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Abstract

It is important for applications to protect sensitive data. Even for
simple confidentiality and integrity policies, it is often difficult for
programmers to reason about how the policies should interact and
how to enforce policies across the program. A promising approach
is policy-agnostic programming, a model that allows the program-
mer to implement policies separately from core functionality. Yang
et al. describe Jeeves [48], a programming language that supports
information flow policies describing how to reveal sensitive val-
ues in different output channels. Jeeves uses symbolic evaluation
and constraint-solving to produce outputs adhering to the policies.
This strategy provides strong confidentiality guarantees but limits
expressiveness and implementation feasibility.

We extend Jeeves with faceted values [6], which exploit the
structure of sensitive values to yield both greater expressiveness and
to facilitate reasoning about runtime behavior. We present a faceted
semantics for Jeeves and describe a model for propagating multiple
views of sensitive information through a program. We provide a
proof of termination-insensitive non-interference and describe how
the semantics facilitate reasoning about program behavior.

Categories and Subject Descriptors D.3.3 [PROGRAMMING

LANGUAGES]: Language Constructs and Features

General Terms Languages, Security
Language design, run-time system, privacy, security

1. Introduction

It is increasingly important for applications to protect user privacy.
Even for simple confidentiality and integrity policies, it is often
difficult for programmers to reason about how the policies should
interact and how to enforce policies across the program.

Policy-agnostic programming has the goal of allowing the pro-
grammer to implement core functionality separately from privacy
policies. The programmer specifies policies as declarative rules
and relies on the system to produce outputs adhering to the poli-
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cies. Yang et al. describe Jeeves [48], a language that supports
confidentiality policies describing how to reveal views of sensi-
tive values based on the output channel. Sensitive values are pairs
〈ℓ ? vH : vL〉, where vH is the high-confidentiality value, vL is the
low-confidentiality value, and guard ℓ is a label. The initial imple-
mentation of Jeeves relies on symbolic evaluation and constraint-
solving to produce outputs adhering to the policies. This strategy
provides strong confidentiality guarantees, but at the cost of expres-
siveness and implementation feasibility. For instance, this imple-
mentation restricts recursion under symbolic conditionals and re-
quires the cumulative constraint environment to persist.

In this paper1, we present a faceted semantics for Jeeves that
exploits the structure of sensitive values in order to increase expres-
siveness, facilitate reasoning about runtime behavior, and automati-
cally enforce confidentiality policies. We base the Jeeves evaluation
strategy on Austin et al.’s faceted execution [6], which manipulates
explicit representations of sensitive values. With this strategy, la-
bels variables are the only symbolic variables, allowing Jeeves to
lift restrictions on the flow of sensitive values. To further improve
ease of reasoning, Jeeves allows policies to only constrain labels
to low. This guarantees that the constraint environment is always
consistent, a property that allows for policy garbage-collection.

In this paper we make the following contributions:

• We present a faceted evaluation semantics for Jeeves, a lan-
guage for automatically enforcing confidentiality policies. The
execution model exploits the structure of sensitive values in or-
der to increase expressiveness and to facilitate reasoning about
runtime behavior.

• We present a dynamic semantics for faceted execution of Jeeves
in terms of the λjeeves core language. We prove termination-
insensitive non-interference, and policy compliance. We show
that it is possible to reason about termination, policy consis-
tency, and policy independence: properties that were not pos-
sible to reason about with the original semantics of Jeeves [48].

• We describe our implementation of Jeeves as an embedded
domain-specific language in Scala and our experience using
Jeeves to implement a conference management system that in-
teracts with a web-based frontend and a persistent database.

1 This paper is a slightly revised version of our PLAS 2013 paper that
corrects the statement and proof of Theorem 3, using a revised [F-PRINT]
rule.



2. Jeeves and Faceted Evaluation

We introduce faceted values into Jeeves in order to provide con-
fidentiality guarantees, and compare its design with systems that
rely on a declassification primitive and with the symbolic execution
strategy used in an earlier implementation of Jeeves.

In this section, we present Jeeves using an ML-like concrete
syntax, shown in Figure 1. Jeeves extends the λ-calculus with refer-
ences, facets (〈ℓ ? ExpH : ExpL〉), a label construct for introduc-
ing labels that guard access to facets, and a restrict construct for
introducing policies on labels. Jeeves statements include let-bound
expressions and the effectful print statement.

2.1 Jeeves for Confidentiality

Jeeves allows the programmer to introduce a variable name that
can be either "Alice" or "Anonymous" depending on the output
channel:

let name: string = label a in
<a ? "Alice" : "Anonymous" >

in ...

The above code introduces a label a that determines whether the
private (high-confidentiality) value "Alice " or the public (low-
confidentiality) "Anonymous" should be revealed. Labels take on
the values { low, high }.

A simple policy on a sensitive value name is that the user must
be the user alice to have high-confidentiality status:

let name: string = label a in
restrict a: λ(c: User).(c == alice) in

<a ? "Alice" : "Anonymous">
in ...

The restrict statement introduces a rule that strengthens the policy
relating the output channel to the high-confidentiality value. To
produce an assignment to label, the Jeeves system translates this
rule to the declarative constraint !(c == alice) ⇒ (a == low). This
rule is not used until evaluation of print, so other policies could
further restrict the label to be low.

In Jeeves programs, sensitive values can be used as regular
program values and effectful statements such as print require a
context parameter:

let msg: string = "Sender is " + name in
print { alice } msg /∗ Output: "Sender is Alice" ∗/

During program evaluation, the Jeeves runtime ensures that only
the user alice can see her name appearing as the author in the string
msg. User bob sees the string "Sender is Anonymous":

let msg = "Sender is " + name in
print { bob } msg /∗ Output: "Sender is Anonymous" ∗/

Unlike the previous implementation of Jeeves [48], which per-
forms symbolic evaluation, Jeeves evaluation propagates faceted
values, such as the following faceted value for msg:

<a ? "Sender is Alice" : "Sender is Anonymous">

Producing concrete outputs involves finding assignments to labels
that satisfy the policies. The Jeeves system tries to assign labels to
high, setting labels to low only if the policies require it. Assigning
all labels to low always yields a consistent solution.

Jeeves allows the output channel to be sensitive:

let u: user = label b in
restrict b: λ(c: User).(c == alice) in <b ? alice : nobody>

in print {u} u.name

There is a circular dependency: the context u is a sensitive value
<b ? alice : nobody> guarded by a policy depending on the con-
text. Such a policy allows two outcomes: b is high and we display

alice .name to user alice and b is low and we display nobody.name
to user nobody. The Jeeves runtime ensures maximal functionality:
if the policies allow a labels to be high or low, the value will be
high.

2.2 A Health Database in Jeeves

To show how to use Jeeves for real-world applications, let us build
a simple health database with records of the following form:

type Patient { identity : User ref
; doctor : User ref
; meds: ( Medication list ) ref }

In these records, each of the fields identity, doctor, and meds could
be sensitive values that show different values of the correct type to
low-confidentiality output channels.

In this example, the output context has type HealthCtxt, which
we define as follows:

type HealthCtxt { viewer : User, time: Date }

This context contains information not just for the viewer but also
for the current date, allowing policies to define activation and expi-
ration times for visibility.

The idiomatic way of attaching policies to a value is to create
sensitive values for each field and then attach policies:

let mkPatient ( identity : User) (doctor : User)
( meds: Medication list ) : Patient =

label np, dp, mp in
let p = { identity = <np ? identity : nobody>

; doctor = <dp ? doctor : nobody>
; meds = <mp ? meds : []> in

addNamePolicy p np;
addDoctorPolicy p dp;
addMedicationsPolicy p mp;

in p

This function introduces labels, creates sensitive values, attaches
policies to the labels, and returns the resulting Patient record. The
function makes use of the add ... Policy functions for attaching
policies to the labels. The add ... Policy functions take a Patient
record and a labels and uses the record fields to attach a policy to
the label. We define addMedicationsPolicy as:

let addMedicationsPolicy (p: Patient) (mp: label ): unit =
restrict mp: λ(c: HealthCtxt).

(c. viewer == p.identity || c. viewer == p.doctor)
in ...

This policy sets the label to low unless the viewer is the patient
or the patient’s doctor. Jeeves automatically handles dependencies
between policies and sensitive values: to have access to the medi-
cation list, the viewer needs to be able to see that their identity is
equal to either p. identity or p.doctor.

2.3 Comparison to Declassification

Declassification primitives are used in many systems that make in-
formation flow guarantees. For instance, in an auction system the
last bid might be considered private information until the auction
has been completed, at which point the final bid should be made
public. In a system with a declassification primitive instead of sup-
port for policy-agnostic programming, the relevant code to allow
the release of this data might look something like the following:

let finalBid : ( int ref ) = ref label a in <a ? 42 : 0>
in let ...

if currentTime < closeOfBid
then finalBid := declassify ( finalBid )

in print { bidder } { ! finalBid }



x variables
ℓ labels
p, r primitives, records
Label ::= low | high labels
τ ::= int | bool | string | record −−→x : τ types

| τ2 → τ2 | τ ref | Label
Exp ::= x | p | r expressions

| λx : τ.Exp
| Exp1 (op) Exp2
| if Exp1 then Expt else Expf
| Exp1 Exp2
| Exp1 ; Exp2
| ! Exp
| x := Exp
| 〈ℓ ? Exphigh : Explow〉
| let x = Exp in Exp
| label ℓ in Exp
| restrict ℓ : Expp in Exp

Stmt ::= let x : τ = Exp in Expb statements
| print {Expc}Exp

Figure 1: Jeeves syntax.

Identity Doctor

〈a ? alice : default〉 〈e ? erica : default〉
〈b ? bob : default〉 〈f ? fred : default〉
〈c ? claire : default〉 〈f ′ ? fred : default〉

Table 1. Sample patient records.

At each print statement involving the final bid, the above code
would need to be repeated. These declassification statements refine
the core policy. The original paper on faceted values [6] shows how
a declassification primitive may be designed for faceted evaluation.

The downside with this approach is that the effective policy
for the system is littered throughout the code, leading to obvious
problems with the readability and maintainability of the policy-
related code. In aspect-oriented [25] terminology, this approach
suffers from a tangling of aspects.

While declassification can provide the flexibility needed in real-
world systems, we argue that policy-agnostic programming is a
more elegant solution. Since the policy code is kept separately, it
is easier to get a holistic picture of the policy for data in the system,
resulting in improved readability and maintainability. Also, since
policy code can be kept separate, it might potentially be easier to
protect policy mechanisms from abuse by malicious third parties
than it would be to protect the use of a declassification primitive.

Continuing with the auction example, the policy code for the
final bid is shown below. No matter how many channels we write
to with the print statement, we do not need to repeat the policy code
that determines if the value of finalBid can be released.

let finalBid : ( int ref ) = ref label a in
restrict a: λ (x: bool). currentTime < closeOfBid in

<a ? 42 : 0> /∗ The starting high bid is 42 ∗/
in ...

As an additional benefit, we note that policy-agnostic program-
ming offers a good solution for approaches such as secure multi-
execution [17] that rely on separate processes. Since policy code is
only applied when data is released, it eliminates the need for coordi-
nating between processes (assuming that the policy is consistent).

2.4 Advantages of Faceted Execution over Symbolic

Execution

Explicit representation of facets allows the runtime to prune branches
of execution. Consider the following function, which takes a list of
patients and a doctor and calls fold to count of the number of pa-
tients with a doctor field matching the doctor argument, on the
records in Table 1 with doctor = erica.

let countPatients ( patients : Patient list ) (doctor : User): int
= fold (λ (p: Patient) . λ (accum: int) .

( if (p.doctor == doctor)
then (accum + 1)
else accum)

0 patients )
in ...

Consider the behavior of this function on the records in Table 1
with a call to countPatients with doctor = erica. Evaluation of
<e ? erica : default > == erica yields the expression
<e ? erica == erica : default == erica>, which can be simplified
to <e ? true : false>. Evaluation of faceted function applications
creates a new faceted value resulting from applying the function to
each facet. If e is in the set of path condition assumptions, then
only the high facet is used. Evaluation of the conditional produces
the expression

<e ? if (true) then (accum + 1) else accum : if ( false ) ... >,

which simplifies to <e ? accum + 1 : accum>. Depending on
whether the output user is allowed to see that p.doctor is equal
to erica , the resulting sum is either accum or accum + 1.

Storing an explicit representation for facets allows the runtime
to prune branches. For instance, if the doctor is not equal to erica
on either facet, then the faceted evaluation only needs to store a
single value. The system may also prune facets based on path
assumptions: if evaluation is occurring under the assumption that
guard k is true, then subsequent evaluation can assume guard k.
This is particularly advantageous when there are a small number of
labels corresponding to a fixed set of principals.

3. Core Semantics

We model the semantics of Jeeves with λjeeves, a simple core lan-
guage that extends the faceted execution semantics of Austin and



Syntax:

e ::= Term
x variable
c constant
λx.e abstraction
e1 e2 application
ref e reference allocation
!e dereference
e:= e assignment
〈k ? e1 : e2〉 faceted expression
label k in e label declaration
restrict(k, e) policy specification

S ::= Statement
let x = e in S let statement
print {e} e print statement

c ::= Constant
f file handle
b boolean
i integer

x, y, z Variable
k, l Label

Standard encodings:

true
def
= λx.λy.x

false
def
= λx.λy.y

if e1 then e2 else e3
def
= (e1 (λd.e2) (λd.e3)) (λx.x)

if e1 then e2
def
= if e1 then e2 else 0

let x = e1 in e2
def
= (λx.e2) e1

e1 ∧f e2
def
= λx.e1 x ∧ e2 x

e1 ∧ e2
def
= if e1 then e2 else false

Figure 2: The source language λjeeves

Flanagan [6] with a declarative policy language for confidentiality.
The λjeeves semantics describes how to evaluate faceted values, store
policies, and use the policy environment to provide assignments to
labels for producing concrete outputs. We use these semantics to
prove non-interference and policy compliance guarantees.

We show the source syntax in Figure 2. The language λjeeves

extends the λ-calculus with expressions for allocating references
(ref e), dereferencing (!e), assignment (e1:= e2), creating faceted
expressions (〈k ? e1 : e2〉), specifying policy (restrict(k, e)), and
declaring labels (label k in e). Additional statements exist for let-
statements (let x = e in S) and printing output (print {e1} e2).
Conditionals are encoded in terms of function application.

In λjeeves, values V contain faceted values of the form

〈k ? VH : VL〉

A viewer authorized to see k-sensitive data will observe the private
facet VH. Other viewers will instead see VL. For example, the value
〈k ? 42 : 0〉 specifies a value of 42 that should only be viewed
when k is high according to the policy associated with k. When the
policy specifies low, the observed value should instead be 0.

A program counter label pc records when execution is influ-
enced by public or private facets. For instance, in the conditional
test

if (〈k ? true : false〉) then e1 else e2

our semantics needs to evaluate both e1 and e2. The label k is
added to pc during the evaluation of e1. By doing so, our semantics
records the influence of k on this computation. Similarly, k is added
to pc during the evaluation of e2 to record that the execution should
have no effects observable to k. A branch h is either a label k or its
negation k. Therefore pc is a set of branches that never contains
both k and k, since that would reflect influences from both the
private and public facet of a value.

The operation 〈〈 pc ? V1 : V2 〉〉 creates a faceted value. The
value V1 is visible when the specified policies correspond with all
branches in pc. Otherwise, V2 is visible instead.

〈〈 ∅ ? Vn : Vo 〉〉
def
= Vn

〈〈 {k} ∪ rest ? Vn : Vo 〉〉
def
= 〈k ? 〈〈 rest ? Vn : Vo 〉〉 : Vo〉

〈〈 {k} ∪ rest ? Vn : Vo 〉〉
def
= 〈k ? Vo : 〈〈 rest ? Vn : Vo 〉〉〉

For example, 〈〈 {k, l} ? VH : VL 〉〉 returns 〈k ? 〈l ? VH : VL〉 : VL〉.
We occasionally abbreviate 〈〈 {k} ? VH : VL 〉〉 as 〈〈 k ? VH : VL 〉〉.

The semantics are defined via the big-step evaluation relation:

Σ, e ⇓pc Σ′, V

This relation evaluates an expression e in the context of a store Σ
and program counter label pc. It returns a modified store Σ′ reflect-
ing updates and a value V . In Figure 3 we show the evaluation rules,
which uses additional runtime syntax (also shown in Figure 3).

Our language includes support for reference cells, which intro-
duce additional complexities in handling implicit flows. The rule
[F-REF] handles reference allocation (ref e). It evaluates an expres-
sion e, encoding any influences from the program counter pc to the
value V , and adds it to the store Σ′ at a fresh address a. Facets
in V inconsistent with pc are set to 0. (Critically, to maintain non-
interference, Σ(a) = 0 for all a not in the domain of Σ.)

The rule [F-DEREF] for dereferencing (!e) evaluates the expres-
sion e to a value V , which should either be an address or a faceted
values where all of the “leaves” are addresses. The rule uses a
helper function deref (Σ′, V, pc) (defined in Figure 3), which takes
the addresses from V , retrieves the appropriate values from the
store Σ′, and combines them in the return value V ′. As an opti-
mization, addresses that are not compatible with pc are ignored.

The rule [F-ASSIGN] for assignment (e1:= e2) is similar to
[F-DEREF]. It evaluates e1 to a possibly faceted value V1 corre-
sponding to an address and e2 to a value V ′. The helper function
assignOp(Σ2, pc, V1, V

′) defined in Figure 3 decomposes V1 into
separate addresses, storing the appropriate facets of V ′ into the re-
turned store Σ′. The changes to the store may come from both V1

and pc.
The rule [F-LABEL] dynamically allocates a label (label k in e),

adding a fresh label to the store with the default policy of λx.true .
Any occurrences of k in e are α-renamed to k′ and the expression
is evaluated with the updated store. Policies may be further refined
(restrict(k, e)) by the rule [F-RESTRICT], which evaluates e to a pol-
icy V that should be either a lambda or a faceted value comprised
of lambdas. The additional policy check is restricted by pc, so that
policy checks cannot themselves leak data. It is then joined with the
existing policy for k, ensuring that policies can only become more
restrictive.

When a faceted expression 〈k ? e1 : e2〉 is evaluated, both
sub-expressions must be evaluated in sequence, as per the rule
[F-SPLIT]. The influence of k is added to the program counter
for the evaluation of e1 to V1 and k for the evaluation of e2 to
V2, tracking the branch of code being taken. The results of both
evaluations are joined together in the operation 〈〈 k ? V1 : V2 〉〉. As
an optimization, only one expression is evaluated if the program
counter already contains either k or k, as indicated by the rules
[F-LEFT] and [F-RIGHT].



Runtime Syntax

e ∈ Expr ::= ... | a
Σ ∈ Store = (Address →p Value) ∪ (Label → Value)
R ∈ RawValue ::= c | a | (λx.e)
a ∈ Address

V ∈ Val ::= R | 〈k ? V1 : V2〉

h ∈ Branch ::= k | k
pc ∈ PC = 2Branch

Expression Evaluation Rules Σ, e ⇓pc Σ′, V

Σ, R ⇓pc Σ, R
[F-VAL]

Σ, e ⇓pc Σ′, V ′

a 6∈ dom(Σ′)
V = 〈〈 pc ? V ′ : 0 〉〉

Σ, (ref e) ⇓pc Σ′[a := V ], a
[F-REF]

Σ, e ⇓pc Σ′, V

V ′ = deref (Σ′, V, pc)

Σ, !e ⇓pc Σ′, V ′ [F-DEREF]

Σ, e1 ⇓pc Σ1, V1

Σ1, e2 ⇓pc Σ2, V
′

Σ′ = assign(Σ2, pc, V1, V
′)

Σ, e1:= e2 ⇓pc Σ′, V ′ [F-ASSIGN]

Σ, e1 ⇓pc Σ1, V1

Σ1, e2 ⇓pc Σ2, V2

Σ2, (V1 V2) ⇓
app

pc Σ′, V ′

Σ, (e1 e2) ⇓pc Σ′, V ′ [F-APP]

k 6∈ pc and k 6∈ pc

Σ, e1 ⇓pc∪{k} Σ1, V1

Σ1, e2 ⇓
pc∪{k} Σ

′, V2

V ′ = 〈〈 k ? V1 : V2 〉〉

Σ, 〈k ? e1 : e2〉 ⇓pc Σ′, V ′ [F-SPLIT]

k ∈ pc Σ, e1 ⇓pc Σ′, V

Σ, 〈k ? e1 : e2〉 ⇓pc Σ′, V
[F-LEFT]

k ∈ pc Σ, e2 ⇓pc Σ′, V

Σ, 〈k ? e1 : e2〉 ⇓pc Σ′, V
[F-RIGHT]

k′fresh

Σ[k′ := λx.true], e[k := k′] ⇓pc Σ′, V

Σ, label k in e ⇓pc Σ′, V ′ [F-LABEL]

Σ, e ⇓pc Σ1, V

Σ′ = Σ1[k := Σ1(k) ∧f 〈〈 pc ∪ {k} ? V : λx.true 〉〉]

Σ, restrict(k, e) ⇓pc Σ′, V
[F-RESTRICT]

Auxiliary Functions

deref : Store ×Val × PC → Val

deref (Σ, a, pc) = Σ(a)

deref (Σ, 〈k ? VH : VL〉, pc) =







deref (Σ, VH, pc) if k ∈ pc

deref (Σ, VL, pc) if k ∈ pc

〈〈 k ? deref (Σ, VH, pc) : deref (Σ, VL, pc) 〉〉 otherwise

assign : Store × PC × Val × Val → Store

assign(Σ, pc, a, V ) = Σ[a := 〈〈 pc ? V : Σ(a) 〉〉]
assign(Σ, pc, 〈k ? VH : VL〉, V ) = Σ′ where Σ1 = assign(Σ, pc ∪ {k}, VH, V )

and Σ′ = assign(Σ1, pc ∪ {k}, VL, V )

Figure 3: Faceted Evaluation Semantics



Application Rules Σ, (V1 V2) ⇓
app

pc Σ′, V ′

[FA-FUN]

Σ, e[x := V ] ⇓pc Σ′, V ′

Σ, ((λx.e) V ) ⇓app

pc Σ′, V ′

[FA-SPLIT]

k 6∈ pc k 6∈ pc

Σ, (VH V2) ⇓
app

pc∪{k} Σ1, V
′

H

Σ1, (VL V2) ⇓
app

pc∪{k}
Σ′, V ′

L

V ′ = 〈〈 k ? V ′
H : V ′

L 〉〉

Σ, (〈k ? VH : VL〉 V2) ⇓
app

pc Σ′, V ′

[FA-LEFT]

k ∈ pc
Σ, (VH V2) ⇓

app

pc Σ′, V

Σ, (〈k ? VH : VL〉 V2) ⇓
app

pc Σ′, V

[FA-RIGHT]

k ∈ pc
Σ, (VL V2) ⇓

app

pc Σ′, V

Σ, (〈k ? VH : VL〉 V2) ⇓
app

pc Σ′, V

Statement Evaluation Rules Σ, S ⇓ Vp, f :R

[F-LET]

Σ, e ⇓∅ Σ′, V
Σ, S[x := V ] ⇓ Vp, f :R

Σ, let x = e in S ⇓ Vp, f :R

[F-PRINT]

Σ, e1 ⇓∅ Σ1, Vf

Σ1, e2 ⇓∅ Σ2, Vc

{ k1 ... kn } = closeK (labels(e1) ∪ labels(e2),Σ2)
ep = λx.true ∧f Σ2(k1) ∧f ... ∧f Σ2(kn)

Σ2, ep Vf ⇓∅ Σ3, Vp

pick pc such that pc(Vf ) = f, pc(Vc) = R, pc(Vp) = true

Σ, print {e1} e2 ⇓ Vp, f :R

Semantics for Derived Encodings

[F-IF-TRUE]

Σ, e1 ⇓pc Σ1, true

Σ1, e2 ⇓pc Σ′, V

Σ, if e1 then e2 else e3 ⇓pc Σ′, V

[F-IF-FALSE]

Σ, e1 ⇓pc Σ1, false
Σ1, e3 ⇓pc Σ′, V

Σ, if e1 then e2 else e3 ⇓pc Σ′, V

[F-IF-SPLIT]

Σ, e1 ⇓pc Σ1, 〈k ? VH : VL〉
eH = if VH then e2 else e3
eL = if VL then e2 else e3
Σ1, 〈k ? eH : eL〉 ⇓pc Σ′, V

Σ, if e1 then e2 else e3 ⇓pc Σ′, V

Auxiliary Functions

closeK (K,Σ) = let K′ =
⋃

k∈K labels(Σ(k)) in
if K′ = K

then K

else closeK (K′,Σ)

Figure 4: Faceted Evaluation Semantics for Application and Statements

Function application (e1 e2) is somewhat complex in the pres-
ence of faceted values. The rule [F-APP] evaluates e1 to V1, which
should either be a lambda or a faceted value containing lambdas,
and evaluates e2 to the function argument V2. It then delegates the
application (V1 V2) to an auxiliary relation defined in Figure 4:

Σ, (V1 V2) ⇓
app

pc Σ′
, V

′

This relation breaks apart faceted values and tracks the influences
of the labels through the rules [FA-SPLIT], [FA-LEFT], and [FA-RIGHT]

in a similar manner to the rules [F-SPLIT], [F-LEFT], and [F-RIGHT]

discussed previously. The actual application is handled by the
[FA-FUN] rule. The body of the lambda (λx.e) is evaluated with
the variable x replaced by the argument V .

Conditional branches (if e1 then e2 else e3) are Church-encoded
as function calls for the sake of simplicity. However, Figure 4 shows
direct rules for evaluating conditionals in the presence of faceted

values. Under the rule [F-IF-SPLIT], If the condition e1 evaluates to
a faceted value 〈k ? VH : VL〉, the if statement is evaluated twice
with VH and VL as the conditional tests.

While expressions handle most of the complexity of faceted
values, statements in λjeeves illustrate how faceted values may be
concretized when exporting data to an external party. The semantics
for statements are defined via the big-step evaluation relation:

Σ, S ⇓ Vp, f :R

The rules for statements are specified in Figure 4. The rule
[F-LET] handles let expressions (let x = e in S), evaluating an ex-
pression e to a value V , performing the proper substitution in state-
ment S. The rule [F-PRINT] handles print statements (print {e1} e2),
where the result of evaluating e2 is printed to the channel result-
ing from the evaluation of e1. Both the channel Vf and the value
to print Vc may be faceted values, and furthermore, we must select



the facets that correspond with our specified policies. We determine
the set of relevant labels through the closeK function, which is then
used to construct ep from the relevant policies in the store Σ2. ep is
evaluated and applied to Vf , returning the policy check Vp that is a
faceted value containing booleans. A program counter pc is chosen
such that the policies are satisfied, which determines the channel f
and the value to print R. Note that there exists a pc′ ∈ PC where
all branches are set to low, which may always be displayed, thereby
ensuring that there is always at least one valid choice for pc.

This property allows garbage collection of policies and facets.
Because the constraints are always consistent, the only set of poli-
cies relevant to an expression e to output are associated with the
transitive closure of labels Le appearing in e and the policies associ-
ated with Le. Thus any policy associated with an out-of-scope vari-
able may be garbaged-collected. In addition, once a policy has been
set to the equivalent of λx.false for a label k, k-sensitive facets and
policies cannot be used in a print statement. These properties are
advantages over the previous symbolic-execution strategy used by
an earlier implementation of Jeeves [48], since the earlier approach
could introduce inconsistent policies.

4. Properties

We prove that a single execution with faceted values is equivalent
to multiple different executions without faceted values. From this
we know that if execution terminates on each facet of a sensitive
value, then faceted execution terminates. Jeeves does not have this
property because execution keeps sensitive values as symbolic; thus
Jeeves restricts applications of recursive functions.

We also prove that the system cannot leak sensitive information
either via the output or by the choice of output channel.

4.1 Projection Theorem

A key property of faceted evaluation is that it simulates multiple
executions. In other words, a single execution with faceted values
projects to multiple different executions without faceted values.

pc : Expr (with facets) → Expr (with fewer facets)

pc(〈k ? e1 : e2〉) =







pc(e1) if k ∈ pc

pc(e2) if k ∈ pc
〈k ? pc(e1) : pc(e2)〉 otherwise

pc(〈k ? V1 : V2〉) =



















pc(V1) if k ∈ pc

pc(V2) if k ∈ pc
pc(V1)

if pc(V1) = pc(V2)
〈k ? pc(V1) : pc(V2)〉 otherwise

pc(. . . ) = compatible closure

We extend pc to project faceted stores Σ ∈ Store into stores
with fewer facets.

pc : Value → Value
pc(Σ) = λa. pc(Σ(a)) ∪ λk. pc(Σ(k))

Thus pc projection does not remove policies, it only removes
some labels on expressions or values. We say that pc

1
and pc

2
are

consistent if

¬∃k. (k ∈ pc
1
∧ k ∈ pc

2
) ∨ (k ∈ pc

1
∧ k ∈ pc

2
)

We note some key lemmas regarding projection.

Lemma 1. If V = 〈〈 pc ? V1 : V2 〉〉 then ∀q ∈ PC

q(V ) =

{

〈〈 pc \ q ? q(V1) : q(V2) 〉〉 if q is consistent with pc
q(V2) otherwise

Lemma 2. If V ′ = deref (Σ, V, pc) then ∀q ∈ PC where q is
consistent with pc, q(V ′) = deref (q(Σ), q(V ), pc \ q).

Lemma 3. If Σ′ = assign(Σ, pc, V1, V2) then ∀q ∈ PC

q(Σ′) =







assign(q(Σ), pc \ q, q(V1), q(V2))
if q consistent with pc

q(Σ) otherwise

Lemma 4. Suppose pc and q are not consistent and that either

Σ, e ⇓pc Σ′, V
or Σ, (V1V2) ⇓

app

pc Σ′, V

Then q(Σ) = q(Σ′).

The following projection theorem shows how a single faceted
evaluation simulates (or projects) to multiple executions, each with
fewer facets, or possibly with no facets at all (if for each label k in
the program, either k or k is in q).

Theorem 1 (Projection Theorem). Suppose

Σ, e ⇓pc Σ′
, V

Then for any q ∈ PC where pc and q are consistent

q(Σ), q(e) ⇓pc\q q(Σ′), q(V )

This theorem significantly extends the projection property of
Austin and Flanagan [6], in that it supports dynamic label alloca-
tion and flexible, dynamically specified policies, and is also more
general in that it can either remove none, some, or all top-level la-
bels in a program, depending on the choice of the projection PC q.
A full proof of the projection theorem is available in the appendix.

4.2 Termination-Insensitive Non-Interference

The projection property captures that data from one collection of
executions, represented by the corresponding set of branches pc,
does not leak into any incompatible views, thus enabling a straight-
forward proof of non-interference.

Two faceted values are pc-equivalent if they have identical val-
ues for the set of branches pc. This notion of pc-equivalence natu-
rally extends to stores (Σ1 ∼pc Σ2) and expressions (e1 ∼pc e2):

(V1 ∼pc V2) iff pc(V1) = pc(V2)
(Σ1 ∼pc Σ2) iff pc(Σ1) = pc(Σ2)
(e1 ∼pc e2) iff pc(e1) = pc(e2)

The notion of pc-equivalence and the projection theorem en-
able a concise statement and proof of termination-insensitive non-
interference.

Theorem 2 (Termination-Insensitive Non-Interference).
Let pc be any set of branches. Suppose Σ1 ∼pc Σ2 and e1 ∼pc e2,
and that:

Σ1, e1 ⇓∅ Σ′
1, V1 Σ2, e2 ⇓∅ Σ′

2, V2

Then Σ′
1 ∼pc Σ′

2 and V1 ∼pc V2.

Proof. By the Projection Theorem:

pc(Σ1), pc(e1) ⇓∅ pc(Σ′
1), pc(V1)

pc(Σ2), pc(e2) ⇓∅ pc(Σ′
2), pc(V2)

The pc-equivalence assumptions imply that pc(Σ1) = pc(Σ2) and
pc(e1) = pc(e2). Hence pc(Σ′

1) = pc(Σ′
2) and pc(V1) = pc(V2)

since the semantics is deterministic.

4.3 Termination-Insensitive Policy Compliance

While we have shown non-interference for a set of labels, the labels
do not directly correspond to the output revealed to a given observer.
In this section we show how we can prove termination-insensitive
policy compliance; data is revealed to an external observer only
if it is allowed by the policy specified in the program. Thus if



S1 and S2 are terminating programs that differ only in k-labeled
components and the computed policy Vi for each program does not
permit revealing k-sensitive data to the output channel, then the set
of possible outputs from each program is identical. Here, an output
f : v combines both the output channel f and the value v, to ensure
that sensitive information is not leaked either via the output value
or by the choice of output channel.

Before we formally prove this property, we introduce the notion
of k-security. A program S is k-secure if it terminates and its
computed policy never permits revealing k-sensitive data, i.e.

∃V, f,R such that ∅, S ⇓ V, f :R.

and
∀V, f,R. if ∅, S ⇓ V, f :R
then ∀pc. pc(V ) = true ⇒ k ∈ pc

Also, note that every label has a default policy of λx.true . More
formally:

Σ(k) = λx.true ∀k 6∈ domain(Σ)

Theorem 3. Suppose for i ∈ 1, 2:

Si = print {e} C[〈k ? ei : el〉]

where each Si is k-secure. Then
{ f :R | ∃V. ∅, S1 ⇓ V, f :R } = { f :R | ∃V. ∅, S2 ⇓ V, f :R }.

Proof. We show left-to-right containment as follows. (The converse
containment holds by a similar argument.) Let e′i = C[〈k ? ei : el〉].
Suppose

∅, S1 ⇓ Vp1, f :R

Then by the [F-PRINT] rule

∅, e ⇓∅ Σ1, Vf

Σ1, e
′
1 ⇓∅ Σ21, Vc1

ep1 = λx.true ∧f Σ21(k1) ∧f ... ∧f Σ21(kn)
{ k1 ... kn } = closeK (labels(e) ∪ labels(e′1),Σ21)
Σ21, ep1 Vf ⇓∅ Σ31, Vp1

pc(Vf ) = f, pc(Vc1) = R, pc(Vp1) = true .

Since S1 is k-secure, we now have that k ∈ pc.
Since S2 terminates, there is also an [F-PRINT] run for S2 that
includes the antecedents

∅, e ⇓∅ Σ1, Vf

Σ1, e
′
2 ⇓∅ Σ22, Vc2

ep2 = λx.true ∧f Σ22(k1) ∧f ... ∧f Σ22(kn)
{ k1 ... kn } = closeK (labels(e) ∪ labels(e′2),Σ22)
Σ22, ep2 Vf ⇓∅ Σ32, Vp2

We assume that both rule instances have identical labels {k1, ...kn}.
In general, of course, those labels may differ. For example, ep2 may

include an additional conjunct Σ22(k
′) not {k}- equivalent to a cor-

responding conjunct in ep2, but in this case we can add a seman-
tically transparent corresponding conjunct λx.true to recover the
equivalence ep1 ∼{k} ep2.

Now e′1 ∼{k} e′2.

So by Theorem 2, Σ21 ∼{k} Σ22, Vc1 ∼{k} Vc2.

Also ep1 ∼{k} ep2, so

Σ31 ∼{k} Σ32

Vp1 ∼{k} Vp2

We now continue the [F-PRINT] run on S2 by choosing the same pc
as from the run on S1.
Clearly pc(Vf ) = f .

Moreover, since k ∈ pc, pc(Vc2) = pc(Vc1) = R.
Similarly, pc(Vp2) = pc(Vp1) = true .
Hence we can conclude ∅, S2 ⇓ Vp2, f :R as required.

5. Scala Implementation

We have implemented Jeeves as an embedded domain-specific lan-
guage in the Scala programming language [37]. We use Scala’s
overloading capabilities to implement faceted execution, constraint
collection, and interaction with the Z3 SMT solver [33].2 The imple-
mentation defines Scala classes for integers, booleans, objects, and
functions that support operations over expressions e or faceted ex-
pressions 〈k ? eH : eL〉. The implementation overloads operators
on these types so that faceted values can be used interchangeably
with concrete values. For instance, the Expr[ Int ] class represents
the type of concrete and faceted integer expressions. We use Scala’s
implicit type conversions to lift concrete Scala values.

We have implemented a Scala trait that stores a runtime envi-
ronment to support methods creating labels, declaring policies, and
concretizing expressions. The trait maintains the logical and default
constraint environments as lists of functions of type Expr[T] ⇒
Formula, where Formula is a boolean expression that may contain
facets. We have a partial evaluation procedure that simplifies ex-
pressions based on the value of each facet and the current path as-
sumptions.

To assign values to labels, the implementation evaluates poli-
cies according to the context and heap state and invokes Z3 for
resolving constraints. Our implementation translates constraints to
the QF_LIA logic of SMT-LIB2 [7]. There are only quantifier-free
boolean constraints. Labels are the only free variables. We use in-
cremental scripting to implement default values according to de-
fault logic [2]. The implementation relies on Scala’s support for dy-
namic invocation to resolve field dereferences. We use zero values
( null, 0, or false ) to represent undefined fields in SMT.

Our Jeeves library interface supports the introduction of la-
bels, declaration of policies, creation of sensitive variables, and
concretization of sensitive expressions. It also has functions for
assignment, conditionals, and function evaluation according to the
Jeeves semantics.

The library has the following API methods for introducing sen-
sitive values and policies:

def mkLabel: Label
def restrict ( lvar : Label , f : Expr[T] ⇒ Formula)
def mkSensitive( lvar : Label , high : Expr[T], low: Expr[T]):

Expr[T]

The programmer introduces labels, which are boolean logic vari-
ables mapped to HIGH and LOW, into scope by calling the mkLabel
method. The restrict method for introducing policies takes a la-
bels and a function that takes a context expression and returns a
formula. The library stores policy functions and applies them with
respect to the output context and output heap state to produce con-
crete outputs adhering to the policies. The programmer introduces
sensitive values through the mkSensitive method, which takes a la-
bels along with high-confidentiality and low-confidentiality views.
To support evaluation with sensitive expressions, programs should
accommodate values of type Expr[T] (e.g. IntExpr rather than
BigInt). The library has methods for producing concrete state:

def concretize [T](ctxt : Expr[T], e: Expr[T]): T
def jprint [T](ctxt : Expr[T], e:Expr[T]): Unit

These functions take a context and an expression, both of which
may be sensitive, and provides assignments to the labels to pro-
duce concrete views that adhere to the policies. The implementa-
tion treats the mutable state as part of the context in the concretize
call to ScalaSMT. All classes that are used in constraint must ex-
tend the JeevesRecord class. The set of allocated JeevesRecords is
supplied at concretization. This way, policies that refer to mutable

2 The code is available at http://code.google.com/p/jeeveslib/.



parts of the heap will produce correct constraints for the snapshot
of the system at concretization. The library provides support for
evaluating conditionals and function applications:

def jif [T] (c: Formula, t : Unit ⇒ T, f: Unit ⇒ T): Unit
def jfun [A, B] ( f : FunctionExpr[A, B], arg : A): B

The library stores the path condition as a set of labels and their
negations. The jif method evaluates the condition and manages the
path condition for each branch appropriately in order to produce
a potentially faceted result. The jfun method behaves similarly.
Both of these methods check against the path condition to avoid
performing unnecessary computations.

6. Case Study: Conference Management

We have implemented JConf, a conference management system that
uses Jeeves for confidentiality guarantees. The JConf backend inter-
acts with a web-based frontend and a persistent database store. The
original JConf implementation, written using an earlier implemen-
tation of Jeeves that used symbolic evaluation rather than faceted
execution, was up for several hours at a time and a cumulative to-
tal of several days, processing submissions for the Student Research
Competition for the Programming Language Design and Implemen-
tation Conference 2012. Our experience with this system motivated
some of the design decisions in Jeeves, including the decision to use
faceted execution.

The implementation of JConf has a backend written in Jeeves
that defines Scala objects corresponding to data types (for instance,
for representing users and papers) and associates policies with
fields of these objects; object constructors add the policies. The
backend contains functionality that supports the creation of, lookup
of, updates to, and search over these objects. The frontend web code,
written using the Scalatra web framework [1], makes calls to the
backend functionality and to accessors of the objects. The JConf
backend contains a layer that interacts with a MySQL database for
persistent storage. The frontend web code and database-interaction
code remain agnostic to the policies: the same code is used, for
instance, to render a page (for instance, displaying appropriately
anonymized information about a paper review) for an author, a re-
viewer, and a program committee member. Interaction with the
Jeeves backend takes on the order of seconds; solving in the Z3
SMT solver takes well under one second. The bulk of execution is
involved in propagating sensitive values.

The JConf conference management system provides support for
creating new users and updating profiles, creating papers and up-
dating information, submitting papers, assigning reviews, and re-
viewing papers. We show the breakdown of the system in Table 2:
classes describing the data (users, papers, paper reviews, and the
context), backend code for accessing the data (including the inter-
face to the database), the Scalatra code for the frontend web re-
quest handlers, and the Scalatra Server Page (SSP) code defining
the browser pages themselves.

Policy code (calls to mkLabel, mkSensitive, restrict, and
concretize ) is concentrated in the data classes, enabling modu-
lar updates to the policy and core functionality. For instance, we
can change the review process from double-blind to single-blind
simply by tweaking the policies associated with paper and review
fields. The policy code makes up less than 5% of the total lines of
code.

The programmer defines a getter, a setter, and a show function
for each sensitive field. The getter returns the sensitive value, the
setter creates a new sensitive value based on the views, and the
show function calls concretize to return a concrete value of the
appropriate type. The programmer creates the sensitive value with a
label in scope to which policies can be attached. It may make sense
to share labels between field for some applications. The frontend

File Total LOC Policy LOC

ConfUser.scala 212 21
PaperRecord.scala 304 75
PaperReview.scala 116 32
ConfContext.scala 6 0

Backend + Squeryl 800 0
Frontend (Scalatra) 629 0
Frontend (SSP) 798 0

Total 2865 128

Table 2. Lines of code vs. policy in JConf.

calls the show functions to access concrete versions of values. We
use the database only for persistent storage; all queries use Jeeves
to ensure policy compliance.

7. Related Work

Jeeves follows a line of research in language-based information
flow that began with the work of Denning [15, 16]. Sabelfeld and
Myers [41] survey much of the literature in the field in subsequent
years. Volpano et al. [47] develop a type system that guarantees non-
interference for the language that Denning outlines. Heintze and
Riecke [22] design a type system guaranteeing non-interference for
a functional language, extended with constructs for reference cells,
concurrency, and integrity guarantees. Smith [43] discusses some
of the core concepts in information flow analysis.

Languages for verifying information flow security include
Jif [34], Fine [12], F∗ [45], and Ur/Web [13]. Nanevski et al. [36]
verify information flow policies through the use of dependent types.
Hunt and Sands [23] describe a flow-sensitive type system. Zhang
et al. [51] describe a type-based approach to mitigating timing
channels. These static approaches have no dynamic overhead. My-
ers [34] discusses JFlow, a variant of Java with security types to
provide strong information flow guarantees. Le Guernic et al. [20]
examine code from branches not taken, increasing precision at the
expense of run-time performance overhead. Shroff et al. [42] use a
purely-dynamic analysis to track variable dependencies and reject
more insecure programs over time. Jeeves mitigates programmer
burden by guaranteeing that programs adhere to the desired prop-
erties by construction, but with dynamic overhead. Systems like
Fabric [28] combine static and dynamic techniques, but the focus
of the dynamic analyses is on checking rather than on helping the
programmer produce correct outputs. Russo and Sabelfeld [40] dis-
cuss trade-offs between static and dynamic analyses.

Jeeves is also related to systems that provide support for insert-
ing information flow checks. Broberg and Sands [9] describe flow
locks for dynamic information flow policies. Birgisson et al. [8]
show how capabilities can guarantee information flow policies. The
system-level data flow framework Resin [49] allows the program-
mer to insert checking code to be executed at output channels. Pri-
vacy Integrated Queries (PINQ) [30] is a capability-based system
that enforces differential privacy policies in declarative database
queries. SEAL [35] specifies policies for label-based access control
systems.

There are parallels with dynamic approaches that run multiple
executions for security guarantees. Capizzi et al.’s shadow execu-

tions [10] maintain confidentiality by running both a public and
private copy of the application. The public copy can communicate
with the outside world but cannot access private data; the private
copy has access to private information but lacks network access.
Devriese and Piessens’ secure multi-execution strategy [17] applies
this approach to JavaScript code. Kashyap et al. [24] discuss prop-
erties of timing and termination for secure multi-execution.



Austin and Flanagan [6] simulate secure multi-execution with a
single execution through the use of faceted values, avoiding over-
head when code does not depend on confidential data, noticeably
improving performance. The same paper also show how declassifi-
cation may be performed with facets, though with Jeeves’s policies,
declassification is largely unnecessary. Rozzle [27] uses symbolic
execution to detect malware, treating environment-specific data as
symbolic and exploring both paths whenever a value branches on a
symbolic value in a manner similar to faceted evaluation. Jeeves al-
lows more complex policies, for instance ones that may depend on
sensitive values. Faceted values are related to the non-interference
work by Pottier and Simonet for Core ML [38]. Their proof ap-
proach involves a Core ML2 language that has expression pairs
and value pairs, similar to faceted expressions and faceted values
respectively. While their approach is not intended as a dynamic en-
forcement mechanism, their work does include evaluation rules for
Core ML2 that may supplement understanding of faceted values.

The automatic policy enforcement is related to work in con-
straint functional programming and executing specifications. Like
constraint functional languages, Jeeves integrates declarative con-
straints into a non-declarative programming model. Jeeves differs
from languages such as Mercury [44], Escher [29], Curry [21], and
Kaplan [26], which support rich operations over logic variables at
the cost of potentially expensive runtime search and undecidability.
In Jeeves, the logical environment is always consistent and the run-
time only performs decidable search routines. Jeeves differs from
the Squander system [31] for unified execution of imperative and
declarative code in that Jeeves propagates constraints alongside the
core program rather than executing isolated constraint-based sub-
procedures. As with relaxed approximate programs [11], Jeeves
nondeterministically provides an acceptable output for a specific
class of acceptability properties.

Jeeves is related to declarative domain-specific languages. Fre-
netic [19] provides a query language programming distributed col-
lections of network switches. Engage [18] uses constraints to mit-
igate programmer burden in configuring, installing, and managing
applications. Jeeves differs in that its target domain of privacy is
cross-cutting with respect to other functionality.

Declassification is an important area of research for information
flow analysis and overlaps a great deal with the applications of com-
putable policies. Zdancewic [50] uses integrity labels to provide
robust declassification. permitting only high-integrity declassifica-
tion decisions. Askarov and Myers [3] consider a similar approach
for endorsement, checked endorsements. arguing that checked en-
dorsements are needed to prevent an attacker from endorsing an
unauthorized declassification. Chong and Myers [14] use a frame-
work for application-specific declassification policies. Askarov and
Sabelfeld [4] study a declassification framework specifying what
and where data is released. Vaughan and Chong [46] infer declassi-
fication policies for Java programs.

The termination channel is another area of particular concern
for information flow analysis. Askarov et al. [5] highlight compli-
cations of intermediary output channels, which allow an attacker
to observe the output of a program during its execution, and dis-
cuss progress-sensitive noninteference. Moore et al. [32] include
the concept of a budget for possible information loss through the
termination channel, terminating the program when the budget has
been exceeded. Rafnnson et al. [39] buffer output to reduce data
lost from intermediary output channels and termination behavior.

8. Conclusions

Jeeves allows the programmer to implement core functionality
separately from confidentiality policies. Our execution strategy
exploits the structure of sensitive values to facilitate reasoning
about runtime behavior. We present a semantics for faceted exe-

cution of Jeeves in terms of the λjeeves core language, and prove
non-interference and policy compliance for confidentiality. We
describe how Jeeves enables reasoning about termination, policy
consistency, and policy independence. Finally, we describe our im-
plementation of Jeeves in Scala and our experience using Jeeves to
implement an end-to-end conference management system.
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A. Proof of Projection

Theorem 1. Suppose

Σ, e ⇓pc Σ′
, V

Then for any q ∈ PC where pc and q are consistent

q(Σ), q(e) ⇓pc\q q(Σ′), q(V )

Proof. We prove a stronger inductive hypothesis, namely that for
any q ∈ PC where ¬∃k.(k ∈ pc ∧ k ∈ q) ∨ (k ∈ pc ∧ k ∈ q)

1. If Σ, e ⇓pc Σ′, V then q(Σ), q(e) ⇓pc\q q(Σ′), q(V ).

2. If Σ, (V1 V2) ⇓app

pc Σ′, V then q(Σ), (q(V1) q(V2)) ⇓app

pc\q

q(Σ′), q(V ).

The proof is by induction on the derivation of Σ, e ⇓pc Σ′, V
and the derivation of Σ, (V1 V2) ⇓app

pc Σ′, V , and by case analysis
on the final rule used in that derivation.

• For case [F-LABEL], e = label k in e′.
By the antecedents of this rule:

k′ fresh
Σ[k′ := λx.true], e′[k := k′] ⇓pc Σ′, V

By induction

q(Σ[k′ := λx.true ]), q(e′[k := k
′]) ⇓pc\q q(Σ′), q(V )

Since k′ 6∈ Σ, we know that k′ 6∈ q(Σ).
Therefore, q(Σ)[k′ := λx.true] = q(Σ[k′ := λx.true]).

By α-renaming, we assume k 6∈ q, k 6∈ q, k′ 6∈ q, and k
′
6∈ q.

Therefore q(e′)[k := k′] = q(e′[k := k′]).



• For case [F-RESTRICT], e = restrict(k, e′). By the antecedents
of this rule:

Σ, e′ ⇓pc Σ1, V
Σ′ = Σ1[k := Σ1(k) ∧f 〈〈 pc ∪ {k} ? V : λx.true 〉〉]

By induction, q(Σ), q(e′) ⇓pc\q q(Σ1), q(V ).

q(Σ′)=q(Σ1[k := Σ1(k) ∧f 〈〈 pc ∪ {k} ? V : λx.true 〉〉])
=q(Σ1)[k := q(Σ1(k))∧f

q(〈〈 pc ∪ {k} ? V : λx.true 〉〉)]
=q(Σ1)[k := q(Σ1(k))∧f

〈〈 pc ∪ {k} \ q ? q(V ) : λx.true 〉〉)]
by Lemma 1

• For case [F-VAL], e = V .
Since Σ, V ⇓pc Σ, V and q(Σ), q(V ) ⇓pc\q q(Σ), q(V ), this
case holds.

• For case [F-REF], e = ref e′. Then by the antecedents of the
[F-REF] rule:

Σ, e′ ⇓pc Σ′′, V ′

a 6∈ dom(Σ′′)
V ′′ = 〈〈 pc ? V ′ : 0 〉〉
Σ′ = Σ′′[a := V ′′]

V = a

By induction, q(Σ), q(e′) ⇓pc\q q(Σ′′), q(V ′).
Since a 6∈ dom(Σ′′), a 6∈ dom(q(Σ′′)).
By Lemma 1, q(V ′′) = 〈〈 pc \ q ? q(V ′) : q(0) 〉〉.
Since Σ′ = Σ′′[a := V ′′], q(Σ′) = q(Σ′′)[a := q(V ′′)].
Therefore q(Σ), ref q(e′) ⇓pc\q q(Σ′), q(V ).

• For case [F-DEREF], e = !e′. Then by the antecedents of the
[F-DEREF] rule:

Σ, e′ ⇓pc Σ′, V ′

V = deref (Σ′, V ′, pc)

By induction, q(Σ), q(e′) ⇓pc\q q(Σ′), q(V ′).
By Lemma 2, q(V ) = deref (q(Σ′), q(V ′), pc \ q).
Therefore q(Σ), q(!e′) ⇓pc\q q(Σ′), q(V ).

• For case [F-ASSIGN], e = (ea:= eb).
By the antecedents of the [F-ASSIGN] rule:

Σ, ea ⇓pc Σ1, V1

Σ1, eb ⇓pc Σ2, V

Σ′ = assign(Σ2, pc, V1, V )

By induction

q(Σ), q(ea) ⇓pc\q q(Σ1), q(V1)
q(Σ1), q(eb) ⇓pc\q q(Σ2), q(V )

By Lemma 3, q(Σ′) = assign(q(Σ2), pc \ q, q(V1), q(V )).
Therefore q(Σ), q(ea:= eb) ⇓pc\q q(Σ′), q(V ).

• For case [F-APP], e = (ea eb). By the antecedents of the [F-APP]

rule:

Σ, ea ⇓pc Σ1, V1

Σ1, eb ⇓pc Σ2, V2

Σ2, (V1 V2) ⇓
app

pc Σ′, V

By induction

q(Σ), q(ea) ⇓pc\q q(Σ1), q(V1)
q(Σ1), q(eb) ⇓pc\q q(Σ2), q(V2)

q(Σ2), (q(V1) q(V2)) ⇓
app

pc\q q(Σ′), q(V )

Therefore q(Σ), q(ea eb) ⇓pc\q q(Σ′), q(V ).
• For case [F-LEFT], e = 〈k ? ea : eb〉. By the antecedents of this

rule

k ∈ pc

Σ, ea ⇓pc Σ′, V

If k ∈ q, then q(〈k ? ea : eb〉) = q(ea).
By induction q(Σ), q(ea) ⇓pc\q q(Σ′), q(V ).

Otherwise k 6∈ q and k 6∈ q.
Therefore q(〈k ? ea : eb〉) = 〈k ? q(ea) : q(eb)〉.
Since k ∈ pc \ q, it holds by induction that

q(Σ), 〈k ? q(ea) : q(eb)〉 ⇓pc\q q(Σ′), q(V )

• Case [F-RIGHT] holds by a similar argument as [F-LEFT].
• For case [F-SPLIT], e = 〈k ? ea : eb〉. By the antecedents of the

[F-SPLIT] rule:

Σ, ea ⇓pc∪{k} Σ1, V1

Σ1, eb ⇓
pc∪{k} Σ′, V2

V = 〈k ? V1 : V2〉

Suppose k ∈ q. Then q(e) = q(ea) and q(V1) = q(V ).
By induction, q(Σ), q(ea) ⇓pc∪{k}\q q(Σ1), q(V1).
Lemma 4 implies q(Σ1) = q(Σ′), so this case holds.

If k ∈ q, Then q(e) = q(eb) and q(V2) = q(V ).
By Lemma 4 we know that q(Σ) = q(Σ1).
By induction, q(Σ1), q(eb) ⇓pc∪{k}\q q(Σ′), q(V2).

If k 6∈ q and k 6∈ q, then by induction

q(Σ), q(ea) ⇓pc∪{k}\q q(Σ1), q(V1)
q(Σ1), q(eb) ⇓pc∪{k}\q q(Σ′), q(V2)

By Lemma 1, q(V ) = 〈〈 pc \ q ? q(V1) : q(V2) 〉〉.
• For case [FA-FUN], V1 = λx.e′. By the antecedent of this rule

Σ, e′[x := V2] ⇓pc Σ′
, V

We know that q(λx.e′ V2) = q(e′[x := V2]).
By induction q(Σ), q(e′[x := V2]) ⇓pc\q q(Σ′), q(V ).

• Both cases [FA-LEFT] and [FA-RIGHT] hold by a similar argument
as [F-LEFT].

• Case [FA-SPLIT] holds by a similar argument as [F-SPLIT].


