously more appealing to the consumer. Clearly there is still much work that
can be to improve the Music Search Engine, but the progress we have made in this field is extremely
promising.

25

APPENDIX A – Piano Key Frequencies

Table A.1 is the mapping between notes, frequencies, and frequency indices.

 TABLE A.1 Piano Key Frequencies [9]

26

APPENDIX B – Software Flowcharts

Figure B.1 is the logical flowchart for building the database.

*.wav

Sample at 16kHz

and convert to

monaural audio

Song Done?

Read up to

60,000 samples

into chunk

Pitch-Extraction

Algorithm [1]

Write to lag file

No

Combine lag data

Display Pitch

Approximation

Chunk

lag data

Yes

Lag file

Convert lag to

frequency

Median Filter

N=15

Write to lag file
Song

Data

Discretize

Frequencies

Get note

Yes

Song Done?

Get next note

No

Calculate

Difference

Difference >

Octave
RLC Frequencies

No

Start

No
All Songs

Done?

No

Finish

Yes

Bandpass filter at

[100Hz, 3kHz]

Fig. B.1. Flowchart of Building the Database

27

Figure B.2 is the logical flowchart for the Real-time Pitch Extraction.

Start

Wait for input buffer array to fill

Is the input buffer array full?

Take every eighth sample of input

buffer array and copy into FFT

buffer array. Zero-pad the rest of

the FFT buffer array. Take 4096-

point FFT of the FFT buffer array.

Take the absolute value of the sum of

squares of the real and imaginary FFT

outputs to get the power spectrum. Find the

frequency, f, with the highest amplitude,

max, on the power spectrum.

Is there a peak in the

spectrum around f / j ?
Is j <= 0 ?

Set fundamental frequency, f, to

be equal to f / j and its amplitude

to variable “max”.

Set fundamental frequency, f, to

be equal to f and its amplitude to

variable “max”.

Find the note number

corresponding to the

fundamental frequency. Move

contents of serial input buffer

into variable “sendOK”.

Is “sendOK” = 1 ?

Is “max” greater than noise

threshold? Is note number within

expected limits?

Yes

No

No

Yes Yes

No

j = j - 1

Place the note number in the

serial output buffer.
Yes

End
No

“sendOK” = 0
“sendOK” = 0

Fig. B.2. Flowchart of Real-time Pitch Extraction

28

Figure B.3 is the logical flowchart for the Search Algorithm.

Song in

Database

Start Search at

Start_i in the song

Start_i = 0

Num_occurences = 0

Start Search at

search_i in the

input string

Search_i = 0

Total_time = 0

Note_time = 0

Num_skips = 0

Calculate:

Current_note

Looking_note

Next_looking_note

Loop and look for

Looking_note

(update Total_time

and Note_time)

Note_time >

Wn or

Total_time

>Ws?

Looking_note

found?

No

No

Calculate:

Wn

Ws

Increment

search_i

Entire string

found?

Yes

No

Search succeeded

Increment Start_i

Yes Yes
Try skipping a note

Increment

search_i

Set skip_flag

skip_flag set?No

Yes

Increment

Num_skips

skip_flag set?
No

Search failed

Increment Start_i

Yes

Num_occurences

+=

1/(α*Num_skips)

Num_skips>0?

Increment

Num_occurences

No Yes

Song Done?

No

All songs

done?
Yes

No

Yes

Calculate

Percentages

Display Results

Fig. B.3. Flowchart of Search Algorithm

29

APPENDIX C – Code

APPENDIX C.1 – Building the Database
APPENDIX C.1.1 – main.m

function varargout = main(varargin)

% MAIN M-file for main.fig

% MAIN, by itself, creates a new MAIN or raises the existing

% singleton*.

%

% H = MAIN returns the handle to a new MAIN or the handle to

% the existing singleton*.

%

% MAIN('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in MAIN.M with the given input arguments.

%

% MAIN('Property','Value',...) creates a new MAIN or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before main_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to main_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

global start;

% Edit the above text to modify the response to help main

% Last Modified by GUIDE v2.5 29-Mar-2007 18:19:17

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @main_OpeningFcn, ...

 'gui_OutputFcn', @main_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin & isstr(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before main is made visible.

function main_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to main (see VARARGIN)

% Choose default command line output for main

handles.output = hObject;

30

% Update handles structure

guidata(hObject, handles);

% This sets up the initial plot - only do when we are invisible

% so window can get raised using main.

if strcmp(get(hObject,'Visible'),'off')

 plot(rand(5));

end

% UIWAIT makes main wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = main_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

axes(handles.axes1);

cla;

popup_sel_index = get(handles.popupmenu1, 'Value');

switch popup_sel_index

 case 1

 plot(rand(5));

 case 2

 plot(sin(1:0.01:25));

 case 3

 comet(cos(1:.01:10));

 case 4

 bar(1:10);

 case 5

 plot(membrane);

 case 6

 surf(peaks);

end

% --

function FileMenu_Callback(hObject, eventdata, handles)

% hObject handle to FileMenu (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --

function OpenMenuItem_Callback(hObject, eventdata, handles)

% hObject handle to OpenMenuItem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

file = uigetfile('*.fig');

if ~isequal(file, 0)

31

 open(file);

end

% --

function PrintMenuItem_Callback(hObject, eventdata, handles)

% hObject handle to PrintMenuItem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

printdlg(handles.figure1)

% --

function CloseMenuItem_Callback(hObject, eventdata, handles)

% hObject handle to CloseMenuItem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],...

 ['Close ' get(handles.figure1,'Name') '...'],...

 'Yes','No','Yes');

if strcmp(selection,'No')

 return;

end

delete(handles.figure1)

% --- Executes during object creation, after setting all properties.

function popupmenu1_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

set(hObject, 'String', {'plot(rand(5))', 'plot(sin(1:0.01:25))',

'comet(cos(1:.01:10))', 'bar(1:10)', 'plot(membrane)', 'surf(peaks)'});

% --- Executes on selection change in popupmenu3.

function popupmenu1_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu3 contents as cell array

% contents{get(hObject,'Value')} returns selected item from popupmenu3

% --- Executes on button press in all_songs_radio.

function all_songs_radio_Callback(hObject, eventdata, handles)

% hObject handle to all_songs_radio (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

if (get(hObject, 'Value') == 0)

 set(hObject, 'Value', 1);

end

32

% disable all other things

some_songs_radio = findobj(gcf, 'Tag', 'some_songs_radio');

set(some_songs_radio, 'Value', 0);

start_index = findobj(gcf, 'Tag', 'edit3');

stop_index = findobj(gcf, 'Tag', 'edit4');

set(start_index, 'Enable', 'off');

set(stop_index, 'Enable', 'off');

% Hint: get(hObject,'Value') returns toggle state of all_songs_radio

% --- Executes on button press in some_songs_radio.

function some_songs_radio_Callback(hObject, eventdata, handles)

% hObject handle to some_songs_radio (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

if (get(hObject, 'Value') == 0)

 set(hObject, 'Value', 1);

end

start_index = findobj(gcf, 'Tag', 'edit3');

stop_index = findobj(gcf, 'Tag', 'edit4');

set(start_index, 'Enable', 'on');

set(stop_index, 'Enable', 'on');

% disable other things

all_songs_radio = findobj(gcf, 'Tag', 'all_songs_radio');

set(all_songs_radio, 'Value', 0);

% Hint: get(hObject,'Value') returns toggle state of some_songs_radio

% --- Executes during object creation, after setting all properties.

function edit3_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit3_Callback(hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text

% str2double(get(hObject,'String')) returns contents of edit3 as a double

% --- Executes during object creation, after setting all properties.

function edit4_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.

33

% See ISPC and COMPUTER.

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function edit4_Callback(hObject, eventdata, handles)

% hObject handle to edit4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit4 as text

% str2double(get(hObject,'String')) returns contents of edit4 as a double

% --- Executes on button press in stop_btn.

function stop_btn_Callback(hObject, eventdata, handles)

% hObject handle to stop_btn (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global song_choice start;

start = 0;

start_btn = findobj(gcf, 'Tag', 'start_btn');

set(start_btn, 'Enable', 'on');

set(hObject, 'Enable', 'off');

start_index = findobj(gcf, 'Tag', 'edit3');

stop_index = findobj(gcf, 'Tag', 'edit4');

some_songs_radio = findobj(gcf, 'Tag', 'some_songs_radio');

all_songs_radio = findobj(gcf, 'Tag', 'all_songs_radio');

if (max(size(song_choice)) == 0 || song_choice == 0)

 set(start_index, 'Enable', 'off');

 set(stop_index, 'Enable', 'off');

 set(some_songs_radio, 'Enable', 'off');

 set(all_songs_radio, 'Enable', 'on');

else

 set(start_index, 'Enable', 'on');

 set(stop_index, 'Enable', 'on');

 set(some_songs_radio, 'Enable', 'on');

 set(all_songs_radio, 'Enable', 'off');

end

% --- Executes on button press in start_btn.

function start_btn_Callback(hObject, eventdata, handles)

% hObject handle to start_btn (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global song_choice start;

start = 1;

% Find all the objects

stop_btn = findobj(gcf, 'Tag', 'stop_btn');

start_index = findobj(gcf, 'Tag', 'edit3');

stop_index = findobj(gcf, 'Tag', 'edit4');

some_songs_radio = findobj(gcf, 'Tag', 'some_songs_radio');

all_songs_radio = findobj(gcf, 'Tag', 'all_songs_radio');

34

% Get the current state

if (get(all_songs_radio, 'Value') == 1)

 song_choice = 0;

else

 song_choice = 1;

end

% Enable the stop button

set(stop_btn, 'Enable', 'on');

% Disable everything else

set(hObject, 'Enable', 'off');

set(start_index, 'Enable', 'off');

set(stop_index, 'Enable', 'off');

set(some_songs_radio, 'Enable', 'off');

set(all_songs_radio, 'Enable', 'off');

% Find all the display objects

song_name = findobj(gcf, 'Tag', 'song_name');

song_start_time = findobj(gcf, 'Tag', 'song_start_time');

song_done_time = findobj(gcf, 'Tag', 'song_done_time');

chunk_start_time = findobj(gcf, 'Tag', 'chunk_start_time');

chunk_done_time = findobj(gcf, 'Tag', 'chunk_done_time');

percent_done = findobj(gcf, 'Tag', 'percent_done');

% Populate List of songs

all_files = dir('wavs*.wav');

if (song_choice == 0)

 song_index = [1 length(all_files)];

else

 if (get(stop_index, 'String') == 'end')

 song_index = [str2num(get(start_index, 'String')), ...

 length(all_files)];

 else

 song_index = [str2num(get(start_index, 'String')), ...

 str2num(get(stop_index, 'String'))];

 end

end

for i=song_index(1):song_index(2)

 if (start == 0)

 break;

 end

 % Get the name of the .wav file

 file = all_files(i).name;

 % Drop the .wav extension

 file = file(1 : length(file)-4);

 set(song_name, 'String', file);

 set(song_start_time, 'String', datestr(now));

 drawnow;

 % Define input/output files

 % original wav data

 in_file = ['wavs\' file '.wav'];

 %convert the file to replace all spaces with _

 spaces = find(file == ' ');

 file(spaces) = '_';

35

 % original wav chunk output

 out_wav_orig = ['output_wavs\' file '_orig.wav'];

 % ascii file of wav data

 out_ascii_file = ['asciis\' file '.txt'];

 % yipeng's algorithm outputs

 out_lag_file1 = ['lags\' file];

 out_lag_file2 = ['lags\' file '_unused'];

 % wav output with sinusoidal pitches

 out_wav_freqs = ['output_wavs\' file '.wav'];

 % combined output

 out_wav_comb = ['output_wavs\' file '_comb.wav'];

 % First find the entire song parameters

 [y, f] = wavread(in_file);

 max_y = max(y);

 length_y = max(size(y));

 length_y = floor(length_y);

 wavwrite(y(1:length_y), f, out_wav_orig);

 chunk_size = 60000;

 last_chunk = 0;

 index = 0;

 approx_chunk_time = 0;

 while (start == 1 && last_chunk < length_y)

 tic;

 set(chunk_start_time, 'String', datestr(now));

 if (approx_chunk_time == 0)

 set(chunk_done_time, 'String', 'Calculating');

 set(song_done_time, 'String', 'Calculating');

 else

 set(chunk_done_time, 'String', datestr(now + ...

 approx_chunk_time/86400));

 set(song_done_time, 'String', datestr(now + ...

 (length_y-last_chunk)/chunk_size*approx_chunk_time/86400));

 end

 drawnow;

 % Define the chunk to read in

 offset = last_chunk;

 wav_chunk = min(chunk_size, length_y-last_chunk);

 last_chunk = last_chunk + wav_chunk;

 % Read in the *.wav into an ascii file

 [y,f] = wav2ascii(in_file,out_ascii_file,wav_chunk,offset,max_y);

 % Run Yipeng's algorithm

 cd Predominant_Pitch_Detection;

 dos_cmd = ['Predominant_Pitch_Detection.exe', ...

 ' ../', out_ascii_file, ...

 ' ../', out_lag_file1, num2str(index), ...

 ' ../', out_lag_file2];

 dos(dos_cmd);

 cd ..;

 index = index + 1;

 hold off;

 do_output(out_lag_file1, index, out_wav_freqs, y, 11);

36

 approx_chunk_time = toc;

 set(percent_done, 'String', num2str(100*last_chunk/length_y));

 drawnow;

 end

 % Output the frequency data to the pitch .wav

 freqs = do_output(out_lag_file1, index, out_wav_freqs, y);

 % Output the combined .wav (left is original, right is approximated)

 y_orig = wavread(out_wav_orig);

 y_aprx = wavread(out_wav_freqs);

 comb_len = max(max(size(y_orig), size(y_aprx)));

 % zero-pad to new length

 y_orig(length(y_orig) : comb_len) = 0;

 y_aprx(length(y_orig) : comb_len) = 0;

 y_comb = [y_orig, y_aprx];

 wavwrite(y_comb, f, out_wav_comb);

end

37

APPENDIX C.1.2 – wav2ascii.m

function [y,f] = wav2ascii(input_file, output_file, num_samples, offset, max_y)

% ===

% | wav2ascii.m by Jason Chang 3/26/2007

% |--

% | converts a wav file to ascii.

% |--

% | input_file - specifies location of the input file (*.wav)

% | output_file - specifies location of the output file (*.txt)

% | num_samples - the number of samples to take from the wave

% | offset - the offset to start from taking samples

% | max_y - the maximum value of the entire song

% ===

% Read data

y(1:num_samples, 1:2) = 0;

[y, f] = wavread([input_file], [1 + offset, num_samples + offset]);

% scale data so that maximum of the song is around 500

y_new = y*500/max_y;

% Output formatted data

fid = fopen([output_file], 'w');

fprintf(fid, ' % 1.7e\r\n', y_new);

fclose(fid);

38

APPENDIX C.1.2 – do_output.m

function [freqs] = do_output(input_name, num_inputs, output_name, ...

 original_data, plotit)

% ===

% | do_output.m by Jason Chang 3/28/2007

% |--

% | Reads in the output from Yipeng's algorithm and converts the values to

% | frequencies. Then outputs the specgram of the original data compared

% | to the estimated frequencies.

% |--

% | input_name - the name of the input file containing the data from

% | Yipeng's algorithm

% | output_name - the name of the output wav that we want to write to

% | original_data - the original sound clip

% | plotit (optional) - plots if 1. default is 0

% ===

Fs = 16000;

d = [];

if (nargin == 5 && plotit == 11)

 d = dlmread([input_name, num2str(num_inputs-1)]);

else

 for i=0:num_inputs-1

 d = [d, dlmread([input_name, num2str(i)])];

 end

end

voice_indices = find(d);

d(voice_indices) = Fs ./ d(voice_indices);

d_analog = discretize_freqs(d);

%freqs = d_analog;

freqs = medfilt1(d_analog, 15);

output_wav(freqs, output_name, 0.0403/4);

s = specgram(original_data(:,1), 1024, Fs);

s = abs(s);

if (nargin == 5 && (plotit ~= 0))

 num_x_vals = size(s,2);

 max_x = size(original_data,1)/Fs;

 x_vals(1:num_x_vals) = 0 : max_x/num_x_vals : max_x - max_x/num_x_vals;

 num_y_vals = size(s,1);

 max_y = Fs/2;

 y_vals(1:num_y_vals) = 0 : max_y/num_y_vals : max_y - max_y/num_y_vals;

 pcolor(x_vals, y_vals, s);

 V = axis;

 V(4) = 2000;

 axis(V);

 hold on;

 freqs_x_values = 0:0.01:length(freqs)/100-0.01;

 plot(freqs_x_values, freqs, 'w', 'LineWidth', 2);

end

39

APPENDIX C.1.3 – discretize_freqs.m

function [freqs_out] = discretize_freqs(freqs)

% ===

% | discretize_freqs.m by Jason Chang 3/28/2007

% |--

% | Converts the discretized frequencies (freqs) from a DFT to actual

% | frequency in Hz. We will draw on the frequencies of piano notes and

% | round to the neared piano note.

% |--

% | freqs - an array of digital frequencies that are not perfect

% | freqs_out - the discretized frequencies

% ===

% Converts the discretized frequencies (freqs) from a DFT to actual

% frequency in Hz. We will draw on the frequencies of piano notes and

% round to the neared piano note.

freqs_out = freqs;

codebook = ...

[

0, 27.5, 29.135, 30.868, 32.703, 34.648, 36.708, 38.891, 41.203, ...

43.654, 46.249, 48.99, 51.913, 55, 58.27, 61.735, 65.406, 69.296, ...

73.416, 77.782, 82.407, 87.307, 92.499, 97.999, 103.83, 110, 116.54, ...

123.47, 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, 185, 196, ...

207.65, 220, 233.08, 246.94, 261.63, 277.18, 293.66, 311.13, 329.63, ...

349.23, 369.99, 392, 415.3, 444, 466.16, 493.88, 523.25, 554.37, ...

587.33, 622.25, 659.25, 698.46, 739.99, 783.99, 830.61, 880, 932.33, ...

987.77, 1046.5, 1108.7, 1174.7, 1244.5, 1318.5, 1396.9, 1480, 1568, ...

1661.2, 1760, 1864.7, 1979.5, 2093, 2217.5, 2349.3, 2489, 2637, ...

2793, 2960, 3136, 3322.4, 3520, 3729.3, 3951.1, 4186 ...

];

partition = ...

[

13.75, 28.3175, 30.0015, 31.7855, 33.6755, 35.678, 37.7995, 40.047, ...

42.4285, 44.9515, 47.6195, 50.4515, 53.4565, 56.635, 60.0025, 63.5705, ...

67.351, 71.356, 75.599, 80.0945, 84.857, 89.903, 95.249, 100.915, ...

106.915, 113.27, 120.005, 127.14, 134.7, 142.71, 151.195, 160.185, ...

169.71, 179.805, 190.5, 201.825, 213.825, 226.54, 240.01, 254.285, ...

269.405, 285.42, 302.395, 320.38, 339.43, 359.61, 380.995, 403.65, ...

429.65, 455.08, 480.02, 508.565, 538.81, 570.85, 604.79, 640.75, ...

678.855, 719.225, 761.99, 807.3, 855.305, 906.165, 960.05, 1017.14, ...

1077.6, 1141.7, 1209.6, 1281.5, 1357.7, 1438.45, 1524, 1614.6, ...

1710.6, 1812.35, 1922.1, 2036.25, 2155.25, 2283.4, 2419.15, 2563, ...

2715, 2876.5, 3048, 3229.2, 3421.2, 3624.65, 3840.2, 4068.55 ...

];

[index, freqs_out] = quantiz(freqs_out, partition, codebook);

40

APPENDIX C.1.4 – output_wav.m

function [freqs_cc] = output_wav(freqs, output_name, duration)

% ===

% | output_wav.m by Jason Chang 3/28/2007

% |--

% | Takes in an array of frequencies and writes those frequencies to a

% | sound (*.wav) file. The sampling frequency used for the output will be

% | 16kHz.

% |--

% | freqs - the array of analog frequencies

% | output_name - the name of the output wav that we want to write to

% | duration - the length of each frequency in seconds

% | freqs_cc - the coded frequencies described in chain_code_freqs()

% ===

freqs_cc = chain_code_freqs(freqs);

for index=1:size(freqs_cc, 2)

 sf = 16000; % sample frequency (Hz)

 n = sf * duration * freqs_cc(2, index); % number of samples

 s = (1:n) / sf; % sound data preparation

 s = sin(2 .* pi .* freqs_cc(1,index) .* s); % sinusoidal modulation

 if (index == 1)

 stotal = s;

 else

 stotal = [stotal, s];

 end

end

stotal = 0.99/max(stotal)*stotal;

wavwrite(stotal, 16000, output_name);

41

APPENDIX C.1.5 – chain_code_freqs.m

function [output_freqs] = chain_code_freqs(input_freqs)

% ===

% | chain_code_freqs.m by Jason Chang 3/28/2007

% |--

% | Codes the frequencies in a particular fashion. Illustrate by example:

% | input_freqs = [f1 f1 f1 f2 f2 f3 f1 f3 f3];

% | output_freqs => [frequency, occurences, offset]' =

% | [f1 f2 f3 f1 f3]

% | [3 2 1 1 2]

% | [0 (f2-f1)%13 (f3-f2)%13 (f3-f1)%13 (f3-f1)%13]

% |--

% | input_freqs - the array of analog frequencies to code

% | output_freqs - the coded array of frequencies

% ===

freq_index = 1;

current_freq = input_freqs(1);

output_freqs(1, 1) = input_freqs(1);

output_freqs(2, 1) = 1;

output_freqs(3, 1) = 0;

for index=2:length(input_freqs)

 next_freq = input_freqs(index);

 if (next_freq == current_freq)

 output_freqs(2, freq_index) = output_freqs(2, freq_index) + 1;

 else

 freq_index = freq_index + 1;

 output_freqs(1, freq_index) = next_freq;

 output_freqs(2, freq_index) = 1;

 output_freqs(3, freq_index) = mod(next_freq - current_freq, 13);

 current_freq = next_freq;

 end

42

APPENDIX C.1.6 – postscriptNew.m

% ===

% | chain_code_freqs.m by Jason Chang 5/01/2007

% |--

% | The script to run after running main.m on all the song files. This

% | will combine all the lag files into one and output the correct info

% | to the database files

% ===

folder = 'db2\Simulation Set 1\';

db_folder = 'db2\filtered\';

Fs = 16000;

all_files = dir([folder '*_unused']);

for i=1:length(all_files)

 % Get the name of the file

 file = all_files(i).name;

 disp(['Starting ' num2str(i) ': ' file]);

 if (exist([db_folder file]) == 0)

 % Drop the .wav extension

 file = file(1 : length(file)-7);

 all_lags = dir([folder file '*']);

 % make sure that everything is alphabetized correctly (leading 0)

 for j=1:length(all_lags)

 lag = all_lags(j).name;

 if (length(file)+1 == length(lag))

 lag_new = [lag(1:length(lag)-1) '0' lag(length(lag))];

 movefile([folder lag], [folder lag_new]);

 lag = lag_new;

 end

 end

 d = [];

 all_lags = dir([folder file '*']);

 for j=1:length(all_lags)

 if (length(all_lags(j).name) ~= length([file '_combined']) && ...

 length(all_lags(j).name) ~= length([file '_unused']))

 lag = all_lags(j).name;

 d = [d, dlmread([folder lag])];

 end

 end

 dlmwrite([folder file '_combined'], d, ' ');

 voice_indices = find(d);

 d(voice_indices) = Fs ./ d(voice_indices);

 d2 = medfilt1(d, 15);

 d3 = medfilt1(d2, 15);

 indices = discretize_freqs_index2(d3);

 indices_cc = chain_code_freqs2(indices);

 fid = fopen([db_folder file], 'w');

 fprintf(fid, '%1d\r', size(indices_cc,2));

 fprintf(fid, '%1d\r', indices_cc(:));

 fclose(fid);

 end

end

43

APPENDIX C.2 – Real-time Pitch Extraction
APPENDIX C.2.1 – musicsearch.h

#define N 4096 /* Number of FFT points */

#define logN 10

44

APPENDIX C.2.2 – musicsearch.c

#include "core.h"

#include "window.h"

#include "musicsearch.h" /* Number of C FFT points defined here */

/* function defined in lab4fft.c */

void fft(void);

/* FFT data buffers */

int real[N]; /* Real part of data */

int imag[N]; /* Imaginary part of data */

/* Our input/output buffers */

int inputs[N];

int outputs[N];

volatile int input_full = 0;/* volatile means interrupt changes it */

int count = 0;

/* Standard frequency bounds for all 88 keys of the piano */

int codebook[] = {13.75, 28.3175, 30.0015, 31.7855, 33.6755, 35.678, 37.7995,

40.047, 42.4285, 44.9515, 47.6195, 50.4515,

 53.4565, 56.635, 60.0025, 63.5705, 67.351, 71.356, 75.599, 80.0945, 84.857,

89.903, 95.249, 100.9145,

 106.915, 113.27, 120.005, 127.14, 134.7, 142.71, 151.195, 160.185, 169.71,

179.805, 190.5, 201.825,

 213.825, 226.54, 240.01, 254.285, 269.405, 285.42, 302.395, 320.38, 339.43,

359.61, 380.995, 403.65,

 429.65, 455.08, 480.02, 508.565, 538.81, 570.85, 604.79, 640.75, 678.855,

719.225, 761.99, 807.3,

 855.305, 906.165, 960.05, 1017.135, 1077.6, 1141.7, 1209.6, 1281.5, 1357.7,

1438.45, 1524, 1614.6,

 1710.6, 1812.35, 1922.1, 2036.25, 2155.25, 2283.4, 2419.15, 2563, 2715, 2876.5,

3048, 3229.2,

 3421.2, 3624.65, 3840.2, 4068.55};

/* Translates frequency to note number or name */

char notebook[] =

"0102030405060708091011121314151617181920212223242526272829303132333435363738394041

42434445464748495051525354555657585960616263646566676869707172737475767778798081828

38485868788";

int notes = 89; /* length of the codebook array */

/* Flag to indicate when to send serial data */

int sendOK = 0;

interrupt void irq(void)

{

 int *Xmitptr,*Rcvptr; /* pointers to Xmit & Rcv Bufs */

 int i,j;

 static int in_irq = 0; /* Flag to prevent reentrance */

 /* Make sure we're not in the interrupt (should never happen) */

 if(in_irq)

 return;

45

 /* Mark we're processing, and enable interrupts */

 in_irq = 1;

 enable_irq();

 /* The following waitaudio call is guaranteed not to

 actually wait; it will simply return the pointers. */

 WaitAudio(&Rcvptr,&Xmitptr);

 /* input_full should never be true... */

 if(!input_full)

 {

 for (i=0; i<BlockLen; i++)

 {

 /* Save input, and echo to channel 1 *

 * Echo only for debug purposes */

 //inputs[count] = Xmitptr[6*i] = Rcvptr[4*i];

 inputs[count] = Rcvptr[4*i];

 /* Send FFT output to channel 2 *

 * Used only for debug purposes */

 //Xmitptr[6*i+1] = outputs[count];

 count++;

 }

 }

 /* Have we collected enough data yet? */

 if(count >= N)

 input_full = 1;

 /* We're not in the interrupt anymore... */

 disable_irq();

 in_irq = 0;

}

main()

{

 int i, max, freq, max_index, max_note, k;

 int new_max;

 int j = 0;

 int l = 5;

 int threshold = 10;

 int t = 0.01;

 int D = 8;

 int history[5];

 int last_note = 0;

 for (i=0; i<l; i++) history[i] = 0;

 /* Initialize IRQ stuff */

 count = 0;

 input_full = 0;

 SetAudioInterrupt(irq); /* Set up interrupts */

 while (1)

 {

 while(!input_full); /* Wait for a data buffer to collect */

 /* From here until we clear input_full can only take *

 * BlockLen sample times, so don't do too much here. */

 /* First, transfer inputs and outputs *

46

 * and decimate by factor D */

 for (i=0, j; i<N; i += D, j++)

 {

 real[j] = inputs[i];

 imag[j] = 0;

 }

 /* Zero-pad the rest of the FFT buffer */

 for (j; j<N; j++)

 {

 real[j] = 0;

 imag[j] = 0;

 }

 /* Done with that... ready for new data collection */

 count = 0; /* Need to reset the count */

 input_full = 0; /* Mark we're ready to collect more data */

 /**/

 /* Now that we've gotten the data moved, we can do the */

 /* more lengthy processing. */

 /* Multiply the input signal by the Hamming window. */

 //for (i=0; i<N; i++)

 //real[i] = _smpy(real[i], window[i]);

 /* Bit-reverse and compute FFT in C */

 fft();

 /* Now, take absolute value squared of FFT */

 max = 0;

 for (i=0; i<N; i++)

 {

 outputs[i] = 25*_sadd(_smpy(real[i], real[i]),

_smpy(imag[i], imag[i]));

 /* Determine the position/absolute frequency of

the peak of the spectrum */

 if (max < outputs[i] && i<N/2)

 {

 max =

outputs[i];

 max_index = i;

 }

 }

 /* Check if the max is a harmonic of some *

 * fundamental frequency. Divide by an integer *

 * and check around there for a peak above the *

 * noise threshold 'threshold'. */

 new_max = 0;

 for (i=-4; i<=4; i++)

 if (outputs[max_index/4+i] > max*t)

 {

 new_max = outputs[max_index/4+i];

 max_index = max_index/4;

 }

 new_max = 0;

 for (i=-4; i<=4; i++)

47

 if (outputs[max_index/3+i] > max*t)

 {

 new_max = outputs[max_index/3+i];

 max_index = max_index/3;

 }

 new_max = 0;

 for (i=-4; i<=4; i++)

 if (outputs[max_index/2+i] > max*t)

 {

 new_max = outputs[max_index/2+i];

 max_index = max_index/2;

 }

 /* Translate FFT index into absolute frequency */

 freq = max_index * 44100/N/D;

 /* Update history of past frequencies */

 for (i=0; i<l-1; i++)

 history[i] = history[i+1];

 history[l-1] = freq;

 /* Find the median of the past five greatest frequency *

 * values. Worst case n^2 where n is length of history. *

 * Since history is small, negligible performance hit. */

 for (i=0; i<l; i++)

 {

 k = 0;

 for (j=0; j<l; j++)

 {

 if

(history[i] > history[j])

 k++;

 }

 if (k = l/2)

 {

 freq

= history[i];

 //history[l-1] = freq;

 }

 }

 /* Then translate that frequency to its corresponding key number */

 for (i=0; i<notes; i++)

 if (codebook[i] - freq > 0) break;

 max_note = --i;

 /* Check for input from computer. Needs to be initialized *

 * before DSP board begins outputting. This can be done *

 * anywhere. */

 freq = SerialRX();

 if (freq > 0)

 sendOK = freq;

 /* Apply some simple conditions

48

 //Check if the note heard is same as previous.

We don't want to duplicate a held note *

 //Check if the note is within what is commonly

accepted as humanly possible *

 // i.e.

approximately 1 octave below to 2 octaves above middle C *

 //Check if the power spectrum of the signal is

above some noise floor *

 //Finally, check if we are ready to receive data

*/

 if (max_note >=25 && max_note <=63 && max > threshold && sendOK == 49)

 {

 if ((max_note < last_note+12) || last_note ==

0)

 {

 SerialTX(notebook[max_note*2]);

 SerialTX(notebook[max_note*2+1]);

 //SerialTX(';');

 last_note = max_note;

 }

 }

 else if (sendOK == 49)

 {

 SerialTX('0');

 SerialTX('0');

 }

 /* Reset send condition */

 sendOK = 48;

 /* Last, set the DC coefficient to -1 for a trigger pulse */

 /* Used only for debugging purposes */

 //outputs[0] = -32768;

 /* done, wait for next time around! */

 }

}

49

APPENDIX C.2.3 – lab4fft.c

/***/

/* lab4fft.c */

/* Douglas L. Jones */

/* University of Illinois at Urbana-Champaign */

/* January 19, 1992 */

/* Changed for use w/ short integers and lookup table for ECE420 */

/* Matt Kleffner */

/* February 10, 2004 */

/* */

/* fft: in-place radix-2 DIT DFT of a complex input */

/* */

/* Permission to copy and use this program is granted */

/* as long as this header is included. */

/* */

/* WARNING: */

/* This file is intended for educational use only, since most */

/* manufacturers provide hand-tuned libraries which typically */

/* include the fastest fft routine for their DSP/processor */

/* architectures. High-quality, open-source fft routines */

/* written in C (and included in MATLAB) can be found at */

/* http://www.fftw.org */

/* */

/* #defines expected in lab4.h */

/* N: length of FFT: must be a power of two */

/* logN: N = 2**logN */

/* */

/* 16-bit-limited input/output (must be defined elsewhere) */

/* real: integer array of length N with real part of data */

/* imag: integer array of length N with imag part of data */

/* */

/* sinetables.h must */

/* 1) #define Nt to an equal or greater power of two than N */

/* 2) contain the following integer arrays with */

/* element magnitudes bounded by M = 2**15-1: */

/* costable: M*cos(-2*pi*n/Nt), n=0,1,...,Nt/2-1 */

/* sintable: M*sin(-2*pi*n/Nt), n=0,1,...,Nt/2-1 */

/* */

/***/

#include "musicsearch.h"

#include "sinetables.h"

extern int real[N];

extern int imag[N];

void fft(void)

{

 int i,j,k,n1,n2,n3;

 int c,s,a,t,Wr,Wi;

 j = 0; /* bit-reverse */

 n2 = N >> 1;

 for (i=1; i < N - 1; i++)

 {

 n1 = n2;

 while (j >= n1)

 {

 j = j - n1;

 n1 = n1 >> 1;

50

 }

 j = j + n1;

 if (i < j)

 {

 t = real[i];

 real[i] = real[j];

 real[j] = t;

 t = imag[i];

 imag[i] = imag[j];

 imag[j] = t;

 }

 }

 /* FFT */

 n2 = 1; n3 = Nt;

 for (i=0; i < logN; i++)

 {

 n1 = n2; /* n1 = 2**i */

 n2 = n2 + n2; /* n2 = 2**(i+1) */

 n3 = n3 >> 1; /* cos/sin arg of -6.283185307179586/n2 */

 a = 0;

 for (j=0; j < n1; j++)

 {

 c = costable[a];

 s = sintable[a];

 a = a + n3;

 for (k=j; k < N; k=k+n2)

 {

 /* Code for standard 32-bit hardware, */

 /* with real,imag limited to 16 bits */

 /*

 Wr = (c*real[k+n1] - s*imag[k+n1]) >> 15;

 Wi = (s*real[k+n1] + c*imag[k+n1]) >> 15;

 real[k+n1] = (real[k] - Wr) >> 1;

 imag[k+n1] = (imag[k] - Wi) >> 1;

 real[k] = (real[k] + Wr) >> 1;

 imag[k] = (imag[k] + Wi) >> 1;

 */

 /* End standard 32-bit code */

 /* Code for TI TMS320C54X series */

 Wr = ((long int)(c*real[k+n1]) - (long int)(s*imag[k+n1])) >> 15;

 Wi = ((long int)(s*real[k+n1]) + (long int)(c*imag[k+n1])) >> 15;

 real[k+n1] = ((long int)real[k] - (long int)Wr) >> 1;

 imag[k+n1] = ((long int)imag[k] - (long int)Wi) >> 1;

 real[k] = ((long int)real[k] + (long int)Wr) >> 1;

 imag[k] = ((long int)imag[k] + (long int)Wi) >> 1;

 /* End code for TMS320C54X series */

 /* Intrinsic code for TMS320C54X series */

 /*

 Wr = _ssub(_smpy(c, real[k+n1]), _smpy(s, imag[k+n1]));

 Wi = _sadd(_smpy(s, real[k+n1]), _smpy(c, imag[k+n1]));

 real[k+n1] = _sshl(_ssub(real[k], Wr),-1);

 imag[k+n1] = _sshl(_ssub(imag[k], Wi),-1);

 real[k] = _sshl(_sadd(real[k], Wr),-1);

51

 imag[k] = _sshl(_sadd(imag[k], Wi),-1);

 */

 /* End intrinsic code for TMS320C54X series */

 }

 }

 }

 return;

}

52

APPENDIX C.2.4 – core.h

#ifndef __CORE_H

#define __CORE_H

extern int * _K_FRAME_SIZE;

/* Block size #defines - change if necessary */

#define K_FRAME_SIZE ((int)(&_K_FRAME_SIZE))

#define BlockLen (K_FRAME_SIZE/2)

/* CPU control #defines */

#define disable_irq() asm(" ssbx intm"); /* disable interrupts */

#define enable_irq() asm(" rsbx intm"); /* enable interrupts */

/* Audio functions */

void WaitAudio(int **Rcv, int **Xmit);

void SetInterrupt(void (*intr)(void));

/* Serial functions */

int SerialRXBufCheck(void); /*

Returns number of chars in RX buffer */

int SerialTXBufCheck(void); /*

Returns number of chars in TX buffer */

int SerialRX(void); /* Returns incoming character or -1

*/

void SerialTX(int character); /* Sends a character */

int SerialRXm(int count, int *buffer); /*

Read up to count chars into buffer */

int SerialTXm(int count, int *buffer); /*

Write count chars from buffer */

/* Extended Program RAM functions */

void ExtRead(long source, int *dest, int count);

void ExtWrite(long dest, int *source, int count);

#endif

53

APPENDIX C.2.5 – sinetables.h

#define Nt 1024

int costable[]={ \

 32767, 32767, 32766, 32762, 32758, 32753, 32746, 32738, \

 32729, 32718, 32706, 32693, 32679, 32664, 32647, 32629, \

 32610, 32590, 32568, 32546, 32522, 32496, 32470, 32442, \

 32413, 32383, 32352, 32319, 32286, 32251, 32214, 32177, \

 32138, 32099, 32058, 32015, 31972, 31927, 31881, 31834, \

 31786, 31737, 31686, 31634, 31581, 31527, 31471, 31415, \

 31357, 31298, 31238, 31177, 31114, 31050, 30986, 30920, \

 30853, 30784, 30715, 30644, 30572, 30499, 30425, 30350, \

 30274, 30196, 30118, 30038, 29957, 29875, 29792, 29707, \

 29622, 29535, 29448, 29359, 29269, 29178, 29086, 28993, \

 28899, 28803, 28707, 28610, 28511, 28411, 28311, 28209, \

 28106, 28002, 27897, 27791, 27684, 27576, 27467, 27357, \

 27246, 27133, 27020, 26906, 26791, 26674, 26557, 26439, \

 26320, 26199, 26078, 25956, 25833, 25708, 25583, 25457, \

 25330, 25202, 25073, 24943, 24812, 24680, 24548, 24414, \

 24279, 24144, 24008, 23870, 23732, 23593, 23453, 23312, \

 23170, 23028, 22884, 22740, 22595, 22449, 22302, 22154, \

 22006, 21856, 21706, 21555, 21403, 21251, 21097, 20943, \

 20788, 20632, 20475, 20318, 20160, 20001, 19841, 19681, \

 19520, 19358, 19195, 19032, 18868, 18703, 18538, 18372, \

 18205, 18037, 17869, 17700, 17531, 17361, 17190, 17018, \

 16846, 16673, 16500, 16326, 16151, 15976, 15800, 15624, \

 15447, 15269, 15091, 14912, 14733, 14553, 14373, 14192, \

 14010, 13828, 13646, 13463, 13279, 13095, 12910, 12725, \

 12540, 12354, 12167, 11980, 11793, 11605, 11417, 11228, \

 11039, 10850, 10660, 10469, 10279, 10088, 9896, 9704, \

 9512, 9319, 9127, 8933, 8740, 8546, 8351, 8157, \

 7962, 7767, 7571, 7376, 7180, 6983, 6787, 6590, \

 6393, 6195, 5998, 5800, 5602, 5404, 5205, 5007, \

 4808, 4609, 4410, 4211, 4011, 3812, 3612, 3412, \

 3212, 3012, 2811, 2611, 2411, 2210, 2009, 1809, \

 1608, 1407, 1206, 1005, 804, 603, 402, 201, \

 0, -201, -402, -603, -804, -1005, -1206, -1407, \

 -1608, -1809, -2009, -2210, -2411, -2611, -2811, -3012, \

 -3212, -3412, -3612, -3812, -4011, -4211, -4410, -4609, \

 -4808, -5007, -5205, -5404, -5602, -5800, -5998, -6195, \

 -6393, -6590, -6787, -6983, -7180, -7376, -7571, -7767, \

 -7962, -8157, -8351, -8546, -8740, -8933, -9127, -9319, \

 -9512, -9704, -9896, -10088, -10279, -10469, -10660, -10850, \

-11039, -11228, -11417, -11605, -11793, -11980, -12167, -12354, \

-12540, -12725, -12910, -13095, -13279, -13463, -13646, -13828, \

-14010, -14192, -14373, -14553, -14733, -14912, -15091, -15269, \

-15447, -15624, -15800, -15976, -16151, -16326, -16500, -16673, \

-16846, -17018, -17190, -17361, -17531, -17700, -17869, -18037, \

-18205, -18372, -18538, -18703, -18868, -19032, -19195, -19358, \

-19520, -19681, -19841, -20001, -20160, -20318, -20475, -20632, \

-20788, -20943, -21097, -21251, -21403, -21555, -21706, -21856, \

-22006, -22154, -22302, -22449, -22595, -22740, -22884, -23028, \

-23170, -23312, -23453, -23593, -23732, -23870, -24008, -24144, \

-24279, -24414, -24548, -24680, -24812, -24943, -25073, -25202, \

-25330, -25457, -25583, -25708, -25833, -25956, -26078, -26199, \

-26320, -26439, -26557, -26674, -26791, -26906, -27020, -27133, \

-27246, -27357, -27467, -27576, -27684, -27791, -27897, -28002, \

-28106, -28209, -28311, -28411, -28511, -28610, -28707, -28803, \

-28899, -28993, -29086, -29178, -29269, -29359, -29448, -29535, \

-29622, -29707, -29792, -29875, -29957, -30038, -30118, -30196, \

54

-30274, -30350, -30425, -30499, -30572, -30644, -30715, -30784, \

-30853, -30920, -30986, -31050, -31114, -31177, -31238, -31298, \

-31357, -31415, -31471, -31527, -31581, -31634, -31686, -31737, \

-31786, -31834, -31881, -31927, -31972, -32015, -32058, -32099, \

-32138, -32177, -32214, -32251, -32286, -32319, -32352, -32383, \

-32413, -32442, -32470, -32496, -32522, -32546, -32568, -32590, \

-32610, -32629, -32647, -32664, -32679, -32693, -32706, -32718, \

-32729, -32738, -32746, -32753, -32758, -32762, -32766, -32767 \

};

int sintable[]={ \

 0, -201, -402, -603, -804, -1005, -1206, -1407, \

 -1608, -1809, -2009, -2210, -2411, -2611, -2811, -3012, \

 -3212, -3412, -3612, -3812, -4011, -4211, -4410, -4609, \

 -4808, -5007, -5205, -5404, -5602, -5800, -5998, -6195, \

 -6393, -6590, -6787, -6983, -7180, -7376, -7571, -7767, \

 -7962, -8157, -8351, -8546, -8740, -8933, -9127, -9319, \

 -9512, -9704, -9896, -10088, -10279, -10469, -10660, -10850, \

-11039, -11228, -11417, -11605, -11793, -11980, -12167, -12354, \

-12540, -12725, -12910, -13095, -13279, -13463, -13646, -13828, \

-14010, -14192, -14373, -14553, -14733, -14912, -15091, -15269, \

-15447, -15624, -15800, -15976, -16151, -16326, -16500, -16673, \

-16846, -17018, -17190, -17361, -17531, -17700, -17869, -18037, \

-18205, -18372, -18538, -18703, -18868, -19032, -19195, -19358, \

-19520, -19681, -19841, -20001, -20160, -20318, -20475, -20632, \

-20788, -20943, -21097, -21251, -21403, -21555, -21706, -21856, \

-22006, -22154, -22302, -22449, -22595, -22740, -22884, -23028, \

-23170, -23312, -23453, -23593, -23732, -23870, -24008, -24144, \

-24279, -24414, -24548, -24680, -24812, -24943, -25073, -25202, \

-25330, -25457, -25583, -25708, -25833, -25956, -26078, -26199, \

-26320, -26439, -26557, -26674, -26791, -26906, -27020, -27133, \

-27246, -27357, -27467, -27576, -27684, -27791, -27897, -28002, \

-28106, -28209, -28311, -28411, -28511, -28610, -28707, -28803, \

-28899, -28993, -29086, -29178, -29269, -29359, -29448, -29535, \

-29622, -29707, -29792, -29875, -29957, -30038, -30118, -30196, \

-30274, -30350, -30425, -30499, -30572, -30644, -30715, -30784, \

-30853, -30920, -30986, -31050, -31114, -31177, -31238, -31298, \

-31357, -31415, -31471, -31527, -31581, -31634, -31686, -31737, \

-31786, -31834, -31881, -31927, -31972, -32015, -32058, -32099, \

-32138, -32177, -32214, -32251, -32286, -32319, -32352, -32383, \

-32413, -32442, -32470, -32496, -32522, -32546, -32568, -32590, \

-32610, -32629, -32647, -32664, -32679, -32693, -32706, -32718, \

-32729, -32738, -32746, -32753, -32758, -32762, -32766, -32767, \

-32767, -32767, -32766, -32762, -32758, -32753, -32746, -32738, \

-32729, -32718, -32706, -32693, -32679, -32664, -32647, -32629, \

-32610, -32590, -32568, -32546, -32522, -32496, -32470, -32442, \

-32413, -32383, -32352, -32319, -32286, -32251, -32214, -32177, \

-32138, -32099, -32058, -32015, -31972, -31927, -31881, -31834, \

-31786, -31737, -31686, -31634, -31581, -31527, -31471, -31415, \

-31357, -31298, -31238, -31177, -31114, -31050, -30986, -30920, \

-30853, -30784, -30715, -30644, -30572, -30499, -30425, -30350, \

-30274, -30196, -30118, -30038, -29957, -29875, -29792, -29707, \

-29622, -29535, -29448, -29359, -29269, -29178, -29086, -28993, \

-28899, -28803, -28707, -28610, -28511, -28411, -28311, -28209, \

-28106, -28002, -27897, -27791, -27684, -27576, -27467, -27357, \

-27246, -27133, -27020, -26906, -26791, -26674, -26557, -26439, \

-26320, -26199, -26078, -25956, -25833, -25708, -25583, -25457, \

-25330, -25202, -25073, -24943, -24812, -24680, -24548, -24414, \

-24279, -24144, -24008, -23870, -23732, -23593, -23453, -23312, \

-23170, -23028, -22884, -22740, -22595, -22449, -22302, -22154, \

-22006, -21856, -21706, -21555, -21403, -21251, -21097, -20943, \

-20788, -20632, -20475, -20318, -20160, -20001, -19841, -19681, \

55

-19520, -19358, -19195, -19032, -18868, -18703, -18538, -18372, \

-18205, -18037, -17869, -17700, -17531, -17361, -17190, -17018, \

-16846, -16673, -16500, -16326, -16151, -15976, -15800, -15624, \

-15447, -15269, -15091, -14912, -14733, -14553, -14373, -14192, \

-14010, -13828, -13646, -13463, -13279, -13095, -12910, -12725, \

-12540, -12354, -12167, -11980, -11793, -11605, -11417, -11228, \

-11039, -10850, -10660, -10469, -10279, -10088, -9896, -9704, \

 -9512, -9319, -9127, -8933, -8740, -8546, -8351, -8157, \

 -7962, -7767, -7571, -7376, -7180, -6983, -6787, -6590, \

 -6393, -6195, -5998, -5800, -5602, -5404, -5205, -5007, \

 -4808, -4609, -4410, -4211, -4011, -3812, -3612, -3412, \

 -3212, -3012, -2811, -2611, -2411, -2210, -2009, -1809, \

 -1608, -1407, -1206, -1005, -804, -603, -402, -201 \

};

56

APPENDIX C.3 – Search
APPENDIX C.3.1 – main.def

LIBRARY main

DESCRIPTION 'A C++ dll that can be called from VB'

EXPORTS

 find_occurences_c_dll @1

57

APPENDIX C.3.1 – main.h

#include <iostream>

#include <windows.h>

#include <oleauto.h>

#include "math.h"

long __declspec (dllexport) __stdcall find_occurences_c_dll(

 long *input_string_arr, long input_string_arr_len,

 long *song_notes_arr, long *song_lengths_arr, long song_arr_len,

 long search_window, long allow_skip, long skip_weight);

58

APPENDIX C.3.1 – main.cpp

#include "main.h"

// ***

// ** find_occurences

// ***

long __declspec (dllexport) __stdcall find_occurences_c_dll(

 long *input_string_arr, long input_string_arr_len,

 long *song_notes_arr, long *song_lengths_arr, long song_arr_len,

 long search_window, long allow_skip, long skip_weight)

{

 // indices for the loops

 long start_i;

 long input_i;

 long search_i;

 long skip_i;

 // the total_time of all the notes within the current search window

 long total_time;

 long skip_total_time;

 // the time since you have found the last note

 long note_time;

 // the current_note and the note you are looking for

 long current_note;

 long looking_note;

 long next_looking_note;

 // the number of times the input ahs been found

 double num_found = 0;

 // the longest you can go before you give up on finding the next note (in10ms)

 long max_note_time = 300;

 // boolean values indicating search progress

 int note_found = 0;

 int input_found;

 // the number of notes skipped within the song

 int num_skips = 0;

 int cur_num_skips;

 // loop over the entire song

 for (start_i=0; start_i<song_arr_len; start_i++)

 {

 input_found = 0;

 search_i = start_i;

 total_time = song_lengths_arr[start_i];

 cur_num_skips = 0;

 // preserve total_time for skip purposes in future

 skip_total_time = total_time;

 // loop over all the notes in the input

 for (input_i=0; input_i<input_string_arr_len; input_i++)

 {

 // define the current note and note we are looking for

 current_note = song_notes_arr[search_i];

59

 looking_note = current_note + input_string_arr[input_i];

 if (input_i+1 < input_string_arr_len)

 next_looking_note = looking_note + input_string_arr[input_i+1];

 note_found = 0;

 note_time = 0;

 // preserve the starting index in case skips need to be addressed

 skip_i = search_i+1;

 // begin the search starting at search_i

 for (search_i=search_i+1; search_i < song_arr_len; search_i++)

 {

 total_time += song_lengths_arr[search_i];

 // check to see if we have not found the note in the time frame

 if (note_time > max_note_time)

 // finished the note

 break;

 note_time += song_lengths_arr[search_i];

 // check to see if we found the note

 if (song_notes_arr[search_i] == looking_note)

 {

 // we found the note

 note_found = 1;

 // check to see if we found all of them

 if (input_i >= input_string_arr_len - 1)

 input_found = 1;

 // finished the note

 break;

 }

 }

 // finished one note see if we are done with starting at start_i

 if (input_found)

 // found the string... break out

 break;

 else if (!note_found)

 {

 // didn't find a note within the time frame... see if user allows skips

 if (allow_skip == 1)

 {

 // check to see if we are just skipping the last note

 if (input_i >= input_string_arr_len-2)

 {

 // we are skipping the last note and we found the string!

 cur_num_skips++;

 input_found = 1;

 break;

 }

 note_time = 0;

 // not on second to last note...

 for (skip_i; skip_i < song_arr_len; skip_i++)

 {

 skip_total_time += song_lengths_arr[skip_i];

 // check to see if we have not found the note in the time frame

60

 if (note_time > max_note_time)

 // finished the note

 break;

 note_time += song_lengths_arr[skip_i];

 // check to see if we found the note

 if (song_notes_arr[skip_i] == next_looking_note)

 {

 // we found the note

 note_found = 1;

 cur_num_skips++;

 input_i++;

 // get the new index

 search_i = skip_i;

 // check to see if we found all of them

 if (input_i >= input_string_arr_len - 1)

 input_found = 1;

 // finished the note

 break;

 }

 }

 }

 if (!note_found || input_found)

 // did not find a note or found the string... break out

 break;

 }

 // if reached here, we found a note, and there are more notes left

 }

 // we finished searching for an entire input

 if (input_found && (total_time < (input_string_arr_len)*search_window))

 {

 num_skips += cur_num_skips;

 if (cur_num_skips > 0)

 num_found = num_found + 1/(cur_num_skips*skip_weight);

 else

 num_found++;

 }

 }

 return((long)num_found);

}

61

APPENDIX C.3.1 – search.frm

VERSION 5.00

Object = "{648A5603-2C6E-101B-82B6-000000000014}#1.1#0"; "MSCOMM32.OCX"

Begin VB.Form Form1

 BorderStyle = 1 'Fixed Single

 Caption = "Music Search Engine"

 ClientHeight = 9780

 ClientLeft = 45

 ClientTop = 435

 ClientWidth = 10830

 LinkTopic = "Form1"

 MaxButton = 0 'False

 MinButton = 0 'False

 ScaleHeight = 9780

 ScaleWidth = 10830

 StartUpPosition = 2 'CenterScreen

 Begin VB.Timer Timer3

 Left = 8760

 Top = 9240

 End

 Begin VB.Timer Timer2

 Interval = 100

 Left = 9480

 Top = 9240

 End

 Begin VB.Timer timer1

 Enabled = 0 'False

 Interval = 10

 Left = 10200

 Top = 9240

 End

 Begin VB.CommandButton sw_plus

 Caption = "+"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 9.75

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 225

 Left = 7920

 TabIndex = 65

 Top = 1920

 Width = 255

 End

 Begin VB.CommandButton sw_minus

 Caption = "-"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 9.75

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 225

62

 Left = 7920

 TabIndex = 64

 Top = 2160

 Width = 255

 End

 Begin VB.CommandButton wf_minus

 Caption = "-"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 9.75

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 225

 Left = 7920

 TabIndex = 63

 Top = 2760

 Width = 255

 End

 Begin VB.CommandButton wf_plus

 Caption = "+"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 9.75

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 225

 Left = 7920

 TabIndex = 62

 Top = 2520

 Width = 255

 End

 Begin VB.CheckBox allow_skip

 Caption = "Skip notes"

 Height = 255

 Left = 6600

 TabIndex = 59

 Top = 1680

 Width = 1215

 End

 Begin VB.Frame searching

 BackColor = &H000000FF&

 BorderStyle = 0 'None

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 18

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 2655

 Left = 3000

 TabIndex = 56

63

 Top = 3600

 Visible = 0 'False

 Width = 5175

 Begin VB.Label Label2

 Alignment = 2 'Center

 BackColor = &H000000FF&

 Caption = "Searching... Please Wait"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 18

 Charset = 0

 Weight = 400

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 ForeColor = &H00FFFFFF&

 Height = 495

 Left = 0

 TabIndex = 57

 Top = 1080

 Width = 5175

 End

 End

 Begin MSCommLib.MSComm MSComm1

 Left = 1080

 Top = 8400

 _ExtentX = 1005

 _ExtentY = 1005

 _Version = 393216

 DTREnable = -1 'True

 BaudRate = 38400

 End

 Begin VB.ListBox instructions

 Appearance = 0 'Flat

 BackColor = &H80000004&

 ForeColor = &H00000000&

 Height = 1200

 Left = 3240

 TabIndex = 55

 Top = 8280

 Width = 4335

 End

 Begin VB.CommandButton stop_btn

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 13.5

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Left = 5040

 Picture = "search.frx":0000

 Style = 1 'Graphical

 TabIndex = 54

 Top = 1800

 Width = 1215

 End

 Begin VB.TextBox db_dir

64

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 9.75

 Charset = 0

 Weight = 400

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 360

 Left = 2160

 TabIndex = 49

 Top = 120

 Width = 8535

 End

 Begin VB.CommandButton clear_note

 Caption = "Clear Note"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 9.75

 Charset = 0

 Weight = 400

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 495

 Left = 2400

 TabIndex = 47

 Top = 1800

 Width = 1335

 End

 Begin VB.FileListBox file_list

 Height = 870

 Left = 7800

 TabIndex = 46

 Top = 6720

 Visible = 0 'False

 Width = 2655

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 10

 Left = 2760

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 19

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton key

65

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 8

 Left = 2280

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 17

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 6

 Left = 1800

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 15

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 3

 Left = 840

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 12

 Top = 3180

 Width = 375

 End

66

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 1

 Left = 360

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 10

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton start_stop

 BackColor = &H0000FF00&

 Caption = "Start Recording"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 12

 Charset = 0

 Weight = 400

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Left = 120

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 7

 Top = 1800

 Width = 2175

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 34

 Left = 9480

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 43

 Top = 3180

 Width = 375

 End

67

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 32

 Left = 9000

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 41

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 30

 Left = 8520

 MaskColor = &H00000000&

 Style = 1 'Graphical

 TabIndex = 39

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 27

 Left = 7560

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 36

 Top = 3180

 Width = 375

68

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 25

 Left = 7080

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 34

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 22

 Left = 6120

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 31

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 20

 Left = 5640

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 29

 Top = 3180

69

 Width = 375

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 18

 Left = 5160

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 27

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 13

 Left = 3720

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 22

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton search

 Caption = "SEARCH"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 13.5

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Left = 8280

 TabIndex = 9

 Top = 1800

 Width = 2415

 End

 Begin VB.CommandButton clear

70

 Caption = "Clear All"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 9.75

 Charset = 0

 Weight = 400

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 495

 Left = 2400

 TabIndex = 8

 Top = 2520

 Width = 1335

 End

 Begin VB.Frame Frame3

 Caption = "Output"

 Height = 2895

 Left = 120

 TabIndex = 5

 Top = 5280

 Width = 10575

 Begin VB.ListBox output_name

 Height = 2205

 Left = 120

 TabIndex = 51

 Top = 240

 Width = 10335

 End

 Begin VB.Label Label7

 Alignment = 2 'Center

 Caption = "Click on a song to play it. Click the Stop button to

stop playing it."

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 9.75

 Charset = 0

 Weight = 400

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 255

 Left = 120

 TabIndex = 53

 Top = 2520

 Width = 10335

 End

 End

 Begin VB.Frame Frame2

 Caption = "Search Input"

 Height = 1095

 Left = 2040

 TabIndex = 4

 Top = 600

 Width = 8655

 Begin VB.Label search_input

 Alignment = 2 'Center

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 9.75

71

 Charset = 0

 Weight = 400

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 495

 Left = 120

 TabIndex = 6

 Top = 240

 Width = 8415

 End

 End

 Begin VB.Frame input_frame

 Caption = "Input Method"

 Height = 1095

 Left = 120

 TabIndex = 1

 Top = 600

 Width = 1815

 Begin VB.ComboBox cboComm

 Height = 315

 Left = 1200

 TabIndex = 58

 Top = 330

 Width = 495

 End

 Begin VB.OptionButton input1

 Caption = "Virtual Keyboard"

 Height = 255

 Index = 1

 Left = 120

 TabIndex = 3

 Top = 750

 Value = -1 'True

 Width = 1455

 End

 Begin VB.OptionButton input1

 Caption = "USB Data"

 Height = 255

 Index = 0

 Left = 120

 TabIndex = 2

 Top = 360

 Width = 1455

 End

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00000000&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Index = 15

 Left = 4200

72

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 24

 Top = 3180

 Width = 375

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 0

 Left = 120

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 0

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 2

 Left = 600

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 11

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 4

73

 Left = 1080

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 13

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 5

 Left = 1560

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 14

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 7

 Left = 2040

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 16

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

74

 Index = 9

 Left = 2520

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 18

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 11

 Left = 3000

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 20

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00C0FFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 12

 Left = 3480

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 21

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

75

 Height = 1935

 Index = 14

 Left = 3960

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 23

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 16

 Left = 4440

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 25

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 17

 Left = 4920

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 26

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

76

 EndProperty

 Height = 1935

 Index = 19

 Left = 5400

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 28

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 21

 Left = 5880

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 30

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 23

 Left = 6360

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 32

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

77

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 24

 Left = 6840

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 33

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 26

 Left = 7320

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 35

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 28

 Left = 7800

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 37

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

78

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 29

 Left = 8280

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 38

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 31

 Left = 8760

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 40

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 33

 Left = 9240

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 42

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

79

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 35

 Left = 9720

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 44

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton key

 Appearance = 0 'Flat

 BackColor = &H00FFFFFF&

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1935

 Index = 36

 Left = 10200

 MaskColor = &H00FFFFFF&

 Style = 1 'Graphical

 TabIndex = 45

 Top = 3180

 Width = 495

 End

 Begin VB.CommandButton play

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 13.5

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 1215

 Left = 3840

 Picture = "search.frx":006F

 Style = 1 'Graphical

 TabIndex = 52

 Top = 1800

 Width = 1215

 End

 Begin VB.Label Label4

 Alignment = 1 'Right Justify

 Caption = "Skip Weighting:"

 Height = 375

 Left = 6360

 TabIndex = 67

 Top = 2040

 Width = 1215

 End

 Begin VB.Label skip_weight

80

 Alignment = 2 'Center

 Caption = "1"

 Height = 375

 Left = 7560

 TabIndex = 66

 Top = 2040

 Width = 255

 End

 Begin VB.Label window_factor

 Alignment = 2 'Center

 Caption = "5"

 Height = 375

 Left = 7560

 TabIndex = 61

 Top = 2640

 Width = 255

 End

 Begin VB.Label Label1

 Alignment = 1 'Right Justify

 Caption = "Window Factor:"

 Height = 375

 Left = 6360

 TabIndex = 60

 Top = 2640

 Width = 1215

 End

 Begin VB.Label Label6

 Caption = "Label6"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 8.25

 Charset = 0

 Weight = 700

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 495

 Left = 4800

 TabIndex = 50

 Top = 3600

 Width = 1215

 End

 Begin VB.Label Label5

 Alignment = 1 'Right Justify

 Caption = "Database Directory:"

 BeginProperty Font

 Name = "MS Sans Serif"

 Size = 9.75

 Charset = 0

 Weight = 400

 Underline = 0 'False

 Italic = 0 'False

 Strikethrough = 0 'False

 EndProperty

 Height = 375

 Left = 120

 TabIndex = 48

 Top = 180

 Width = 1935

 End

End

81

Attribute VB_Name = "Form1"

Attribute VB_GlobalNameSpace = False

Attribute VB_Creatable = False

Attribute VB_PredeclaredId = True

Attribute VB_Exposed = False

Option Explicit

Private Declare Function sndPlaySound Lib "winmm.dll" Alias "sndPlaySoundA" _

 (ByVal lpszSoundName As String, ByVal uFlags As Long) As Long

'Private Declare Function find_occurences_c_dll _

' Lib "W:\c_dll\c_dll.dll" _

' (input_string_arr As Long, ByVal input_string_arr_len As Long, _

' song_notes_arr As Long, song_lengths_arr As Long, ByVal song_arr_len As Long, _

' ByVal search_window As Long, ByVal allow_skip As Long, ByVal skip_weight As

Long) As Long

Private Declare Function find_occurences_c_dll _

 Lib "C:\c_dll\c_dll.dll" _

 (input_string_arr As Long, ByVal input_string_arr_len As Long, _

 song_notes_arr As Long, song_lengths_arr As Long, ByVal song_arr_len As Long, _

 ByVal search_window As Long, ByVal allow_skip As Long, ByVal skip_weight As

Long) As Long

'Private Declare Function find_occurences_c_dll _

' Lib "C:\Documents and Settings\Jason

Chang\Desktop\c_vb_search\c_dll\Debug\c_dll.dll" _

' (input_string_arr As Long, ByVal input_string_arr_len As Long, _

' song_notes_arr As Long, song_lengths_arr As Long, ByVal song_arr_len As Long, _

' ByVal search_window As Long, ByVal allow_skip As Long, ByVal skip_weight As

Long) As Long

Const SND_ASYNC = &H1

Const SND_LOOP = &H8

Const SND_NODEFAULT = &H2

Const SND_SYNC = &H0

Const SND_NOSTOP = &H10

Const SND_MEMORY = &H4

Dim search_time As Long

Dim dead As Boolean

Dim input_string(0 To 49) As Integer

Dim input_string_str As String

Dim input_index As Integer

Dim last_note As Integer

Dim first_note As Integer

Dim start As Boolean

Dim db_folder As String

Dim song_names() As String

Dim song_occurences() As Double

Dim num_songs As Integer

Private Sub Form_Load()

 input_index = 0

 timer1.Enabled = False

 Dim i As Integer

 i = 0

 For i = 0 To 49

 input_string(i) = 100

 Next i

 start = True

82

 db_folder = CurDir & "\db2\"

 'db_folder = "C:\Documents and Settings\Jason Chang\Desktop\search2\db2\"

 db_dir.Text = db_folder

 Dim note_kbd() As Variant

 note_kbd = Array(_

 "Z", "S", "X", "D", "C", _

 "V", "G", "B", "H", "N", "J", "M", _

 ",", "l", ".", ";", "/", _

 "W", "3", "E", "4", "R", "5", "T", _

 "Y", "7", "U", "8", "I", _

 "O", "0", "P", "-", "[", "=", "]", _

 "\")

 For i = 0 To 36

 key(i).Caption = vbCrLf & vbCrLf & vbCrLf & vbCrLf & _

 vbCrLf & vbCrLf & vbCrLf & vbCrLf & note_kbd(i)

 Next i

 instructions.AddItem vbTab & vbTab & "SHORTCUTS"

 instructions.AddItem "clear a note" & vbTab & vbTab & "BACKSPACE"

 instructions.AddItem "clear all notes" & vbTab & vbTab & "ESC"

 instructions.AddItem "play a note" & vbTab & vbTab & "the displayed LABEL"

 instructions.AddItem "toggle recording" & vbTab & vbTab & "SPACE"

 ListComPorts

 cboComm.Enabled = input1(0).value

End Sub

' ===

' =============== KEY PRESSES ===

' ===

Private Sub clear_KeyDown(KeyCode As Integer, Shift As Integer)

 eval_key (KeyCode)

End Sub

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)

 eval_key (KeyCode)

End Sub

Private Sub clear_note_KeyDown(KeyCode As Integer, Shift As Integer)

 eval_key (KeyCode)

End Sub

Private Sub key_KeyDown(index As Integer, KeyCode As Integer, Shift As Integer)

 eval_key (KeyCode)

End Sub

Private Sub play_KeyDown(KeyCode As Integer, Shift As Integer)

 eval_key (KeyCode)

End Sub

Private Sub search_KeyDown(KeyCode As Integer, Shift As Integer)

 eval_key (KeyCode)

End Sub

Private Sub start_stop_KeyDown(KeyCode As Integer, Shift As Integer)

 eval_key (KeyCode)

End Sub

Private Sub stop_btn_KeyDown(KeyCode As Integer, Shift As Integer)

 eval_key (KeyCode)

End Sub

Public Function eval_key(KeyCode As Integer) As Boolean

 eval_key = True

 Select Case KeyCode

 Case 8

 clear_last_note

83

 Case 27

 clear_all_notes

 Case 90

 pressed_key 0

 Case 83

 pressed_key 1

 Case 88

 pressed_key 2

 Case 68

 pressed_key 3

 Case 67

 pressed_key 4

 Case 86

 pressed_key 5

 Case 71

 pressed_key 6

 Case 66

 pressed_key 7

 Case 72

 pressed_key 8

 Case 78

 pressed_key 9

 Case 74

 pressed_key 10

 Case 77

 pressed_key 11

 Case 188

 pressed_key 12

 Case 76

 pressed_key 13

 Case 190

 pressed_key 14

 Case 186

 pressed_key 15

 Case 191

 pressed_key 16

 Case 87

 pressed_key 17

 Case 51

 pressed_key 18

 Case 69

 pressed_key 19

 Case 52

 pressed_key 20

 Case 82

 pressed_key 21

 Case 53

 pressed_key 22

 Case 84

 pressed_key 23

 Case 54

 pressed_key 23

 Case 89

 pressed_key 24

 Case 55

 pressed_key 25

 Case 85

84

 pressed_key 26

 Case 56

 pressed_key 27

 Case 73

 pressed_key 28

 Case 79

 pressed_key 29

 Case 48

 pressed_key 30

 Case 80

 pressed_key 31

 Case 189

 pressed_key 32

 Case 219

 pressed_key 33

 Case 187

 pressed_key 34

 Case 221

 pressed_key 35

 Case 220

 pressed_key 36

 Case 32

 If start Then

 start = False

 start_stop.Caption = "Stop Recording"

 start_stop.BackColor = &HFF&

 Else

 start = True

 start_stop.Caption = "Start Recording"

 start_stop.BackColor = &HFF00&

 End If

 Case Else

 eval_key = False

 End Select

End Function

Private Sub key_KeyUp(index As Integer, KeyCode As Integer, Shift As Integer)

 sndPlaySound App.Path & "\wavs\stop.wav", SND_ASYNC

End Sub

Private Sub key_MouseDown(index As Integer, Button As Integer, Shift As Integer, X

As Single, Y As Single)

 pressed_key (index)

End Sub

Private Sub key_MouseUp(index As Integer, Button As Integer, Shift As Integer, X As

Single, Y As Single)

 sndPlaySound App.Path & "\wavs\stop.wav", SND_ASYNC

End Sub

Private Sub stop_btn_Click()

 sndPlaySound App.Path & "\wavs\stop.wav", SND_ASYNC

End Sub

' ===

' =============== CLEAR FUNCTIONS =======================================

' ===

Private Sub clear_Click()

 clear_all_notes

85

End Sub

Private Sub clear_note_Click()

 clear_last_note

End Sub

Public Sub clear_all_notes()

 input_index = 0

 Dim i As Integer

 i = 0

 For i = 0 To 49

 input_string(i) = 100

 Next i

 search_input.Caption = ""

 For i = 0 To 36

 Select Case i

 Case 12

 key(i).BackColor = &HC0FFFF

 Case 0, 2, 4, 5, 7, 9, 11, 14, 16, 17, 19, 21, 23, 24, 26, 28, 29, 31,

33, 35, 36

 key(i).BackColor = &HFFFFFF

 Case Else

 key(i).BackColor = &H0&

 End Select

 Next i

End Sub

Public Sub clear_last_note()

 Dim i As Integer

 input_string_str = ""

 If (input_index <= 1) Then

 clear_all_notes

 ElseIf (input_index > 0) Then

 Select Case last_note

 Case 12

 key(last_note).BackColor = &HC0FFFF

 Case 0, 2, 4, 5, 7, 9, 11, 14, 16, 17, 19, 21, 23, 24, 26, 28, 29, 31,

33, 35, 36

 key(last_note).BackColor = &HFFFFFF

 Case Else

 key(last_note).BackColor = &H0&

 End Select

 last_note = last_note - input_string(input_index - 1)

 key(last_note).BackColor = &HFFFF&

 input_string(input_index - 1) = 100

 input_index = input_index - 1

 i = 1

 input_string_str = Format(input_string(0))

 While (i < 49 And Not input_string(i) = 100)

 If (input_string(i) >= 0) Then

 input_string_str = input_string_str & " +" &

Format(input_string(i))

 Else

 input_string_str = input_string_str & " " & Format(input_string(i))

 End If

 i = i + 1

 Wend

 search_input.Caption = input_string_str

 DoEvents

 ElseIf (input_index = 0) Then

86

 search_input.Caption = ""

 End If

End Sub

' ===

' =============== USER INPUT FUNCTIONS ==================================

' ===

Private Sub db_dir_Change()

 db_folder = db_dir.Text

End Sub

Private Sub db_dir_Click()

 db_dir.SelStart = 0

 db_dir.SelLength = Len(db_dir.Text)

End Sub

Private Sub input1_Click(index As Integer)

 Dim i As Integer

 i = 0

 cboComm.Enabled = input1(0).value

 For i = 0 To 36

 key(i).Enabled = input1(1).value

 Next i

End Sub

Private Sub output_name_Click()

 sndPlaySound App.Path & "\song_wavs\" & _

 song_names(Int(output_name.ListIndex)) & _

 "_orig.wav", SND_ASYNC

End Sub

Private Sub play_Click()

 Dim i As Integer

 Dim note As Integer

 note = first_note

 For i = 0 To input_index - 1

 note = note + input_string(i)

 sndPlaySound App.Path & "\wavs\" & Format(note) & ".wav", SND_SYNC

 Next i

End Sub

Private Sub start_stop_Click()

 Dim i As Integer

 If start Then

 start = False

 start_stop.Caption = "Stop Recording"

 start_stop.BackColor = &HFF&

 If (input1.Item(0)) Then

 input1(0).Enabled = False

 input1(1).Enabled = False

 For i = 0 To 36

 key(i).Enabled = False

 Next i

 input_usb_data

 End If

 Else

 timer1.Enabled = False

 start = True

 start_stop.Caption = "Start Recording"

87

 start_stop.BackColor = &HFF00&

 If (input1.Item(0)) Then

 input1(0).Enabled = True

 input1(1).Enabled = True

 For i = 0 To 36

 key(i).Enabled = True

 Next i

 End If

 End If

End Sub

' ===

' =============== GETTING SEARCH STRING =================================

' ===

Public Sub input_usb_data()

 timer1.Interval = 100

 timer1.Enabled = True

End Sub

Private Sub timer1_Timer()

 ' tell the DSP that I am ready to receive data

 timer1.Enabled = False

 MSComm1.CommPort = Int(cboComm.Text)

 MSComm1.PortOpen = True

 MSComm1.Output = "1"

 Timer2.Enabled = True

 dead = False

 Do

 DoEvents

 Loop Until (MSComm1.InBufferCount >= 2 Or start = True Or dead)

 Dim temp As String

 temp = MSComm1.Input

 Dim note As Integer

 note = Val(temp) - 28

 If Not (note = last_note) Then

 If (note >= 0 And note <= 36) Then

 If (last_note >= 0 And last_note <= 36) Then

 Select Case (last_note)

 Case 12

 key(last_note).BackColor = &HC0FFFF

 Case 0, 2, 4, 5, 7, 9, 11, 14, 16, 17, 19, 21, 23, 24, 26, 28,

29, 31, 33, 35, 36

 key(last_note).BackColor = &HFFFFFF

 Case Else

 key(last_note).BackColor = &H0&

 End Select

 End If

 If (input_index = 0) Then

 last_note = note

 input_string(input_index) = 0

 input_index = input_index + 1

 If (last_note >= 0 And last_note <= 36) Then

 key(last_note).BackColor = &HFFFF&

 End If

 ElseIf (input_index < 50) Then

 input_string(input_index) = note - last_note

 last_note = note

 input_index = input_index + 1

88

 If (last_note >= 0 And last_note <= 36) Then

 key(last_note).BackColor = &HFFFF&

 End If

 End If

 If (input_index < 50) Then

 If (input_string(input_index - 1) > 0) Then

 search_input.Caption = search_input.Caption + "+"

 End If

 search_input.Caption = search_input.Caption +

Format(input_string(input_index - 1)) + " "

 End If

 End If

 End If

 ' tell the DSP that I am done

 MSComm1.Output = "E"

 MSComm1.PortOpen = False

 timer1.Enabled = True

End Sub

Public Sub pressed_key(index As Integer)

 sndPlaySound App.Path & "\wavs\" & Format(index) & ".wav", SND_ASYNC Or

SND_LOOP

 Select Case last_note

 Case 12

 key(last_note).BackColor = &HC0FFFF

 Case 0, 2, 4, 5, 7, 9, 11, 14, 16, 17, 19, 21, 23, 24, 26, 28, 29, 31, 33,

35, 36

 key(last_note).BackColor = &HFFFFFF

 Case Else

 key(last_note).BackColor = &H0&

 End Select

 key(index).BackColor = &HFFFF&

 If Not start Then

 If (input_index = 0) Then

 last_note = index

 first_note = index

 input_string(input_index) = 0

 input_index = input_index + 1

 ElseIf (input_index < 50) Then

 If (Not (index = last_note)) Then

 input_string(input_index) = index - last_note

 last_note = index

 input_index = input_index + 1

 End If

 End If

 input_string_str = Format(input_string(0))

 Dim i As Integer

 i = 1

 While (i < 49 And Not input_string(i) = 100)

 If (input_string(i) >= 0) Then

 input_string_str = input_string_str & " +" &

Format(input_string(i))

 Else

 input_string_str = input_string_str & " " & Format(input_string(i))

89

 End If

 i = i + 1

 Wend

 search_input.Caption = input_string_str

 End If

 key(index).SetFocus

End Sub

' ===

' =============== SEARCH FUNCTIONS ======================================

' ===

Private Sub search_Click()

 Timer3.Interval = 10

 search_time = 0

 Timer3.Enabled = True

 DoEvents

 searching.Visible = True

 Form1.Enabled = False

 DoEvents

 file_list.Path = db_folder

 Dim i As Integer

 Dim num_found As Long

 ReDim song_names(file_list.ListCount - 1)

 ReDim song_occurences(file_list.ListCount - 1)

 For i = 0 To file_list.ListCount - 1

 If Not (file_list.List(i) = "") Then

 DoEvents

 song_names(i) = file_list.List(i)

 song_occurences(i) = search_song(db_folder & file_list.List(i))

 End If

 Next i

 BubbleSort song_occurences, song_names, file_list.ListCount - 1, True

 Dim total As Double

 Dim percent As Integer

 total = 0

 For i = 0 To file_list.ListCount - 1

 If Not (file_list.List(i) = "") Then

 total = total + song_occurences(i)

 End If

 Next i

 output_name.clear

 For i = 0 To file_list.ListCount - 1

 If Not (file_list.List(i) = "") And Not (song_occurences(i) = 0) Then

 percent = song_occurences(i) / total * 100

 output_name.AddItem Format(percent) & "%" & vbTab &

Format(song_occurences(i)) & vbTab & song_names(i)

 End If

 Next i

 DoEvents

 searching.Visible = False

 Form1.Enabled = True

 DoEvents

 Timer3.Enabled = False

 MsgBox (search_time)

90

End Sub

Public Function search_song(theSong As String) As Integer

 Dim song_notes() As Long

 Dim song_lengths() As Long

 Dim temp As String

 Dim i As Integer

 Dim j As Integer

 Dim k As Integer

 Dim m As Integer

 Dim size As Integer

 Dim length As Long

 Open theSong For Input As #1

 ' set the size of the arrays

 Line Input #1, temp

 size = Int(temp)

 ReDim song_notes(size)

 ReDim song_lengths(size)

 i = 0

 length = 0

 ' read in all the song data

 While Not EOF(1)

 DoEvents

 Line Input #1, temp

 song_notes(i) = Int(temp)

 Line Input #1, temp

 song_lengths(i) = Int(temp)

 length = length + Int(temp)

 i = i + 1

 Wend

 Close #1

 Dim search_window_size As Double

 Dim search_window_length As Double

 Dim search_window As Long

 search_window_length = 0

 search_window_size = size / 2

 For i = size / 4 To 3 * size / 4

 search_window_length = search_window_length + song_lengths(i)

 Next i

 search_window = Int(search_window_length * Int(window_factor.Caption) /

search_window_size)

 Dim search_string(50) As Long

 For i = 0 To UBound(input_string) - 1

 search_string(i) = input_string(i)

 Next i

 Dim allow_skip_long As Long

 If allow_skip Then

 allow_skip_long = 1

 Else

 allow_skip_long = 0

 End If

 Dim skip_weight_long As Long

 skip_weight_long = Int(skip_weight.Caption)

91

 search_song = find_occurences_c_dll(search_string(1), _

 input_index - 1, song_notes(0), song_lengths(0), _

 UBound(song_notes) - 1, search_window, allow_skip_long, skip_weight_long)

End Function

Sub BubbleSort(arr1 As Variant, arr2 As Variant, _

 Optional numEls As Variant, Optional descending As Boolean)

 Dim value As Variant

 Dim value2 As Variant

 Dim index As Long

 Dim firstItem As Long

 Dim indexLimit As Long, lastSwap As Long

 ' account for optional arguments

 If IsMissing(numEls) Then numEls = UBound(arr1)

 firstItem = LBound(arr1)

 lastSwap = numEls

 Do

 indexLimit = lastSwap - 1

 lastSwap = 0

 For index = firstItem To indexLimit

 value = arr1(index)

 value2 = arr2(index)

 If (value > arr1(index + 1)) Xor descending Then

 ' if the items are not in order, swap them

 arr1(index) = arr1(index + 1)

 arr2(index) = arr2(index + 1)

 arr1(index + 1) = value

 arr2(index + 1) = value2

 lastSwap = index

 End If

 Next

 Loop While lastSwap

End Sub

' CODE FROM: http://www.developerfusion.co.uk/show/21/2/

Public Sub ListComPorts()

 Dim i As Integer

 cboComm.clear

 For i = 1 To 16

 If COMAvailable(i) Then

 cboComm.AddItem i

 End If

 Next

 cboComm.ListIndex = 0

End Sub

Private Sub sw_minus_Click()

 If (Int(skip_weight.Caption) > 0) Then

 skip_weight.Caption = Int(skip_weight.Caption) - 1

 End If

End Sub

Private Sub sw_plus_Click()

 skip_weight.Caption = Int(skip_weight.Caption) + 1

End Sub

Private Sub Timer2_Timer()

92

 dead = True

End Sub

Private Sub Timer3_Timer()

 search_time = search_time + 10

End Sub

Private Sub wf_minus_Click()

 If (Int(window_factor.Caption) > 0) Then

 window_factor.Caption = Int(window_factor.Caption) - 1

 End If

End Sub

Private Sub wf_plus_Click()

 window_factor.Caption = Int(window_factor.Caption) + 1

End Sub

93

REFERENCES

[1] Y. Li and D. L. Wang, “Detecting Pitch of Singing Voice in Polyphonic Audio.” Proceedings of

ICASSP-05, pp. III.17-20, 2005.

[2] Y. Li and D. L. Wang, “Separation of Singing Voice from Music Accompaniment for Monaural
Recordings.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, pp. 1475-
1487, 2007.

[3] P. Moulin, “ECE 418 Lecture Notes: Introduction to Image and Video Processing,” class notes for
ECE 418, Department Of Electrical and Computer Engineering, University of Illinois at Urbana-
Champaign, 1998.

[4] National Semiconductor, “LM124/LM224/LM324/LM2902, Low Power Quad Operational
Amplifiers,” May 1999, http://pubpages.unh.edu/~aperkins/pdf/LM-devices/LM324.pdf.

[5] eCircuit Center, “Sallen-Key Low-Pass Filter,” January 2002, http://www.ecircuitcenter.com/
Circuits/opsalkey1/opsalkey1.htm.

[6] Sparkfun Electronics, “SFE USB Drivers,” April 27, 2005, http://www.sparkfun.com/datasheets/
SFE_USB_Drivers-v011.zip.

[7] Sparkfun Electronics, "USB Breakout CP2102 Datasheet," April 27, 2005, http://www.sparkfun.
com/datasheets/PCB/CP2102%20Breakout-v01.pdf.

[8] Maxim – Dallas Semiconductor, "+5V-Powered, Multichannel RS-232 Drivers/Receivers,"
February 2003, http://www.ortodoxism.ro/datasheets/maxim/MAX220-MAX249.pdf.

[9] J. Fruits, “Creating a C++ DLL for use with VB6 – Step by Step,” January 2005, http://www.
programmers-corner.com/tutorial/4.

[10] Wikipedia, “Piano Key Frequencies,” April 2007, http://en.wikipedia.org/wiki/Piano_key_
frequencies.

