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Abstract—Because of differences between development and
production environments, many software performance problems
are detected only after software enters production. We present
PerformanceHat, a new system that uses profiling information
from production executions to develop a global performance
model suitable for integration into interactive development envi-
ronments. PerformanceHat’s ability to incrementally update this
global model as the software is changed in the development
environment enables it to deliver near real-time predictions of
performance consequences reflecting the impact on the produc-
tion environment. We build PerformanceHat as an Eclipse plugin
and evaluate it in a controlled experiment with 20 professional
software developers implementing several software maintenance
tasks using our approach and a representative baseline (Kibana).
Our results indicate that developers using PerformanceHat were
significantly faster in (1) detecting the performance problem, and
(2) finding the root-cause of the problem. These results provide
encouraging evidence that our approach helps developers detect,
prevent, and debug production performance problems during
development before the problem manifests in production.

Index Terms—software performance engineering, IDE, user
study

I. INTRODUCTION

Because of differences between development and production
execution environments, many software performance problems
are detected only after software enters production [15]. To
track down and correct such performance problems, developers
are currently faced with the task of inspecting monitoring
data such as logs, traces, and metrics and must often run
additional performance tests to fully localize the root cause of
the problem. Problems associated with this situation include
the deployment of software with performance problems, the
time required to identify and correct performance problems,
and the need for developers to function effectively in two very
different environments, specifically the software code view
environment during development and the monitoring-based
environment during deployment. Previous studies have shown
that switching between separate views makes it difficult for
developers to maintain a clear image of the overall context
of runtime behavior [19], [25]. This separation is particularly
problematic when developers are immersed in the context of
a particular task [9], [27].

We present a new tool, PerformanceHat, that integrates
production monitoring information directly into the source
code view. Instead of requiring developers to manually an-
alyze monitoring data and perform additional test runs to
obtain relevant information about performance problems, Per-

formanceHat works with a performance model derived from
monitoring data collected during production runs. As the
developer modifies the code, PerformanceHat incrementally
updates the model to provide the developer with performance
feedback in near real time. Because the model is derived
from production monitoring data, the performance feedback
accurately reflects the performance consequences of specific
developer changes in the production environment, not in the
development environment. Benefits of this system include the
early detection (and correction) of performance problems in
development before the software enters production and a tight
integration of performance feedback into the development
process. We evaluate PerformanceHat in the Eclipse IDE with
Java. In a controlled experiment with 20 professional software
developers, the data show that developers using Performance-
Hat find the root cause of production performance problems
significantly faster than a control group using standard tech-
niques. At the same time, developers using PerformanceHat
when working on non-performance relevant tasks experienced
no drop in productivity compared with the control group.

II. BACKGROUND & RELATED WORK

We introduce some background on profiling and monitoring,
discuss related work around software performance prediction,
and source code view augmentation.

Profiling vs Monitoring. Profiling is a form of dynamic
program analysis that measures performance aspects of a
running program. Software performance is highly dependent
on the execution environment and workload of a system.
Therefore, information provided by profilers executed locally
is often not enough to identify performance issues in produc-
tion environments. A performance monitoring tool continu-
ously monitors components of deployed software systems. It
collects several performance metrics (such as response time or
CPU utilization) from the monitored application and usually
displays them in form of time series graphs in dashboards. A
recent study has shown that monitoring tools exhibit enough
information to be used to identify performance regressions [1].
Our approach, PerformanceHat, utilizes information collected
in state-of-the-art monitoring tools to build a performance
model that is integrated in the developer workflow in the IDE.

Impact Analysis & Performance Prediction. Change impact
analysis supports the comprehension, evaluation, and imple-
mentation of changes in software [21], [6]. Most of the work



that is related to change impact analysis and performance
operates on an architectural level [16], [5] and is not supposed
to be “triggered” during software development. Recent work
by Luo et al.[24] uses a genetic algorithm to investigate a large
input search space that might lead to performance regressions.
Our approach for impact analysis is applied live, i.e. dur-
ing software development, and leverages an initially build
performance model from monitoring data to incrementally
reflect software changes to provide early feedback to software
developers.

Augmenting Source Code Views. Several papers have
proposed augmenting source code views to support program
analysis efforts. Hoffswell et al. [17] introduce different kinds
of in-situ visualizations related to runtime information in
the source code to improve program understanding. Lieber
et al. [23] augment JavaScript code in browser debugging
tools with runtime information to support reasoning on asyn-
chronous function interaction. Beck et al. augment method
definitions in the IntelliJ IDE with in-situ visualizations ob-
tained by sampling stack traces [4].

Our approach goes beyond augmenting local runtime infor-
mation (e.g., generated by tests) to deal with distinct scalability
challenges that we describe in our approach in Section IV-C.
Further, we go beyond visualizing runtime information in-
situ and provide early feedback on source code changes by
leveraging incremental performance analysis.

III. SCOPE

Our research targets systems with particular properties:
• Online Services: We target online services that are delivered

as a service (SaaS applications), typically deployed on
cloud infrastructure, and accessed by customers as web
applications over the Internet. Specifically, we do not con-
sider embedded systems, “big data” applications, scientific
computing applications, or desktop applications. While an
approach similar to ours could also be used for a subset
of those, the concrete modeling and performance-related
challenges would change, taking them out of scope for the
present study.

• Software Maintenance: We assume that the application is
already deployed to production and used by real customers.
However, given the ongoing industrial push to lean develop-
ment methodologies and continuous deployment [30], many
SaaS applications are “in maintenance mode” for the vast
majority of their lifetime.

• System-Level Performance: PerformanceHat supports per-
formance engineering on a systems level rather than improv-
ing, e.g., the algorithmic complexity of a component. Hence,
a focus is put on component-to-component interactions
(e.g., remote service invocations, database queries), as these
tend to be important factors contributing to performance
regressions on a system level, while also being hard to test
without knowing production conditions.

• Production Observable Units: Our approach is limited to
modeling methods that are actively measurable by existing
monitoring tools. Thus, methods that might have suboptimal

(theoretical) computational complexity, but do not exhibit
any significant overhead that is captured by monitoring will
not be modeled.

IV. INTERACTIVE MONITORING FEEDBACK IN THE IDE

Our theory is that software developers are enabled to iden-
tify and prevent performance issues faster when source code
is augmented with monitoring data and developers receive
immediate (i.e., near real time) feedback on code changes.
We state the goals for our approach, PerformanceHat, and
describe the models and techniques that allow us to achieve
them. To guide the design of our approach, we formulate two
goals based on our theory:
• Operational Awareness: We want to provide operational

awareness to developers by tightly integrating monitoring
data into the development workflow. By that, developers
should become more aware of the operational footprint of
their source code.

• Contextualization: At the same time, we aspire to provide
contextualization of these operational aspects. Monitoring
data should be available in the context of current develop-
ment task to minimize context switches to other external
monitoring tools.

Based on these principles, we implement PerformanceHat, as
part of the Eclipse IDE with Java (Figure 1). Whenever a class
is loaded we construct a performance model and display it as
in-situ annotations (yellow highlighting) in the source code.
When hovering over these annotations, a box appears that
provides performance information from the model retrieved
from production monitoring. Performance analysis is built into
the incremental build process, i.e., we incrementally update the
performance model every time a developers saves new changes
(by triggering the incremental build of Eclipse). Through this
process we provide interactive performance analysis updates,
so that developers retrieve immediate feedback of the impact
of their changes.

We now discuss more formally how we achieve our goals
by deriving an In-IDE Performance model.

A. In-IDE Performance Model

We construct our model by establishing a relation from
programs to datasets retrieved from monitoring tools. We then
describe how we can incrementally update our performance
model by reflecting and propagating changes in the model.

We consider programs p as syntactically valid programs
of a language P. A program p ∈ P consists of a set of
methods, m ∈ M(p), where every method m is uniquely
identifiable through id(m) (e.g., fully qualified method names
in Java) organized in classes (or any other unit of organization
for methods, e.g., modules). A syntactically valid program,
p ∈ P , can be transformed into an Abstract Syntax Tree,
a tree representation of the source code of p, denoted by
AST (p). We consider a simplified AST model where the
smallest entity nodes are method declarations and statements
within a method (method invocations, branching statements,
and loops). Formally, an AST is a tuple (A, a0, ζ), where A



(a) Displaying Operational Footprint (b) Inferring the Performance of Newly-Written Code

Fig. 1: (a) PerformanceHat in action displaying execution times in production contextualized on method level. The box is
displayed as the developer hovers over the marker on the “this.retrieve” method invocation. (b) After introducing a code change,
the inference function attempts to predict the newly written code. Further, it is propagated over the blocks of foreach-loops. The
box is displayed when hovering over the loop over the Task collection, showing the prediction with supporting parameters.

is set of nodes in the AST (source code artifacts), a0 ∈ A
is the root node and ζ : A 7→ A∗ is a total function that,
given a node, maps it to a list of its child nodes. Each node
ai ∈ A has a unique identifier, id(ai). For convenience, we
also define a function ASTM (m) that returns the AST for
a method m ∈ M(p). Formally, mAST ⊆ pAST , where
mAST = ASTM (m), pAST = AST (p), m ∈ M(p) and
id(m) = id(a0) in mAST .

1) Trace Data Model: Our approach relies on execution
traces that have been collected at runtime, either through
observation, instrumentation, or measurement. While this data
could potentially have different types, the focus of this paper
is on runtime data that is relevant to software performance
(e.g., execution times, workload). Let us consider a dataset D
to be the set of trace data points. The model of a data point
di ∈ D is illustrated in Table I. The illustrative trace shown in
the table is an actual trace type used in the evaluation through
the monitoring tool Kieker [32]. We model the point in time
the data point has been measured or observed and the runtime
entity that “produced” the data point (the granularity ranges
from methods to API endpoints to operating system processes).
We assume every trace has a numerical or categorical value
of the observation. Many traces are also associated with some
kind of label that is part of the trace meta data (e.g., method
name). The context is a set of additional information that
signifies, for instance, on which infrastructure the entity was
deployed on, or, which log correlation id (in the example it is

called “SessionId”) was involved [18].

TABLE I: Trace Data Model

Abstract Description Illustrative Trace

t Recorded Time Logging Timestamp
E Observed Entity Java method
τ Trace Type Execution Time (ET)
ν Primitive Value Measured time (e.g. 250ms)
L Label Method Name (e.g., us.ibm.Map.put)
C Context {Stack Size, SessionId, Host,...}

2) Trace Mapping: In an initial step, AST nodes are com-
bined with the dynamic view of runtime traces. This mapping
constitutes a relation between nodes in the AST and a set
of trace data. On a high level, this process is inspired by
previous work in software traceability using formal concept
analysis [26], [11], which is a general framework to reason
about binary relationships.

A set of traces can be mapped to different AST node types
(e.g., method invocations, loop headers) based on different
specification criteria in both node and trace. In this particular
case of response times, we map data based on the fully-
qualified method name in Java, that is both available as part
of the AST node and in the trace data. Specifications define
declarative queries about program behavior that establish this
mapping relationship.
Specification Queries. We model the relation between source
code artifacts a ∈ A in AST (p) to trace data points d ∈ D is
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Fig. 2: An illustration of the performance model construction
process: Based on a specification function (in this particular
case, identity matching), multiple data points from the dataset
are mapped to an AST node.

modeled as a mapping S : A 7→ D∗. The mapping is directed
by a declarative specification predicate SP : A × D 7→
{true, false}. The predicate decides based on an expression
on attributes within the source code entity and data point
whether there is a match. While the specification can take
many different forms depending on the application domain, we
illustrate this concept by briefly outlining two typical examples
for online services:
• Entity-Level Specification. In its simplest form the predicate

returns true if information of one trace can be exactly
mapped to one source code entity based on an exact attribute
matching. Let us again look at our the example of response
time traces: SPRT (a, d) = (id(a) = L(d)) ∧ τ(d) = ET .
This is a common use case for execution times or method-
level counters that can be mapped to method definitions and
method invocations. Measurements of multiple threads are
attributed to the same method declaration when encountered
in the AST.

• System-Level Specification. A more complex specification
could take the form of mapping memory consumption,
which is usually measured at the system or process level,
to method invocations through program analysis and statis-
tical modeling. The idea is to sample system-level runtime
properties over time and at the same time, through instru-
mentation, sample how long each method has been executed
at recorded points in time. Overlaying both measurements
can approximate the impact of certain method invocations
to the system level property (e.g., memory consumption).
This approach has been already shown to work well when
mapping system-level energy consumption on source line
level [22].

B. Incremental Performance Analysis

During software maintenance, software developers change
existing code to perform change requests. One of our goals
is to provide early feedback regarding software performance
so that software developers can make data-driven decisions
about their changes and prevent performance problems from
being deployed to production. To achieve this, we design an
incremental analysis for software performance when adding

method invocations and loops into existing methods. We focus
on these particular changes because existing work by Sandoval
et al. [29] has shown that they have the most significant effect
on software performance.

Changes to source code are reflected as additions or dele-
tions in the AST. Existing work supports formal reasoning
of these changes through tree differencing [13], [14]. While
this technique would also be a viable option for our approach
to trigger an update in our performance model, we apply a
slightly different procedure that enables faster analysis. Since,
in addition to static source code, we also have access to a
dataset D and a specification function S , we can distinguish
between AST nodes that have data attached to them and
new nodes without information. Algorithm 1 presents an
overview on a holistic approach that combines (1) constructing
a performance model for new classes through mapping, (2)
inference of changes, and (3) intra-procedural propagation
within the AST of a particular method m ∈ M(p) in linear
time with respect to the number of AST nodes in m:
• We iterate through every node in the method AST in BFS

order and attempt to associate data from the trace data set
D to the node through the specification query S.

• If the node cannot be associated with existing data, we
assume it to be newly added code and add it to a stack
(toInferNodes).

• Nodes in the stack without data are iterated and attempted
to be inferred by a given inference function Γ. Because we
pushed nodes from the stack from the previous BFS iteration
“outside in”, we now infer nodes “inside out”.

• Every newly inferred method is added to a context set that
is passed to the inference model and can be used for nodes
that are higher in the hierarchy. Example: Let us assume, we
have a new method invocation within a for-loop. The new
method invocation is inferred before we reach the loop node,
thus, we add its information to the context. As we reach
the loop node, the loop inference model can use this newly
inferred information in the context to adjust its prediction.

• “Passing up” the context is how we achieve propagation.
Incremental Update through Partial Inference: We inte-

grate our analysis into the build process and, thus, into
the development workflow. Hence, a sense of immediacy
is required. Existing performance prediction methods range
from analytical models [3] to very long running simulation
models [5]. To obtain a result in an appropriate time frame, our
approach requires an analytical performance inference model.
To illustrate how a possible inference model can look like, we
combine an analytical model with a learning model inspired by
Didona et al. [10]. However, our work is general in the sense
that a different analytical model for performance inference
could be integrated as well.

We briefly illustrate two models the we implemented in
our tool, PerformanceHat. Formally, an inference model is
a function Γ : A × A∗ 7→ D∗ where A ∈ AST (p). This
function attempts to infer new information based on existing,
matched data (i.e., its inference context). Different source
code artifact types require different inference models. We
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Fig. 3: Sequence of incremental performance analysis and propagation: Code is changed and nodes are inferred from the
bottom up and propagated up to the method declaration.

Algorithm 1: Matching, Inferring, and Propagating Run-
time Information to AST Nodes in Method m

Data: A method m ∈M(p), a dataset D, a specification function S,
an inference function Γ

Result: All relevant AST nodes in m annotated with data in D or with
a prediction inferred through Γ

toInferNodes ← ∅;
// Iterator goes through method AST through BFS

(i.e. outside-in)
for node in ASTM (m) do

node.data← visit(node,S) ; // Trigger node-type
dependent visitor to match D to node based
on S

if not node.data then
toInferNodes ← toInferNodes ∪ {node} ; // Adding
nodes unknown to D in this context to be
inferred

end
end
context ← ∅;
while not empty(toInferNodes) do

currentNode ← toInferNodes.pop() ; // Infer information
about nodes from the inside out

currentNode.data = Γ(currentNode, context);
context ← context ∪ {currentNode} ; // Newly inferred
data is propagated through passing context up

end

consider addition of method invocations and loops:

Method Invocation Inference ΓMethodInvocation: The
most atomic change we consider for our analysis is adding a
new method invocation. To infer new information about the
response time of this method invocation in the context of the
parent method, we require information about it from an already
existing context (i.e., the method being invoked in a different
parent method). Further, we want to adjust the response time
based on the different workload parameters of the parent
method. Thus, we learn a model MWL : M(p)×M(p) 7→ D∗
(any viable regression model) that represents how response
times of invocations are affected by different workloads WL.
From this learned model, we can infer new method invocations
as ΓMethodInvocation(m) = MWL(parent(m),m), where
parent: M(p) 7→ M(p), is a function that returns the parent
method of an invocation.

Loop Inference ΓLoop: When adding new loops entirely
or adding new method invocations within the body of a

loop, we consider a simple, non-parametric regression model
(i.e., an additive model) to infer the average execution
time of the loop. Let l ∈ ASTM (m) be a loop node in
method m ∈ M(p). We build an additive model over the
mapped or inferred execution times of all statements (method
invocations or other blocks) in the loop body of l multiplied
by the average number of iterations θsize(l). More formally,
t(l) =

∑
n∈ζ(l) sn(n.data) is a model of the execution

time of the loop body, where the functions sn are unknown
smoothing factors, that we can fit from existing data in D.
Thus, ΓLoop(l) = θsize(l) × t(l). In case of a foreach loop
over a collection, the number of iterations θsize can either be
retrieved from instrumenting the collections in the production
environment or by allowing the software developer to provide
an estimate for this parameter.

Figure 3 illustrates incremental analysis with an example:
• A developer changes the code and adds a method invoca-

tion (Task.getHours) within a loop (over collection
of type Tasks).

• The nodes of the new method invocation and its surround-
ing loop do not have any information attached to them.

• First, the newly introduced method is inferred through
ΓMethodInvocation and attached to the node.

• The new information is propagated and used in ΓLoop to
approximate the new loop execution time.

• All new information is then propagated to all nodes up
until the method declaration.

Resulting Performance Model: After describing all steps of
construction, we formally summarize our performance model
as the tuple 〈A,D,S,Γ〉, where
• A is a simplified AST (mostly on method level)
• D is a trace dataset retrieved from a monitoring tool
• S is a specification query that establishes a relation from

AST nodes to traces in the dataset
• Γ is an inference function that employs lightweight

prediction models to update information on AST nodes
We now describe the implementation of PerformanceHat

and discuss scalability concerns.

C. Scalability Design and Implementation

Given that our performance analysis is integrated into the
development workflow, it is important that it does not intro-
duce significant delays and interrupt the workflow. While we



presented how to overcome conceptual impediments to enable
immediate analysis earlier (i.e., incremental inference and
propagation), we now want to discuss design considerations
that reflect on architectural scalability of our approach.

We implemented PerformanceHat as a combination of an
Eclipse plugin for Java and further components that deal with
collecting and aggregating runtime performance information.
When a program is loaded in the IDE, we construct our
initial performance model. PerformanceHat then hooks our
incremental performance analysis into Eclipses incremental
builder. This means, every time a file is saved, we start the
analysis for that particular file.

In initial versions of PerformanceHat, every build process
triggered fetching new data from a remote instance (e.g., the
performance monitoring server), introducing network latency
as a bottleneck. An iterative process to improve scalability
resulted in the the high-level architecture depicted in Figure 4.
It bundles application logic for performance model construc-
tion (i.e., specification and inference) as an extension to the
IDE, and retrieves data from a local component (local feedback
handler) that synchronizes with a remote component (deployed
feedback handler, e.g., a monitoring tool server) located closer
to the running application in production.

We provide a brief overview on the efforts that were
required to enable scalability to construct and incrementally
update a performance model in the IDE:

• Local Feedback Handler: Feedback handler is implemented
as a Java application, exposing a REST API, with a docu-
ment data store (MongoDB). The deployed feedback handler
is installed on the remote infrastructure, close to the de-
ployed system and has an interface to receive or pull runtime
information from monitoring systems (after transforming it
into a local model that is subsequently understood by the
extension in the IDE). The local feedback handler runs
as a separate process on the software developer’s local
workstation. The reason for this split is that constructing the
performance model and performing incremental analysis in
the IDE requires fast access to monitoring data. The local
feedback handler deals with periodically fetching data from
potentially remote systems over an HTTP interface.

• Local IDE Cache: Additionally, we reduce the feedback
loading latency by introducing a local IDE cache, so that
each entry has to only be retrieved once per session. We used
an LRU cache with a size of maximal 10000 entries and a
timeout of 10 minutes (after 10 minutes the cache entry is
discarded, however both these entries are configurable). This
reduced build time significantly as discussed in Section VI.

• Bulk Fetching: A significant improvement also occurred
when, for an empty cache, we registered all nodes that
required information from the feedback handler and then
loaded all information in bulk.

The prototype implementation, including documentation, is
available as an open source project on GitHub [7].
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Fig. 4: Resulting scalable architecture for PerformanceHat

V. USER STUDY EVALUATION

To evaluate whether the proposed approach has a signif-
icant impact on decisions made in the course of software
maintenance tasks, specifically related to performance, we
conduct a controlled experiment with 20 professional software
developers as study participants. In the following, we describe
the study in detail, outlining our hypotheses, describing pro-
gramming tasks, measurements and the study setup. We then
present the results of the study and discuss threats to validity.

A. Hypotheses

The goal of our study is to empirically evaluate the impact
our approach has on software maintenance tasks that would
introduce performance issues. To guide our user study, we
formulate the following hypotheses based on this claim.

H01: Given a maintenance task that would introduce
a performance problem, software developers using our
approach are faster in detecting the performance problem

We are interested in knowing whether the presence of per-
formance data and inference on code level supports software
developers in detecting performance issues in code faster.

H02: Given a maintenance task that would introduce
a performance problem, software engineers using our
approach are faster in finding the root cause of the
performance problem

Additionally, when a high level problem has been detected,
we are interested to see whether our approach allows software
developers to find the root cause of the issue faster (i.e., does
it improve debugging of the performance issue).

H03: Given a maintenance task that is not relevant to
performance, software engineers using our approach are
not slower than the control group in solving the task

As not all software maintenance tasks potentially introduce
a performance problem, we are equally interested whether our
approach introduces overhead into the development process
and thus increases development time.



B. Study Design Overview

The broad goal of our experiment is to compare the presence
of our approach to a representative baseline that illustrates how
software developers currently deal with handling performance
problems in industry. Investigating performance regressions
from production is done through performance monitoring
tools. We considered using a conventional, local profiler as
a baseline, but discarded that option because we want to
investigate scenarios that are caught using production work-
loads. Thus, local workloads generated by test suites would not
surface in the local profiling tool (e.g., VisualVM) and would
also not reflect the reality of how these kinds of performance
issues are identified [1], [8].

We design our user study as a controlled experiment using
a between-subject design, a common approach in empirical
software engineering studies [33], [12], [28]. In between-
subject design, study participants are randomly assigned in one
of two groups: a treatment group and a control group. Both
groups have to solve the same programming tasks. The control
group uses a common tool to display runtime performance
information, Kibana, in combination with Eclipse to solve the
tasks. The treatment group uses our approach within Eclipse
to solve the tasks. As the study application we make use
of Agilefant, a commercial project management tool whose
source code is entirely available as open source, because it
represents a non-trivial industrial application that exhibits real
life performance issues, which have already been discussed in
previous work [24].

C. Study Participants

Many empirical software engineering studies rely on stu-
dents as study participants to evaluate their approaches. For
our approach, however, this was not an option as our study
requires understanding and experience of runtime performance
issues which are usually only encountered when deploying
production software. Thus, we recruited 20 study participants
from 11 industrial partners through snowball sampling [2]. The
study participants have at least 2 years of professional software
development experience and who have previously worked
with Java. Performance skill level was self-assessed by the
participants based on a Likert-scale question on their software
performance ability. We equally distributed the participants
between control and treatment group based on their experience
and performance skill level.

D. Programming Tasks and Rationale

When designing programming tasks for controlled experi-
ments in software engineering research, we are faced with the
trade-off of introducing a realistic scenario and minimizing
task complexity and duration to properly capture the effects
between the groups and avoiding unnecessary variance [33].
With Agilefant as our study application, we aim for a more
realistic scenario in an industrial application. We introduce
two types of tasks in the controlled experiment. We present
the study participants with software maintenance tasks that are
relevant to software performance, but also with tasks that do

not have an impact on performance. The rationale for mixing
the task types has two particular reasons, which are also
reflected in our hypotheses. First, we want to understand to
what extent the augmentation of source code with performance
data in our approach is a distraction that introduces additional
cognitive load into tasks not relevant to performance (see
H03). Second, we want to avoid learning effects after initial
tasks in study participants (i.e., them knowing that looking at
performance data is usually a way to solve the task). We now
give a brief description of the tasks and types used in the study.
We briefly describe the tasks (T1 to T4) in the text below.
A more detailed description of the tasks with corresponding
source code can be found in our online appendix1.

Performance Relevant Tasks (T2 and T4): Work by [24]
discovered code changes in our case study application that lead
to performance problems. We extracted two relevant change
tasks from these changes for T2 and T4. In T2, the study
participants retrieve a collection from a method within a field
object to extract object ids and add them to an existing set in a
loop. However, this method is quite complex and introduces a
performance problem. The participants need to investigate the
issue over multiple class files and methods and reason over
performance data to find the root cause of the performance
problem.

T4 requires the study participants to iterate over an exist-
ing collection to retrieve a value and compute a summary
statistic, that should then be attached to the parent object.
The method to retrieve the lower-level value is lazily loaded
and thus slower than maybe expected. Additionally, the new
code is located within two nested for-loops. Participants need
to retrieve performance information on all newly introduced
statements and then reason about the propagation up to the
method definition.

Non-Performance Tasks (T1 and T3): We designed the
regular tasks (non-performance tasks) to be non-trivial, i.e.,
that a performance problem might hide in the added state-
ments. For T1, study participants need to set a particular object
state based on a value retrieved from a method call on an object
passed as a parameter (in which the underlying computation is
unknown). For T3, the study participants need to iterate over
a collection and compute the sum of a value that needs to be
attached to a transfer object (similar to T4).

E. Measurements

In the experiment, we performed a number of different
measurements, depending on the task type. For every task,
we measure a total time required to solve the task. For perfor-
mance relevant tasks, we distinguish two more measurements:

Total Time (T): We measure the time it takes our study par-
ticipant to solve the task. Beware that we only start measuring
when the participants signaled that they understood the task
and navigated to the correct location in the code to conduct
the maintenance task. We decided for this protocol to avoid
measuring the time it takes for task comprehension and task

1http://sealuzh.github.io/PerformanceHat/



navigation (which is not the aim of our research and would
introduce unnecessary variance into our experiment).

First Encounter (FE): For tasks involving performance
problems, we measure the first encounter of the study par-
ticipant with the realization that a performance problem has
been introduced. This realization can come through inspecting
performance data to the newly introduced artifact (either in
Kibana by the control group, or in the IDE with our approach
in the treatment group) or by attempting to deploy the new
code and receiving feedback from performance tests (see
Section V-F for details on the setup).

Root-Cause Analysis (RCA = T - FE): Starting from
the time of the first encounter of the introduced performance
problem (FE), we measure the time until the participant
finds the root cause of the performance problem (RCA). We
consider the root cause found when the participant can point to
the lowest level artifacts (i.e., method invocations) available in
the code base that are the cause for the degraded performance
effect, and can back their findings with performance data.
Performance data can be queried through the provided tools
in each group.

F. Study Setup

We conducted the experiments on our own workstation, on-
site with each study participant. We now describe the technical
environment for the experiments and the protocol.

Environment: The study application was deployed within
Docker containers on our own workstation. Performance
data was collected through the performance monitoring tool
Kieker [32]. For the control group, we also deployed the ELK
stack [20], a common setup that collects distributed log files
with Logstash, stores them centrally in the database Elastic-
Search, to finally display them in the dashboard/visualization
tool Kibana. The participants in the control group solely
interact with Kibana. Since the standard setup for Kibana
only displays the raw form of the collected logs, we provided
standard dashboards for the participants that displayed average
execution times for each method, which is the same informa-
tion provided by our approach in the treatment group. For the
treatment group, we deploy the feedback-handler component
that pulls performance data from Kieker directly and converts
them into our model with an adapter. The participants were
given a standard version of Eclipse Neon in version 4.6.1,
which included a text editor and a treeview and no further
installed plugins (except, of course, our approach in the
treatment group). Participants were able to “hot-deploy” the
classes of single tasks separately by executing a console script.
When executing the script, performance tests relevant to the
task were simulated and the participants were given feedback
whether their changes introduced a performance problem and
to what extent (response time in seconds).

Protocol: In the first 15 to 20 minutes, the study partic-
ipants were given an introduction into our study application
and its data model, the provided tools, and into the task setting.
If needed, the participants were given an introduction to the
Eclipse IDE. The control group was given an introduction to

Kibana and how it can be used in the experiment setting to
potentially solve the programming tasks. The same was done
for our approach with the treatment group. Over the course of
solving the tasks, participants were encouraged to verbalize
their thoughts (i.e., “think-aloud” method). All sessions were
recorded for post-analysis with consent of the study partici-
pants. Participants were given thorough task descriptions and
were encouraged to ask questions to properly understand the
questions. When participants signaled that they understood
the task and they started programming, we started collecting
our measurements. After completing all tasks, we debriefed
the participants and asked about their study experience and
collected feedback about content and process.

G. Study Results

Table II shows the mean and standard deviation of results for
all tasks and measurements, grouped in control and treatment
group. We first use the Shapiro-Wilk test to test whether
our samples come from a normally-distributed population. We
were not able to verify the normality hypothesis for our data.
Thus, we perform a Mann Whitney U test, a non-parametric
statistical test, to check for significant differences between the
population of the two groups and Cliff’s delta to estimate the
effect size, similar to other comparable works in empirical
software engineering [12], [28].

TABLE II: Results (in seconds) over all tasks and measures for
treatment and control presented as “Mean (± Standard Deviation)”,
together with the p-value resulting from Mann Whitney U statistical
tests. FE and RCA are only given for the performance relevant tasks
T2 and T4. P-values < 0.05 are marked with.

Treatment Control Mann Whitney U
T1 (Total) 231.8 (± 71.61) 232 (± 84.1) 0.7614
T2 (Total) 267 (± 65.35) 464 (± 76.61) *0.0001
T2 (FE) 153.3 (± 49.76) 222.7 (± 46.69) *0.0125
T2 (RCA) 113.7 (± 40.72) 241.3 (± 66.05) *0.0001
T3 (Total) 239.8 (± 57.22) 211.2 (± 68.63) 0.1853
T4 (Total) 212.4 (± 43.33) 288 (± 69.88) *0.0125
T4 (FE) 134.6 (± 37.9) 161.8 (± 56.63) 0.3843
T4 (RCA) 77.8 (± 26.23) 126.2 (± 36.13) *0.0089

The descriptive statistics suggest that the treatment group
requires less time to complete each performance relevant task
(Total measurements, Task 2 and 4). To ease the reading of
the empirical measurements, Figure 5 presents the experiment
results in form of box plots comparing the time required
by control and treatment group over all task and measures
side-by-side. In the following, we investigate the results of
the experiment with respect to our formulated hypotheses. To
avoid losing perspective in further aggregation, we analyze the
tasks relating to our hypotheses separately.

Timing in Performance Relevant Tasks (H01 and H02):
Looking at performance relevant tasks (T2 and T4), both in
Table II and Figure 5, the treatment group performs better (in
absolute terms) for all measurements. For both total times, the
difference is significant (p-value < 0.05, Effect Sizes/Cliff’s
delta: 0.92 and 0.67). We now go into more detail between
both measures for performance relevant tasks:



Fig. 5: Total times spent on individual tasks for non-
performance tasks (T1 and T3) and performance relevant tasks
(T2 and T4) in Control (Kibana) and Treatment (Performance-
Hat) group.

Detecting Performance Problems (H01): For the FE (First
Encounter) measures (see Figure 6), we see a significant
difference in T2/FE (Effect Size/Cliff’s delta: 0.92). In T4/FE,
however, the difference is not significant. A possible explana-
tion for this difference lies in the structure of the task T4
(see Section V-D). In T4, the code change occurs already
in two nested loops. So, even without direct presence of
performance data in the process, a software developer can
easily speculate that introducing yet another loop leads to
an O(n3) time complexity. In T2, however, the introduced
performance problem was not as obvious by simply inspecting
code without performance data.

Root Cause Analysis (H02): For the measure RCA (Root
Cause Analysis – see Figure 6), both T2/RCA and T4/RCA
show significant differences (Effect Sizes/Cliff’s delta: 0.68
and 0.92) between treatment and control group. Even in
the case of T4, where the first encounter was more easily
attainable through code inspection alone, the analysis did
require querying performance data to pinpoint the root cause
of the performance problem.

Fig. 6: Times in performance relevant tasks broken down into
first encounter of performance problem (FE) and root cause
analysis (RCA).

Overhead in Non-Performance Tasks (H03): For both
regular (non-performance) maintenance tasks, T1 and T3, we
were not able to reject the null-hypothesis. Beware, that this
only means not enough evidence is available to suggest the

null-hypothesis is false at the given confidence level. Thus,
we have a strong indication that there are no significant
differences between the treatment and control group for these
tasks. In the context of our study, this is an indication that
our approach does not introduce significant cognitive overhead
that “distracts” software developers from regular maintenance
tasks.

H. Threats to Validity

External Validity refers to threats to the generalizability
of the presented results. In this regard, our user study has
a threat to external validity with regards to our selection of
study participants. Given that participation in such a study is
necessarily voluntary, it is possible that our study participants
are not representative of the general population of developers
of cloud applications. Another issue is our usage of the
snowballing sampling technique, which may lead to an overly
homogeneous participant population. We have mitigated this
threat by carefully supervising our participant demography,
and ensuring that, e.g., participants are not from the same
company or close circle of collaborators.

Internal Validity describes the extent to which conclusions
are justified by the data. We are aware of two major threats
to the internal validity of the user study. Firstly, given the
complex domain of our approach, some aspects of our study
setup were necessarily artificial (i.e., participants did not com-
mit to a real production environment, monitoring data came
from a pre-established feedback dataset). Secondly, given the
nature of our study, participants were aware of, or could
at least suspect, that the study was related to performance.
This may have influenced their behavior to be more careful
regarding performance. Consequently, it is possible that the
effect of PerformanceHat outside of a study setting may be
more pronounced.

VI. IDE OVERHEAD ANALYSIS

Our performance analysis in PerformanceHat is hooked
into the incremental build process of the IDE. This means
every time a file is saved, the analysis process is triggered.
Anecdotally, none of our study participants remarked upon
any visible delays introduced through our analysis. However,
to gain a more formal picture of its overhead, we numerically
study the build time impact of PerformanceHat with two
case studies. While we deem a small overhead (i.e., increase
in build times in the IDE) unavoidable, we need to study
whether the additional effort for constructing the performance
model (i.e., loading production data, matching to the AST) and
rendering warnings and in-situ visualizations does not unduly
slow down the IDE.

a) Experiment Setup: We analyze the build time impact
in four different experimental settings, as shown in Table III.
We use two different case study applications: (1) Agile-
fant [31], a commercial project management tool whose source
code is entirely available as open source, and (2) an existing
research prototype. For both applications, we established a



baseline of production feedback data by generating a represen-
tative workload on the deployed code. For both applications,
we evaluate full project builds (i.e., a build of all Java files)
as well as an incremental build that re-builds only a single
file (fi.hut.soberit.agilefant.model.Story in
the case of Agilefant, and a Web service controller in the
case of the research prototype). We find these applications
interesting, as they represent two orthogonal but typical use
cases: a large, monolithic web application in case of Agilefant,
and a small service in a much larger composite system in case
of the research prototype. Table III also lists the total number
of AST nodes for each setting after applying AST construction
as in Section IV. Note that these are the simplified ASTs and
not the entire ASTs of the original Java source code file.

TABLE III: Summary of experimental settings.

Application Build Type AST Nodes
1 Agilefant Full Build 271212
2 Agilefant Incremental Build (Story) 1750
3 Research Prototype Full Build 731
4 Research Prototype Incremental Build (Controller) 158

For each of those settings, we further evaluate four different
scenarios: with or without cache as discussed in Section IV-C,
and with a cold or warm build environment. We refer to the
build environment as “cold” directly after (re-)starting the IDE,
and as “warm” after the respective build has run at least
once. We have chosen these two parameters as preliminary
experimentation has shown that both—the cache and whether
the IDE has already executed the same build before—have a
significant impact on the total build time as well as the build
time impact of PerformanceHat.

We executed all experiments on a Lenovo ThinkPad X1 lap-
top, with an Intel Core i5-6200U CPU using a clock speed of
2.40GHz and 8 GB of RAM. The laptop was running Eclipse
Neon in version 4.6.1 as the IDE. Background applications and
system services have been disabled to the extent possible for
the duration of our measurements. We repeated each individual
experiment (i.e., each of the settings in every scenario) 5 times
to account for natural variability in build times.

b) Results: Figure 7 depicts the total build overhead
in seconds in boxplots introduced by PerformanceHat in all
settings and for all scenarios. Note that the y-axis scale differs
for all four settings. This is to be expected, as incremental
builds are substantially faster than full builds. Similarly, builds
of the large and monolithic Agilefant application take much
longer than builds of the research project.

We observe that the overhead for incremental builds never
exceeds 2 seconds even in the worst case (no cache, cold IDE,
large code base). Using caching alone, the overhead can be
reduced to 1.25 seconds. After the IDE is warmed up (which
we expect to be the most common scenario in practical usage),
the build overhead of PerformanceHat for incremental builds
becomes completely negligible. For full builds, the overhead
depends on the size of the project. For the research prototype,
even in case of a full build, the overhead is around 2 seconds
in the worst case. For the monolithic Agilefant application,
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Fig. 7: Total build time overhead of all settings and scenarios
in seconds.

PerformanceHat introduces a significant overhead of up to
150 seconds in the worst case for full builds. However, by
introducing caching, this overhead can be reduced to less than
50 seconds. And generally, a full build is usually not done
more than once per start of the workstation.

We conclude that PerformanceHat only introduces a sub-
stantial overhead on the total build time in the absolute worst
case. This overhead depends on the size of the code base, on
the availability of a cache, on whether the IDE is “warm”,
and, most importantly, on whether a full project build or an
incremental file build is conducted. In the most important
use case (incremental builds with cache and warm IDE)
the introduced overhead is negligible and not noticeable to
developers.

VII. CONCLUSION

We present a system, PerformanceHat, that contextual-
izes the operational performance footprint of source code
in the IDE and raises awareness of the performance impact
of changes. Our results from a controlled experiment with
20 practitioners working on different software maintenance
tasks indicate that developers using PerformanceHat were
significantly faster in detecting and finding the root-cause of
performance problems. They additionally indicate that when
working on non-performance relevant tasks, they did not per-
form significantly different, illustrating that PerformanceHat
does not lead to unnecessary distractions.

When designing and researching programming experience,
we want to lower cognitive overhead in the software devel-
opment process. Thus, in the future, we want to introduce
“smart thresholds” that learn normal behavior from production
and adjust the visibility of performance in code continuously.
Further, we want to tackle the potential problem of early
optimization by introducing different usage profiles for our
approach, that show a different amount and level of detail
(e.g., debugging vs design profile).
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