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No Privacy Concerns
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def getLocation (user: User): Location = user.location
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Finer-Grained Policies
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Programmer Burden

def getLocation (user: User) (viewer: User) C)utput
Location = { Context
if (isFriends user viewer) ({ Policies
if (canSee user.location viewer) {
user.location;
} else { scrub(user.location, “Diner”); }

} else { undisclosedLocation; }

Views of sensitive values

Jean Yang @ POPL



Our Mission

Make it easier for the
programmer to preserve
confidentiality of user data.



What'’s Hard?

Data

Function Programmer check/filter

Functionality

Scrubbed data and policy are
intertwined.

Function Programmer check/filter

Scrubbed data

Jean Yang @ POPL



Our Solution

Separation of policies
Data P O P
from functionality
Automatic

enforcement Functlon Programmer check/filter

FUﬂCtIOn Programmer check/filter

Scrubbed data

JeanYang @ POPL



State of the Art

Jeeves

Jeeves Goal

\icy ¥
P nality

def getlocation (user: User): Location =

user.location

JeanYang @ POPL
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Jeeves Language

@ Sensitive values
DRSi]  Da (3 pofces
@ Automatic :
Function
contextual
enforcement

Function

Scrubbed data
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Jeeves for Locations
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Using Jeeves

Sensitive Values
level ain { low, high }

val location: String = < |I variable

Low componeér High component

Policies
policy a: context != alice = low

Core Functionality
val msg: String =“Alice is at ” + location

Contextual Enforcement
print {alice} msg /* “Alice is at MIT”*/
print {bob} msg /*“Alice is at school”*/

JeanYang @ POPL
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How Jeeves Works

- Symbolic values

Symbolic i
Y . Function
evaluation
- |mp|icit
Function parameter

]

Concrete value

Jean Yang @ POPL
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Representing Sensitive
Values in Jeeves

Jeeves

Name |Location
Alice  (?|MIT), [[Poliey

Bob POPL

Claire (?|POPL), -




Symbolic Evaluation for
Information Flow

4 N\
m Runtime Environment

Alice  ([)g context != alice = a = low
Bob POPL = b =low

Claire (|), . N o

How many people
are at POPL!?

Outputs computed from
sensitive values are symbolic
| + ((x, = POPL) 7 | :0) & concretized under the policy
+ ((x, = POPL) ? 1 : 0) environment.
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Jeeves Non-Interference
Guarantee

Consider the sensitive value

< @‘ @ >@ Level variable

Low component High component
Given a fixed L, all executions where a must be

low produce equivalent outputs no matter the
value of




Standard

Non-Interference
2 n
l_ / n-1
28 2

Program

1S4

Does not

OUtPUt H-value

a = low
Does not depend
on the H-value

depend on the



Jeeves

Non-Interference
L
25
a = low
Program Depends on the
H-value

@ Cannot distinguish

between H-values that
OUtPUt imply a = low
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Jeeves

Non-Interference

L

2

B
2

Program
Programs @
to outputs? Output

a = low

Program does not leak
information about H.

JeanYang @ POPL
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Language Restrictions

: Primitives and objects.
Symbolic values ,
No functions.

Arithmetic and
Boolean constraints
with conditionals &

implications.

No functions,
quantifiers, or
theory of lists.

Jean Yang @ POPL 23



Static Checks

Symbolic values flow

only where expected.

Evaluation does not
introduce
nontermination.

Function

Function

Concrete value

JeanYang @ POPL

Contexts are
well-formed.

b

OUtPUtS are concrete.
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Stateful Policies

-

ﬁatlon. y,

Onl eople\

see my

Ak

Y

Secret
club

policy a:

(distance context@

> radius ) 2 low

But Alice’s location is
changing...

Jeeves: Delay policy evaluation until output.

JeanYang @ POPL
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Jeeves System

- Data Well-formed values.

Jeeves , Evaluation
runtime Function produces well-
formed values.

Function

¢

Policies evaluated.

Concrete value Guarantee: outputs shown
according to policies.
Jean Yang @ POPL 8 P V



Scala Implementation

Overload operators to
create symbolic expressions.

-

(

~

SMT Solver

T print

policy R Runtime

2,

Environment

Propagate policies.
Jean Yang @ POPL

Use an SMT

solver as a
model finder.

Delay
evaluation of
policies until
output.
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Policy

Functionality

JConf Architecture

Paper Review
Title Reviewer
Author Content
Reviews
Tags User

Role
Core Program
*Search papers. Does not
*Display papers. need to
Add and remove tags.  know about
*Assign and submit reviews.  policies.

JeanYang @ POPL

Context

Viewer: User
CStage: Stage

Submission,
review, rebuttal,
decision, public
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Functionality vs. Policy

File @ |Total LOC Policy LOC

ConfUser.scala 59 |7
PaperRecord.scala 103 48

PaperReview.scala 21| ||

Backend 123
Frontend (Scalatra) 161
Total 473 76
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Conclusions
L]

:

\ I | —

=‘ B

The Jeeves language: How we designed a Evaluation of Jeeves
pushing responsibility language with constraints in practice:
of privacy to the using symbolic evaluation conference
runtime. to provide execution management
guarantees. example.

Website: sites.google.com/site/jeevesprogramming
Google Code: code.google.com/p/scalasmt
Contact: jeanyang@mit.edu
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