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The management and processing of big data affects nearly everyone from businesses to individuals. This

data deluge presents many new research challenges and opportunities. Data-driven applications—including

personalized medicine, adaptive public transportation, and credit card fraud detection—are being made tractable

by the availability of abundant, high-quality data. On the other hand, storing and querying this diverse, ever-

growing data at scale necessitates completely new approaches to data management.

In my research, I design and build systems for large-scale data analytics. My emphasis is on creating sys-

tems that are performant and predictable. To provide performance, I develop novel parallel data processing

techniques [11] and for predictability, I apply statistical machine learning to model expected workload per-

formance [3, 5, 7, 8]. My approach frequently optimizes core database internals, such as storage manage-

ment [1, 6, 10] and query execution planning [4], improving their use of system hardware.

Summary of Research

Optimizing the Performance of Database Workloads

My dissertation addressed the prediction of performance for queries simultaneously executing on the same hard-

ware platform. By studying the relationship between databases and their hardware, I created a framework that

estimated the duration of individual queries before they started executing. My work developed abstractions to

quantify how multiple interleaved queries affect one another’s rate of progress. This forecasting is complicated

by the interactions among queries as they share resources (i.e., memory and I/O). The system used statistical

machine learning to approximate this contention. Such predictions are useful for a wide variety of applica-

tions, including reduction of the completion time of large query batches, better provisioning and query-to-server

assignments for cloud databases, improved query progress indicators, and concurrency-aware query optimizers.

I first researched this problem for static workloads with well-defined queries [3] and progressed on to ad-hoc

workloads [5]. The latter had a two phase approach; it first estimated the resource requirements of the query

under prediction. The predictor then forecasted how heavily the other concurrent queries used shared hardware

resources by analyzing their data access patterns. Its predictions came within 25% of the correct value on average

on our PostgreSQL/TPC-DS testbed.

After that, I extended my work to portable database performance prediction, wherein a model forecasts the

throughput of a query workload on a new hardware platform upon which it has not executed in the past [7]. This

work makes it possible for database administrators to dynamically provision the right level of infrastructure for

a given database schema and collection of queries executed. The framework first identifies example workloads

that have similar performance to the target one on configurations where both have executed. The predictor then

uses the recorded performance of relevant examples on the new platform to make its estimate.

Encoded Storage for Array Databases

During my graduate studies, I also began work on SciDB, an array-centric, open-source data management sys-

tem [9, 1]. In this platform, all data objects are arrays, and their storage is optimized for analytical, spatial

queries, such as k-nearest neighbors or downsampling an image. My work optimized the use of compression on

multidimensional arrays to reduce their I/O requirements. I applied several compressors to the vertically parti-

tioned, multidimensional chunks, which are SciDB’s unit of storage and memory management. My framework

selected the compression scheme once per attribute based on a randomized sample of its value distribution.

I also researched a vectorized execution model for sparse arrays in SciDB. This storage representation simpli-

fied the query’s execution, reduced its I/O consumption, and made more efficient use of the CPU cache. Prior to

my work, all sparse arrays in this database stored the positions of their cells as a list of coordinates. My approach

carefully composed compression schemes such that the database executed its queries directly on compressed cell

positions. This vectorized representation is available in the main release of SciDB.
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Data Placement for Elastic Databases

In my post-doctoral studies, I first focused on assigning data to nodes in elastic databases. Such systems

execute on a changing set of hardware resources dynamically provisioned to serve their storage and processing

demands. Several factors influence the sharding of an elastic database. As the cluster expands and contracts,

data placement should be incremental, minimizing the cost of each reconfiguration. The matching will be skew-

aware, balancing the database’s work to maximize its throughput. Lastly, partitioning is workload-sensitive,

respecting data dependencies and cognizant of how queries access the underlying data sources.

In [6], I researched this challenge in SciDB. This platform has a no-overwrite data model, i.e., users only delete

data when available space is exhausted. In this setting, storage space is the limiting factor. My work optimizes the

partitioning of large arrays for incremental cluster expansion. I both extended well-known partitioning algorithms

and created new ones. At each scale out operation, the partitioner receives n new nodes and reassigns data to

balance the load. This partitioning is made scalable by an iterative approach to each expansion, in which the

partitioner first identifies the most overburdened node and splits it. It repeats the process with each of the new

additions, thus catering to skew and simplifying the reorganization.

I am also working on sharding for H-Store, a main memory, parallel, transactional database [10]. In this

platform, CPU is the scarce resource, and thus redistributing the data means assigning an equal number of

transactions per node rather than balancing storage. Our approach minimizes the cost of elasticity for a live

system executing transactions by assigning each tuple to one of two storage tiers. This technique first identifies

and isolates hot spots, distributing them over the cluster as its top level of data placement. The remaining tuples

are handled separately using standard hash or range partitioning. In cases of more broadly distributed skew, our

system uses statistical techniques to classify the data access patterns and selects an appropriate repartitioning

algorithm, which adaptively adjusts the sharding.

Query Optimization for Array Databases

I am presently studying the optimization of skewed, massively parallelized joins for SciDB [4, 11]. Array databases

with a shared-nothing architecture are often network bound for join operations because aligning the data is far

more expensive than comparing the individual cells. To this end, I proposed a novel n-way shuffle algorithm,

which plans the join operation in two discrete steps: data alignment and join execution. The shuffle is so

named because it coordinates the exchange of data between n cluster nodes such that it minimizes the network

bandwidth used. Its data alignment phase brings sparse portions of the array to their denser counterparts,

allowing the join execution to begin more quickly. This technique resulted in a 3X speedup in our experiments

on skewed data. The optimization easily generalizes to relational joins.

Future Research

I have investigated several projects that I believe have strong potential for future research. I would enjoy pursuing

the first direction at a new university or research institution over the next 3–5 years. The second is a longer-term

endeavor positioned for collaboration between academia and industry.

Query Optimization for Complex Analytics

Query optimizers generate execution plans consisting of directed acyclic graphs. The planner takes in a declara-

tive query and translates it into a set of well-known operators, such as sorts and aggregates. This operator-level

planning is not well-equipped for complex analytics, especially on the commonplace shared-nothing architecture.

For example, it does not take into account skew in the distribution of queried data amongst nodes.

The language of complex analytics is different from relational querying and warrants a rethinking of how

the optimizer plans and executes its work. Such queries often consist of operators that are (a) blocking and

(b) not commutative. For example, if a user is executing a matrix multiplication on a transposed array, the

order of these operations cannot be reversed without producing erroneous output. This appears to limit the

benefits of conventional query optimization, such as the reordering the operators. It does, however, create new

opportunities for skew-aware query planning. Although there has been some work on optimizing joins for skewed

data distributions, in the general case there has been little research that deviates from the “bring query processing

to the data” paradigm. In cases of severe skew, when most or all of the data selected on a cluster resides on very
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few nodes, it may be more cost-effective to redistribute the data to achieve greater parallelism. This is especially

relevant for math-intensive operations including Fast Fourier transform and singular value decomposition.

This fine-grained assignment of “slices” of each query operator is complicated in a shared-nothing architecture

because the allocation is made at two levels: by host and its CPU cores. Careful consideration must be paid to

have sufficient parallelism for fast query execution without exceeding the available memory on each node. This

problem is especially challenging for clusters comprised of diverse, heterogeneous nodes.

Optimizing intra-operator parallelism for complex analytics at scale is too complex for conventional dynamic

programming strategies. More sophisticated searches, such as simulated annealing and evolutionary algorithms,

may result in faster query execution. Managing the trade-off between improved query plans and lower optimiza-

tion time is also relevant to this research.

Personal Use of Big Data

Presently most data-driven applications, including epidemic tracking, supply chain management, and advertise-

ment matching on web sites, are domain-specific and used by skilled experts only. There has been little work

done to bring the advancements of this new “big data” tool set to everyday life. It is easy to imagine how

many users would benefit from generic data-centric tools, which may guide personal decision making, aid in the

collection and management of information, and be used to visualize topics of interest.

Data-driven decision making (DDDM) is the first application I will investigate. Everyone makes decisions in

domains where they are not experts, and generalized DDDM tools will empower people to make more informed

choices in their personal and public lives. Users may ask questions such as: “If I seek a degree at University X,

what is my expected return on investment?” or “I am planning to vacation in Jamaica this summer; are there

likely to be more sunny days in July or August?”

Presently, most questions of this kind are answered using heuristics, back-of-the-envelope calculations, or

single-use applications such as a mortgage calculator. By tapping into real data and integrating the user’s

information with third-party sources, we can do better. For example, a driver who wants to forecast his car’s

depreciation rate will get a more accurate estimate by taking into account his commute, driving record, and

typical auto maintenance schedule.

All of these questions are context-sensitive and rely on extrapolating from examples of similar circumstances.

In [2], I proposed a query model for answering such questions. This vision paper outlines how users would supply

a frame of reference for their decisions, identify relevant external data, and determine a decision model for

their queries. This work poses several novel challenges in privacy preservation, data integration, query language

development, and managing the distributed execution of decision queries.

Bringing scalable analytics to data mining and visualization is also of keen interest to me. Users are presently

also awash in information that either affects or interests them. People regularly click through end user license

agreements (EULAs) with hardly a glance at their contents and no intuition of how they compare to other

contracts. The same is true for bills as they pass through Congress, mortgages, credit card agreements, and

privacy policies, and countless other jargon-heavy documents.

Most data with which users interact is lengthy and unstructured. Finding the right techniques to automate

document visualization presents several open research challenges, including the scalable parsing and classification

of data and pairing it with the most intuitive representation–whether it is a graph, hierarchical tree, or other

tool. I am particularly interested quantifying the contents of documents so that users can more directly gain

insights from the underlying data.

A visualization I would like to pursue is a “nutritional facts” label for documents. It is analogous to the ones

found on food containers. A person who seeks to understand a federal budget may bring up a tool that starts

with the top-level view, containing only a list of each department and its percentage of the budget. This user

could then drill down to understand the programs being funded by each organization, using pie charts and other

appropriate figures at each step, and continue until they reach the individual items in the document. Such a

generic document tool could train models for Internet privacy policies, prescribing data on pharmaceuticals, and

a myriad of other domain-specific documents, enabling people to interact more directly with their data.

Both of these topics would benefit from an interdisciplinary approach, and I am eager to work with potential

collaborators, especially in visualization and statistical machine learning. My background in scalable analytics

is readily applicable to these increasingly data-rich domains.
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[5] J. Duggan, O. Papaemmanouil, U. Çetintemel, and E. Upfal. Contender: A Resource Modeling Approach

for Concurrent Query Performance Prediction. In EDBT 2014.

[6] J. Duggan and M. Stonebraker. Incremental Elasticity for Array Databases. To appear in SIGMOD 2014.
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