A Language for
Automatically
Enforcing Privacy

CCCCC

Displaying User Locations
to Other Users

»ﬁ?
=3

aaaaaaaaaaa

No Privacy Concerns

Y

4)

Whatever!

N
PN

Secret
club

getLocation

def getLocation (user: User): Location = user.location

Jean Yang @ POPL 3

4 Only my A
friends can
see my

location.

0
PN
AA

Simple policy

getlLocation

Secret
club

Secret
club

Jean Yang @ POPL

Finer-Grained Policies

4 Only my A
friends can
see my

| location. |

Secret
club

Only
members
know this

exists.

~

J

getLocation

Policy
interaction?

Diner
Owner Viewer
Locations
Which policies Not a

apply where!

JeanYang @ POPL

member!

5

Programmer Burden

def getLocation (user: User) (viewer: User) C)utput
Location = { Context
if (isFriends user viewer) ({ Policies
if (canSee user.location viewer) {
user.location;
} else { scrub(user.location, “Diner”); }

} else { undisclosedLocation; }

Views of sensitive values

Jean Yang @ POPL

Our Mission

Make it easier for the
programmer to preserve
confidentiality of user data.

What'’s Hard?

Data

Function Programmer check/filter

Functionality

Scrubbed data and policy are
intertwined.

Function Programmer check/filter

Scrubbed data

Jean Yang @ POPL

Our Solution

Separation of policies
Data P O P
from functionality
Automatic

enforcement Functlon Programmer check/filter

FUﬂCtIOn Programmer check/filter

Scrubbed data

JeanYang @ POPL

State of the Art

Jeeves

Jeeves Goal

\icy ¥
P nality

def getlocation (user: User): Location =

user.location

JeanYang @ POPL

10

Talk Outline

G\Lr
W

4

Jeeves
language

How it
works

JeanYang @ POPL

Coding in
Jeeves

Jeeves Language

@ Sensitive values
DRSi] Da (3 pofces
@ Automatic :
Function
contextual
enforcement

Function

Scrubbed data

JeanYang @ POPL

&)—

12

Jeeves for Locations

N N
Diner
~—_"

Low confidentiality

— g Delri T AP
@' Paimyra Towns
. Brdesburg Cinnaminson .
iner e e i
@ Wynne o3z
5 Mool &3 &
o 3 By =
’ Pennsauken Moocesiow Millboumne 7 |
- delphia’ Merchantville Maple Shad S Hil i camems - Philadelphial ~
phia &3 oW o adelphia &3 Townshi
Lansdowne = & h Goiden Canstionne = S !
175 3 2 Trangle 476] L Triangle Ranl
& Camden A £ Camden 755
20 Darty 2 ! 1 Colingswood \ =St 980 Darby. o ! \ Colingswood "\ @
ol Cotwyn e Nestmont e c — Westront
z::::" 53 Gl i W o "G"l?::: g = @D oakyn
noiden 3
D' SGoucester {303 Haadonfield Cy » D7 SGoucester {303 Haadonfield Gesed
oft it Ciy P M & City i
Philadeiphia P Mt Ephraim - Heddon D spingdale Philadeiphia P M1 Ephraim Heddon Y spingdate
oemasces S Westville e : Internatonal 4 S Westvile Hoohts S
R (e o7 Betmauw Ashiang e S e el e Ashiang
S Park Runnemede Magnolia T P Park s Runnemede Magnolia
s @ Somerdale Echelon V Sl @ Somerdale Echelon V
Flandnra o ia Gibbsbor o Clandeatsa st Gibbsboi

JeanYang @ POPL

Using Jeeves

Sensitive Values
level ain { low, high }

val location: String = < |I variable

Low componeér High component

Policies
policy a: context != alice = low

Core Functionality
val msg: String =“Alice is at ” + location

Contextual Enforcement
print {alice} msg /* “Alice is at MIT”*/
print {bob} msg /*“Alice is at school”*/

JeanYang @ POPL

14

G\Lr
W

4

Jeeves
language

Talk Outline

How it
works

JeanYang @ POPL

Coding in
Jeeves

How Jeeves Works

- Symbolic values

Symbolic i
Y . Function
evaluation
- |mp|icit
Function parameter

]

Concrete value

Jean Yang @ POPL

16

Representing Sensitive
Values in Jeeves

Jeeves

Name |Location
Alice (?|MIT), [[Poliey

Bob POPL

Claire (?|POPL), -

Symbolic Evaluation for
Information Flow

4 N\
m Runtime Environment

Alice ([)g context != alice = a = low
Bob POPL = b =low

Claire (|), . N o

How many people
are at POPL!?

Outputs computed from
sensitive values are symbolic
| + ((x, = POPL) 7 | :0) & concretized under the policy
+ ((x, = POPL) ? 1 : 0) environment.

Jean Yang @ POPL 18

Jeeves Non-Interference
Guarantee

Consider the sensitive value

< @‘ @ >@ Level variable

Low component High component
Given a fixed L, all executions where a must be

low produce equivalent outputs no matter the
value of

Standard

Non-Interference
2 n
l_ / n-1
28 2

Program

1S4

Does not

OUtPUt H-value

a = low
Does not depend
on the H-value

depend on the

Jeeves

Non-Interference
L
25
a = low
Program Depends on the
H-value

@ Cannot distinguish

between H-values that
OUtPUt imply a = low

Jean Yang @ POPL 21

Jeeves

Non-Interference

L

2

B
2

Program
Programs @
to outputs? Output

a = low

Program does not leak
information about H.

JeanYang @ POPL

22

Language Restrictions

: Primitives and objects.
Symbolic values ,
No functions.

Arithmetic and
Boolean constraints
with conditionals &

implications.

No functions,
quantifiers, or
theory of lists.

Jean Yang @ POPL 23

Static Checks

Symbolic values flow

only where expected.

Evaluation does not
introduce
nontermination.

Function

Function

Concrete value

JeanYang @ POPL

Contexts are
well-formed.

b

OUtPUtS are concrete.

24

Stateful Policies

-

ﬁatlon. y,

Onl eople\

see my

Ak

Y

Secret
club

policy a:

(distance context@

> radius) 2 low

But Alice’s location is
changing...

Jeeves: Delay policy evaluation until output.

JeanYang @ POPL

25

Jeeves System

- Data Well-formed values.

Jeeves , Evaluation
runtime Function produces well-
formed values.

Function

¢

Policies evaluated.

Concrete value Guarantee: outputs shown
according to policies.
Jean Yang @ POPL 8 P V

Scala Implementation

Overload operators to
create symbolic expressions.

-

(

~

SMT Solver

T print

policy R Runtime

2,

Environment

Propagate policies.
Jean Yang @ POPL

Use an SMT

solver as a
model finder.

Delay
evaluation of
policies until
output.

27

G\Lr
W

4

Jeeves
language

Talk Outline

How it
works

JeanYang @ POPL

Coding in
Jeeves

Policy

Functionality

JConf Architecture

Paper Review
Title Reviewer
Author Content
Reviews
Tags User

Role
Core Program
*Search papers. Does not
*Display papers. need to
Add and remove tags. know about
*Assign and submit reviews. policies.

JeanYang @ POPL

Context

Viewer: User
CStage: Stage

Submission,
review, rebuttal,
decision, public

29

Functionality vs. Policy

File @ |Total LOC Policy LOC

ConfUser.scala 59 |7
PaperRecord.scala 103 48

PaperReview.scala 21| ||

Backend 123
Frontend (Scalatra) 161
Total 473 76

Jean Yang @ POPL 30

Conclusions
L]

:

\ I | —

=‘ B

The Jeeves language: How we designed a Evaluation of Jeeves
pushing responsibility language with constraints in practice:
of privacy to the using symbolic evaluation conference
runtime. to provide execution management
guarantees. example.

Website: sites.google.com/site/jeevesprogramming
Google Code: code.google.com/p/scalasmt
Contact: jeanyang@mit.edu

Jean Yang @ POPL 31

