
Performance Prediction
for Concurrent Database Workloads

Jennie Duggan
Brown University

Ugur Cetintemel
Brown University

Olga Papaemmanouil
Brandeis University

Eli Upfal
Brown University

ABSTRACT
Current trends in data management systems, such as cloud and
multi-tenant databases, are leading to data processing environments
that concurrently execute heterogeneous query workloads. At the
same time, these systems need to satisfy diverse performance ex-
pectations. In these newly-emerging settings, avoiding potential
Quality-of-Service (QoS) violations heavily relies on performance
predictability, i.e., the ability to estimate the impact of concurrent
query execution on the performance of individual queries in a con-
tinuously evolving workload.

This paper presents a modeling approach to estimate the im-
pact of concurrency on query performance for analytical work-
loads. Our solution relies on the analysis of query behavior in isola-
tion, pairwise query interactions and sampling techniques to predict
resource contention under various query mixes and concurrency
levels. We introduce a simple yet powerful metric that accurately
captures the joint effects of disk and memory contention on query
performance in a single value. We also discuss predicting the ex-
ecution behavior of a time-varying query workload through query-
interaction timelines, i.e., a fine-grained estimation of the time seg-
ments during which discrete mixes will be executed concurrently.
Our experimental evaluation on top of PostgreSQL/TPC-H demon-
strates that our models can provide query latency predictions within
approximately 20% of the actual values in the average case.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems
Modeling Techniques

General Terms
Measurement, Performance

1. INTRODUCTION
Concurrent query execution facilitates improved resource uti-

lization and aggregate throughput, while making it a challenge to
accurately predict individual query performance. Modeling the per-
formance impact of complex interactions that arise when multiple
queries share computing resources and data is difficult albeit crit-
ical for a number of tasks such as Quality of Service (QoS) man-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

agement in the emerging cloud-based database platforms, effective
resource allocation for time-sensitive processing tasks, and user ex-
perience management for interactive database systems.

Consider a cloud-based database-as-a-service platform for data
analytics. The service provider would negotiate service level agree-
ments (SLAs) with its users. Such SLAs are often expressed in
terms of QoS (e.g., latency, throughput) requirements for various
query classes, as well as penalties applied if the QoS targets are
violated. The service provider has to allocate sufficient resources
to user queries to avoid such violations, or else face consequences
in the form of lost revenue and damaged reputation. Thus, it is im-
portant to be able to accurately predict the runtime of an incoming
query on the available machines, as well as its impact on the ex-
isting queries, so that the scheduling of the query does not lead to
any QoS violations. The service provider may have to scale up and
allocate more cloud resources if it deems that existing resources are
insufficient to accommodate the incoming query.

This paper addresses the performance prediction problem for an-
alytical concurrent query workloads. Specifically, we study the fol-
lowing problem: “Given a collection of queries q1, q2, q3, ..., qn,
concurrently executing on the same machine at arbitrary stages of
their execution, predict when each query will finish its execution.”

To predict QoS, we target time elapsed rather than metrics such
as throughput or resource utilization. We elected execution latency
because in practice it has the greatest impact on user experience.
Users are generally more concerned about when a query returns its
output, rather than how many are sharing a host or the number of
physical I/Os required.

We propose a two-phase solution for this problem.

• Model Building We build a composite, multivariate regres-
sion model that captures the execution behavior of queries
under concurrency. We use this model to predict the logical
I/O latency for each query in a given workload mix.

• Timeline Analysis We analyze the execution timeline of the
workload to predict the termination points for individual queries.
This timeline analysis starts by predicting the first query to
complete and then repeatedly performs prediction for the re-
maining queries.

One of our key ideas is to use a logical I/O-based metric, called
BAL, to quantify the performance impact of concurrently execut-
ing queries. This simple yet highly-predictive metric gives us an
aggregate level cost without having to model the more complex un-
derlying physical systems individually.

Furthermore, we extend our modeling framework to support time-
changing workloads by calculating incremental predictions of the
execution latency for discrete mixes as they occur. When an in-
coming query is added to a mix, we project how it will impact the

337

currently running queries as well as estimate the execution latency
for the new addition. We extend this system to allow for longer-
term resource planning by modeling a queue of queries.

This paper makes the following novel contributions:

• We argue and experimentally demonstrate that BAL, a sim-
ple metric that captures the latency of a logical I/O, is a robust
indicator for query performance even in the presence of con-
currency. BAL facilitates the modeling of the joint effects
of physical I/O delay and memory contention with a single
value, normalized over the execution of the query.

• We develop a multivariate regression model that predicts the
impact of higher-degree concurrent query interactions de-
rived primarily from isolated (degree-1) and pairwise (degree-
2) concurrent execution samples.

• We show experimental results obtained from a PostgreSQL /
TPC-H study that supports our claims and verifies the effec-
tiveness of our predictive models. Our predictions are on the
average within nearly 20% of the actual values, while time-
line analysis leads to additional improvements, reducing our
average error to an average of 9% with periodic prediction
re-evaluation.

The rest of the paper is organized as follows. Section 2 looks
at model building for query interactions by examining changes in
logical I/O latency. After that we consider how to predict the log-
ical I/O latency metric in Section 3. Next we examine training
techniques for these models in Section 4. Immediately following
in Section 5 we leverage these models to produce end-to-end la-
tency estimates by simulating the lifetime of the query. Section
6 provides experimental evaluation of this work. In Section 7 we
examine related work, and finally we conclude in Section 8.

2. QUERY LATENCY INDICATORS
The goal of our framework is to predict the response latency of

concurrently running queries. Query latency is directly affected by
resource contention in the underlying hardware. As the number of
queries that are presently executing goes up their query latency in-
creases as they share access to disk, CPU time as well as memory.
Therefore our first step was to identify effective query latency in-
dicators, i.e., metrics that can capture the resource contention in
the underlying hardware and can be used to predict the latency of
concurrent queries. In this section we discuss the various query la-
tency indicators we examined. We also explore in more detail our
most effective indicator, the Buffer Access Latency (BAL) metric.
We continue with a brief description of our workload.

2.1 Analytical Workload
In this work we target analytical workloads. We assume that

all queries are derived from a set of known query classes (e.g.,
TPC-H templates) and that they are primarily I/O-bound. We tar-
get medium-weight queries. For the context of this work, we define
medium-weight queries as the 10 classes in TPC-H with latency on
and around the median latency of all of query classes.

The query classes in our workload stress different parts of our
system and the impact of concurrency on their latencies fluctuates
at varying magnitudes. In Table 1, we study the variance of the
10 medium-weight TPC-H query classes. The tables shows the
variance of query latency (and their average latency) when queries
are executed in different multiprogramming levels (i.e., number of
queries executing concurrently). We note that a multiprogramming
level of x means that x queries run concurrently. For all queries,

Query MPL 2 MPL 3 MPL 4 MPL 5
Class
3 456 (141) 2663 (178) 2596 (214) 10750 (279)
4 398 (156) 1883 (199) 3564 (223) 5638 (279)
5 56 (129) 2219 (160) 3539 (198) 10424 (257)
6 345 (114) 160 (126) 1115 (160) 1666 (185)
7 343 (155) 2547 (197) 4595 (222) 9050 (307)
8 218 (136) 1231 (151) 7771 (225) 5236 (253)
10 126 (141) 2139 (203) 2699 (214) 6667 (270)
14 408 (117) 430 (126) 909 (159) 1681 (183)
18 98 (141) 2630 (186) 2044 (206) 18821 (312)
19 488 (119) 694 (147) 1637 (177) 1354 (192)

Table 1: Variance in observed latencies (in seconds) for differ-
ent multiprogramming levels (MPLs). In parentheses are the
average latencies under the same conditions.

their average latency increases as we increase the degree of con-
currency. Moreover, the variance of latencies also increases. Some
query classes, such as 7 and 18 exhibit much more uncertainty in
their latency under concurrency. These queries are very I/O-bound
and require complex data access patterns of cascading joins and ag-
gregation. This causes them to be more sensitive to the queries they
are running with because it causes them to speed up or slow down
based on the amount of sharing that goes on among their working
set. In contrast, query class 6 has a simple execution plan (consist-
ing of a table scan and a light aggregate). In this work we formulate
predictions for individual queries based on their template and the
query mix(es) they are a part of.

2.2 I/O-Based Indicators
Our framework addresses concurrent query performance predic-

tions for analytical queries. These workloads include mostly read-
only operations and typically involve high number of I/O opera-
tions. Our first goal was to identify a metric that is strongly cor-
related with query latency of OLAP queries and can capture the
impact of concurrency on the query performance. Since I/O opera-
tions are the dominant factor of query latency we aimed to identify
query latency indicators that quantify how the cost of I/O opera-
tions changed due to concurrently running queries.

We can think of an I/O operation as a sequence of access meth-
ods. When fetching a page for a query, a request is first sent to the
buffer pool which is the fastest way to access data. If the requested
page is not found, the lookup is passed on to the OS-level cache,
which is the second fastest option. Finally, if this fails, the request
is enqueued for disk access to retrieve the block containing the re-
quested data. This disk access may be a seek or a sequential read,
causing the cost to access a data block to vary dramatically. Given
this sequence of access methods, concurrency affects the number
of I/O operations required by a query as multiple queries need to
share the buffer pool and OS-level cache and the physical disk.

We hypothesized that block reads from disk, buffer pool hits and
a multivariate model of the two would be well-correlated with la-
tency. We experimented with using linear regression models for
predicting query latency based on these metrics for different mul-
tiprogramming levels. Our results are shown in Table 2. Our ex-
perimental setup is detailed in Section 6.1. The table shows the
prediction error for each of these metrics. In general, we found that
these metrics were all disrupted from performing well by inherent
variance in the latency of a block from disk. In the next paragraphs
we discuss the limitations of each of these metrics.

I/O Block Reads. The first metric we considered was counting
the number of physical blocks read by a query. If a query’s exe-
cution speed is highly tied to how fast it can complete I/Os (since

338

Query I/O Blocks BP Hits Both BAL
Avg 25% 25% 24% 5%
3 29% 29% 28% 5%
4 24% 25% 24% 6%
5 30% 30% 29% 3%
6 17% 17% 15% 3%
7 26% 27% 25% 4%
8 26% 27% 24% 3%
10 28% 29% 28% 6%
14 21% 21% 17% 3%
18 27% 26% 30% 12%
19 22% 22% 20% 3%

Table 2: Mean relative error (|observed−prediction|
observed

) of I/O-
based latency indicators trained at MPL 1-5.

reads from memory have low impact on the latency), then the num-
ber of blocks read could give us an indicator of how much query
progress has been accomplished over time and how much time it
requires to complete.

Table 2 shows that the latency prediction based on blocks read
has an error less than 29% in most cases. This implies that there is
a correlation between number of blocks read in a query’s execution
time and the query’s latency. However, for certain query classes,
such as 3 and 5, this prediction is weaker. The prediction is less
strongly correlated because these queries spent considerable time
on their CPUs, and during that time they relinquish control over the
I/O bandwidth. These CPU-intensive query plans cause the queries
to be more sensitive to the degree of overlap between their working
set and that of the queries that they are executing alongside of. This
is because the queries frequently make short data accesses punctu-
ated by longer periods of CPU usage. Thus if the disk arm remains
roughly in the same region that they are executing from, the cost of
an I/O will remain relatively uniform. But if the data access pat-
terns are more random, this uncertainty will be reflected in the cost
of an I/O operation.

Buffer Pool Hits. We also studied if the buffer pool hits could
be used as query latency indicator. Our assumption was that the
latency overhead of disk access may be relatively fixed and that
we could subtract the I/O operations saved by each buffer pool hit
from this base overhead to estimate the query latency. We found
that this metric was correlated with latency, but the prediction er-
rors were similar to those of the I/O block reads indicator. There
were a number of factors contributed to this, including the fact that
the overall system has multiple layers of in-memory storage (i.e.,
buffer pool, OS cache) and so it was difficult to infer the savings
due to memory. Also, these savings did not adequately capture the
changing behavior of I/O operations, i.e., the physical blocks read
and written. The mix of seeks and sequential reads was not fixed,
making it harder to obtain consistently good predictions.

I/O Block Reads & Buffer Pool Hits. Finally, we experimented
with multivariate regression on both of these metrics. Our assump-
tion in this case was that these two metrics would complement each
other since buffer pool hits replace disk reads (i.e., a hit to the buffer
pool allows us to skip a disk access). Table 2 show that this model
did not significantly improve our prediction errors.

The results in Table 2 demonstrate that the number of physical
I/O blocks read and buffer pool hits are moderately correlated with
query latency. This is primarily because there is a high degree of
variance with regard to how long it takes to bring an individual
block in from disk. If the block is a part of a sequential read, then it
may occur quickly. However seeks are highly variable in their cost.
Physical I/O latency per block is proportional to the distance that

Figure 1: BAL as it changes over time for TPC-H Query 14.
Averaged over 5 examples of the template in isolation.

the disk arm moves to fetch a target block. Thus in practice, the
speed of reading an individual block of data can vary by up to an
order of magnitude. This causes both the I/O count and buffer pool
hits to have distorted latency predictions as they model the aver-
age I/O latency, when the quantity has an unknown (and routinely
changing) distribution.

2.3 Buffer Access Latency (BAL) as
an Indicator

We found that handling each of block access methods individu-
ally had limited utility because the interactions were too complex.
To simplify the problem, we identified the initial request to the
buffer pool as a gateway that all queries must go through to receive
their data. When a query requests a block of data, it submits its
request to the buffer pool manager. When the buffer pool receives
a request it queries its levels of storage one after another until it
acquires the needed disk block. The time that elapses on average
between when a request is issued and when the necessary block is
returned constitutes the average delay for a logical I/O request.

Therefore, rather than modeling each the steps of a buffer pool
request independently, we use the average latency of a logical I/O
operation as our query latency indicator. We call this metric buffer
access latency or BAL. Averaging this metric over the duration of a
query allows us to capture the interactions of disk seeks, sequential
reads, OS cache hits and buffer pool hits in a normalized manner.

Each average BAL is typically an aggregate of more than a mil-
lion logical I/O requests, so this allows us to infer changes in the
mix of I/O types (sequential reads, seeks, etc.) for individual queries.
A low average BAL when the query runs in isolation implies that
we have a lightweight query that reads most of its data from mem-
ory. In contrast, high BAL readings mean that a query is requesting
diverse data that is not memory-resident such as a fact table scan or
an index scan, necessitating expensive seeks.

To measure the BAL metric we modified the database engine we
used (PostgreSQL 8.4.3). Specifically, we intercepted the point in
the buffer pool manager where the query executor issues page re-
quests. A timer starts when the request is issued to the buffer pool.
If the page is not found, then the process refers the request to the
storage manager, which interfaces with the disk and operating sys-
tem. The timer stops when the requisite page is returned to the
query executor, regardless of its source. To generate the BAL met-
ric, we sum up the time elapsed for each page request and divide
it by the logical number of pages accessed by our query plan. In
Table 2 we examine the quality of BAL in comparison to the other

339

I/O-based indicators we studied to predict latency. Our prediction
errors drop to around 3%-6% in most cases.

One of the reasons that BAL is a good indicator for latency is be-
cause it is averaged over many samples over the lifetime of a query.
Thus, even when a query goes through very complex interactions
with the OS as well as other queries, it will still converge to an
accurate prediction of the overall latency.

In Figure 1 we display how the typical values of BAL vary through
the lifetime of a query when run in isolation. All of our BAL mea-
surements are averages of 1000 buffer pool requests. This partic-
ular query (of TPC-H template 14) goes through a brief period of
low latency in BAL while the query is warming up (i.e., it is loading
all of the database binaries). It then reaches a relatively stable state
where it is continuously reading blocks and joining tuples. The
BAL periodically fluctuates as the query cycles through seeks and
sequential reads in the course of a join. When we consider all of the
queries in our workload the average standard deviation was around
33% of the query’s BAL average. This variance can be attributed
to the inherent noisiness of the metrics BAL is capturing (i..e, a
mixture of buffer pool reads, seeks and sequential physical I/Os).
BAL is a robust metric because it captures the aggregate of these
complex interactions over many logical page requests, converging
on a stable average behavior.

2.4 Predicting Query Latency using BAL (B2L)
We used a linear regression model to predict the end-to-end query

latency using the BAL metric. The intuition is that an I/O-bound
query will have latency directly proportional to how long it waits
for a logical I/O on average plus some relatively fixed overhead for
CPU time and fixed database support. So if the average BAL for a
query α is Bα and Oα is its fixed CPU overhead then the latency
of the query α L is given by the equation:

L = Oα + Pα ×Bα (1)

Our system finds the fixed overhead of each query class and this
comprises the y-intercept (Oα) of the model. The Pα coefficient
allows us to model the number of logical page requests required by
the query plan. Therefore, if the average latency of a logical I/O
(i.e., the BAL metric) of a query running in a query mix is known,
we can predict its latency using the above model. We call this end-
to-end latency prediction model BAL to Latency or B2L.

We use the coefficient of determination (R2) to assess the good-
ness of fit of the model to the data. R2 is a normalized measure
that relates the error of the model to the overall variance of the data
set. It ranges from 0 to 1, with higher values denoting a better fit.
It captures the error of the model, SSerr, by calculating the sum-
squared errors of each data point in the training set, normalized by
the total variability of the data, SStot, calculated by taking the sum
of squared deviations of the individual data points from the mean.
R2 is calculated as 1− SSerr/SStot.

The strength of this above model is demonstrated in itsR2 values
for each query class in our training set. We train on an average 259
examples of each template. The R2 coefficients varied from 0.83-
0.99 for the 10 queries in our TPC-H workload; all of our queries
were very well-fitted by this model.

We found that TPC-H templates conform well to this model.
Queries within the same class rarely change their query execu-
tion plan. We capture this consistency with the slope of our lin-
ear model. In practice, we found that our query templates did not
have their I/O request count vary by greater than 5%, despite op-
erating with range predicates and indices. In some cases, such as
a skewed data distribution or a highly varying range predicate, we
would need to create multiple models per query template. In that

case, we would subdivide our templates into predicate ranges as
described in [1].

More details of our experiments are shown in Section 6. In sum-
mary, BAL was our strongest query performance indicator. In the
next section, we discuss how this metric can be predicted for con-
current workloads.

3. BUFFER ACCESS LATENCY
PREDICTION

As we explored in the previous section, the average buffer access
latency of a query is a consistent indicator of its latency through-
out changing query mixes and concurrency levels. In this section,
we propose a technique for predicting this metric by modeling the
interactions of query templates based on observations among pairs.
At a high level, we aim to quantify how a query’s performance
changes as it shares resources with competing processes. To cap-
ture this effect, we first characterize how a query class runs in isola-
tion. We then extrapolate how interacting with other query classes
impacts its performance.

3.1 Modeling Query Interactions
To predict the concurrent performance for a query class, we need

to quantify its average BAL metric under contention. In this sec-
tion we create a prediction model for BAL for light-to-moderate
levels of query contention. We start by examining (a) the resource
utilization of a query class under optimal conditions (i.e., queries
running in isolation), and (b) the resources that concurrent queries
will expect to consume. For our purposes, resource needs refer
primarily to the I/O bandwidth and memory used, whose joint ef-
fects are captured by the BAL of each query. We estimate how
much these queries will contend with each other on a template-by-
template basis, by examining how their BAL is affected when they
are interacting in pairs.

For example, when TPC-H Query 6 is run with Query 14, both
enjoy a speedup of about 10 seconds on average. This is because
both of their query execution plans are dominated by sequential
scans on the fact table. In contrast, when Q19 is run with Q7, they
slow down by approximately 50% and 30% respectively. In this
case, the two queries share less overlap in their working sets and
both require significant memory to do expensive joins.

To better characterize how queries interact, we first looked at all
pairwise interactions. For a workload of n queries, we executed
all unique combinations (a total of 55 pairwise combinations in our
case of 10 query classes). These pairings allowed us to characterize
the magnitude and sign (positive or negative to denote slow down
or speed up respectively) of how each query affects others in the
workload. We also studied the incremental utility of building our
model on multiple, higher-degree interactions, which did not yield
any consistent or notable improvements while being more expen-
sive. Hence, we concluded that models based on pairwise inter-
actions, enhanced with additional statistics, strike a good balance
between practicality and accuracy.

Specifically, by analyzing how pairs affect each other, we model
the BAL at higher degrees of concurrency. We do this by building a
composite of the BAL based on a base cost of the individual BALs
of the queries in isolation. We then incorporate the cost of interac-
tions indicated by the change in BAL due to direct and indirect in-
teractions among the queries. We use this pairwise interaction rate
and isolated runs to build our multivariate regression model. We
call this BAL estimation model BALs to concurrent BAL or B2cB,
which we describe in detail next.

340

Variables R2

I 0.167
I & C 0.169
I & C & D 0.219
I & C & D & G 0.358

Table 3: R2 values for different BAL prediction models (vari-
ables: Isolated (I), Complement Sum (C), Direct (D), Indirect
(G)) Training on multiprogramming level 3.

3.1.1 Predicting BAL Under Concurrency
In our model for predicting the concurrent BAL we distinguish

between primary and complement queries. When we predict the
concurrent BAL of a query, we call it the primary. Queries that are
running concurrently with the primary are its complements. The
intuition behind our model is that when we are dealing with a non-
overloaded state, the cost of contention increases linearly and is a
function of fixed costs for each query in the mix as well as variable
costs for each pairwise interaction among the queries (divided into
direct and indirect interaction with the primary query). For exam-
ple, if we assume round-robin scheduling, then the cost (i.e., delay)
to obtain a data block with concurrency (i.e., its concurrent BAL)
equals to the cost to obtain a data block when no concurrent queries
exist, plus the cost of one average page read of each of the comple-
ment concurrent queries, plus any observed interaction cost among
all of the queries in the workload.

Our BAL prediction model has the following four independent
variables provided from training data:

• Isolated: This variable represents the BAL of the primary
query when it is run in isolation. Examining isolated BAL
creates a baseline to assess the concurrent BAL. It provides
us the default page access time for the primary query un-
der optimal circumstances. We denote the isolated BAL of a
query i as Ti.

• Complement: Similarly, we need to consider the resource re-
quirements of the complement queries in our mix. The com-
plement variable is the sum of complement queries’ isolated
BALs. Summing the BAL of the complements allows us to
build an estimate of the rate at which they consume I/O band-
width given fair scheduling. This is a rough estimate of the
“cost” of complement queries.

• Direct: This variable is the sum of the change in BAL for the
primary when paired with each of its complements. The di-
rect variable captures the change in the primary’s BAL from
direct query interactions. We quantify a direct query inter-
action Ti/j as the average BAL of query i measured while
running concurrently with query j. The change in this mea-
surement is ΔTi/j = Ti/j − Ti. If this quantity is positive,
we are experiencing slowdown. If it is negative, then we have
a beneficial interaction between queries.

• Indirect: Finally we examine the change in BAL between the
complement queries. This gives us a glimpse into how much
contention they are creating and how much their interaction
will affect the primary query. Note that their interactions may
not be symmetrical (ΔTi/j �= ΔTj/i). For example, an equi-
join requires dedicated memory to complete its comparisons
efficiently. If it is run concurrently with a table scan, the
table scan will not be as affected by the join because it uses
each tuple only once. The scanning query disproportionately
affects the latency of the joining query due to it having access

Figure 2: System model for query latency predictions of arbi-
trary mixes.

to less memory. We define the indirect variable as the sum of
the change in BAL for each complement when run with each
other complement.

We found that all of these independent variables were necessary
to build a complete model. As Table 3 demonstrates, the quality of
our prediction model, as measured by the R2 coefficient, improves
significantly once we start considering isolated costs with interac-
tions. Moreover, the sum-squared error is improved by greater than
50% when solving for four variables rather than relying solely on
the isolated BAL.

We predict average concurrent BAL for query q while running
concurrently with its complement c1..cn as:

B = αTq + β
n∑

i=1

Tci + γ1

n∑

i=1

ΔTq/ci + γ2

n∑

i=1

n,j!=i∑

j=1

ΔTci/cj

(2)
We solve for the coefficients α, β, γ1 and γ2 using linear multi-
variate regression for all queries in our training set, once per each
multiprogramming level. We elect to do this regression at this gran-
ularity to model several degrees of contention. The regression de-
rives our coefficients using the least sum-squared error method.

Predicting end-to-end latency. The lower portion of Figure 2
demonstrates the steps of our predicting end-to-end query latency
for varying concurrency levels. Given a query and its mix of com-
plements, we can rapidly create an average concurrent BAL esti-
mate using the B2cB model. The concurrent B2cB is the input to
our B2L model which provides the final latency estimate.

To provide a more concrete example, if we are predicting the
BAL of query a and it is being run with queries b and c, we start
out with the following inputs:

• Ta, Tb, Tc - the average isolated BAL of a, b and c.

• ΔTa/b,ΔTa/c, etc. - change in BAL of a when run with b
or c (ΔTa/b = Ta/b − Ta)

341

Figure 3: An example of steady state sampling for queries q1
and q2.

We predict the average BAL Ba of query a using Equation 2:

Ba = αTa+β(Tb+Tc)+γ1(ΔTa/b+ΔTa/c)+γ2(ΔTb/c+ΔTc/b)

Then, we can predict the end-to-end query latency using Equa-
tion 1. We would apply the coefficient Pa, or the logical page co-
efficient for this query class and Oa, the fixed overhead for a. We
would then predict our end-to-end latency by calculating:

L = Oa + Pa ×Ba

4. TRAINING THE PREDICTION MODELS
To obtain performance estimates, we need to train our predic-

tion models. The training phase consists of running our workload
in isolation, pairs as well as at several higher multiprogramming
levels. This provides the coefficients for evaluating our B2L and
B2cB prediction models. All of our samples are used to train both
prediction systems.

To model query interactions flexibly, we must summarize their
effects in a way that is agnostic to the offsets of individual query
start times and representative of the variations within a query tem-
plate. We model this by temporarily fixing the mix in which a query
is participating and randomizing the offset at which each query
starts. We call this measurement steady state. Steady state sam-
pling allows us to reason about how a query will react to a continu-
ous level of contention and a fixed set of complements. An example
of steady state is shown in Figure 3

Furthermore, in order to obtain measurements that capture only
interactions, our experiments are based on warm cache. i.e., we
omit the first few samples. This allows us ignore to the overhead of
the initial query set up and caching of small supporting structures
This approach also allows us to sample the changing interactions
from queries overlapping at different phases in their execution.

In the next paragraphs, we describe how we obtain our training
set for the two prediction models (B2L and B2cB) which we de-
scribed in the previous sections.

4.1 Sampling-Based Training Sets
In our framework we build our prediction model by sampling a

subset of the configurations for which we are creating predictions.
Experiment-driven modeling allows us to approximate the land-
scape of how queries in a workload interact. Our model samples
queries in isolation, pairwise and higher degrees of concurrency
for training. The use of our training runs are displayed in Figure 2.

First we characterize the workload that we have in terms of how
each query behaves in isolation. This baseline allows us to get
an estimate of what constitutes normal, unimpeded progress for a
query class and how much we are speeding up or slowing down as
new queries are added to the mix. In our experiments we average
over many examples of each query class running in isolation with
a warm cache and we record both the latency and BAL metric for
each query class. The BAL-latency pair is used in the training of
the B2L latency prediction model as well as as input for the first
two terms of the B2cB model.

Next, we build a matrix of interactions by running all unique
pairwise combinations, 55 in our case. This allows us to succinctly

Query 1 2 3 4 5
1 X
2 X
3 X
4 X
5 X

Figure 4: An example of 2-D Latin hypercube sampling.

estimate the degree of contention that each query class in a work-
load puts on every potential complement. As with our isolated mea-
surements, we get both end-to-end latency as well as average BAL
measurements for all of these combinations. These BAL-latency
pairs are used for training the B2L model. In addition, they are
used as inputs by the B2cB model to estimate BAL.

This moderate number of samples is necessary for both our BAL
and latency predictions. The pairwise interactions provide us with
inputs for the independent variables of B2cB. They also give us
our input for our B2L model. B2L builds upon many concurrency
levels in order to plot how latency grows as contention increases.
Each multiprogramming level helps us complete the model.

Next, we build our model coefficients for interactions of degree
greater than two. We sample at this level using Latin hypercube
sampling (LHS). LHS uniformly distributes our sample selection
throughout our prediction space. This is done by creating a hyper-
cube with the same dimensionality as our multiprogramming level.
We then select our samples such that every value on every plane
gets intersected exactly once. Each sampling run of this technique
produces at most n combinations, where n is the number of unique
queries in our workload. A simple example of Latin hypercube
sampling is shown in Figure 4. These sample runs are used to cre-
ate the coefficients for B2cB at each multiprogramming level. We
do multivariate B2cB linear regression on a set of Latin hypercube
sampled data points.

LHS is a general sampling technique and is not a perfect fit for
exploring this space of all possible query combinations. LHS does
not take into account the difference between combinations and per-
mutations when exploring our sampling space. For example, to the
sampler, the combination of (3, 4) and (4, 3) would both be con-
sidered distinct samples. From the database’s point of view they
are both simply one instance of Q3 and one instance of Q4 running
concurrently. We eliminated LHS in which the same combination
appears more than once from our training set because each run pro-
duces data for all queries involved (i.e., when we execute mix (3,4),
we record data for both Q3 and Q4).

For our training phase we used this sampling technique three
times for each concurrency level. Experimentally we found that as
more samples were taken we naturally get a more comprehensive
picture of the cost of contention in our system. On the other hand,
more sampling takes more time. We found that three LHS runs for
each multiprogramming level was a good trade off between these
competing objectives. Acquiring more samples did not improve
our prediction accuracy.

Each LHS run consists of ten steady state combinations, result-
ing in 30 training combinations sampled for each multiprogram-
ming level. Initially this may seem like many samples, but it is
not that many in comparison to all possible combinations. This is
especially true for higher multiprogramming levels where our set
of combinations grows exponentially every time we add a query.
The complexity of our training space does grow significantly as
our workload becomes more complex. If we are training on a set of
n queries, we must first execute it in isolation, incorporate it into
all pairs and higher level sampling. For pairs, we sample all combi-
nations with replacement, producing (n2 + n)/2 steady state runs.

342

Figure 5: Just-in-Time evaluation flowchart

If we samplem multiprogramming levels greater than two and we
run l LHS samples, our number of required training runs can be
calculated as n + (n2 + n)/2 + lmn. In our case, this comes to
155 sampled combinations.

In practice, the total training period took approximately two days
in our modest setup. This may seem like considerable time, but
we are only required to train once and can then use the results for
any arbitrary mixes indefinitely. It is also worth noting that this
up-front training period is what allows our model to be extremely
lightweight once it reaches the evaluation phase (i.e., when it is pro-
ducing query latency estimates). The cost of creating an estimate is
negligible once the model is trained. It is only the cost of applying
the B2cB model (summing the primary, complement, direct and in-
direct I/O contributions) and providing the output to a B2L model
(L = Oα + Pα ∗Bα).

5. TIMELINE ANALYSIS: PERFORMANCE
PREDICTION FOR CHANGING MIXES

Using the B2cB and B2L methods we can predict the latency
of individual queries being executed if the mix does not change
during a query’s execution. This system is useful for simple cases,
where we only want an estimate for how long a query will run in a
very homogeneous mix. However, in most circumstances the query
mix over which we are evaluating is constantly changing as new
queries are submitted by users and pre-existing ones terminate at
varying intervals. For example, in a production system, managers
and other decision-makers submit queries when they are at work
and would benefit from an estimated time of arrival for the results.
With modeling we can give them real time feedback of how long
a new query will run and how much it will affect their currently
executing workload using “what-if”-style analysis.

This type of system necessitates an incremental evaluation of a
larger set of circumstances. We need to consider all of the mixes
that will happen during a query’s execution as the number and/or
type of complement queries varies. This system must quantify the
slowdown (or speedup) caused by these mixes, and estimate what
percentage of the query’s work will be accomplished in each mix.

We propose two formulations for evaluating our predictions. In
the first scenario new queries are being submitted for immediate
execution. We refer to this as just-in-time (JIT) modeling (JIT).
In JIT the number of queries monotonically decreases as members
of the currently executing batch completes. In the second scenario
we consider a queue-based approach, where our system is given a
fixed multiprogramming level and an ordered list of queries to run.
In this case we also model the mixes that will occur, by projecting

when queries from the queue will start during the query’s execu-
tion. Next, we describe these modeling scenarios.

5.1 Just-in-Time Modeling
Just-in-Time modeling allows us to ask the questions: "If I sched-

ule a query now, how long will it take? How will it affect the
presently running queries’ completion times?" JIT estimates are
more flexible in that they support more than one multiprogramming
level in our estimate and model real-time changes in the workload.

Also, this more incremental approach allows us to refine our esti-
mates as time progresses. As we predict latency every time a query
is added we can correct past estimates by examining how the query
has progressed since we last forecasted its end-to-end latency. In
the context of an SLA, this may allow us to prevent QoS viola-
tions from happening by giving us the ability to intervene and load
balance as time passes. Experimentally we saw an average approx-
imately 10% error in our QoS estimates with this approach.

This JIT modeling requires estimates of the latency for each
query in each mix and the percentage of its execution time each
mix will occupy. The JIT algorithm is charted in Figure 5. In our
timeline-based QoS estimator, first we look at the progress of all
the n queries that are presently executing in a mix. We create a list
of the time that has elapsed since each presently executing query
began and initialize our performance estimate with this quantity.
We also record the number of logical I/O requests that have been
serviced for each query. This second metric gives us an estimate of
what percentage of the query’s work has been completed.

Next we must look at the estimated QoS for each query in the
proposed mix, operating under the temporary assumption that the
mix does not change. We can use the techniques in the previous
section to create end-to-end latency estimates for each query in the
workload under these steady state conditions. This first estimates
BAL using the B2cB prediction model, which we then translate into
latency using B2L model. We multiply the steady state estimate by
the percentage of the query that we project remains based on the
number of logical I/Os serviced.

After this we sort the steady state estimates and pick the query
with the minimum remaining time as our first segment of evalua-
tion. This defines the period over which we evaluate our first dis-
crete mix. We select this query qmin and its estimated latency lmin
as the time when our mix state will change next. We subtract qmin
from the mix and we update the progress of each query q that is not
equal to qmin by taking the ratio of lmin/lq and multiplying it by
the logical I/O requests remaining. We also add lmin to our esti-
mate for each query in the workload that is not terminating. Finally,
we subtract qmin from our workload because we project that it will
have ended at this prediction point. We keep iteratively predicting
and eliminating the query with the least time remaining until we
have completed our estimates for all queries in the workload.

To summarize, we start with n queries and project a completion
time for each in n segments. Each segment contains one less query
than the previous segment as we subtract the query that we forecast
will terminate next. At each concurrency level greater than two,
we use our B2cB and B2L models to create QoS estimates. For
isolated and pairwise cases we use the latencies recorded during
the training phase.

5.2 Queue Modeler
Another scenario under which this system is be useful is for

estimating how long a query will take if we have a fixed multi-
programming level. In [14] the authors discussed how multipro-
gramming level is a common “knob“ for optimizing DBMS perfor-
mance while scheduling concurrent resources. In this formulation,

343

Algorithm 1 Queue modeling algorithm where qp is the primary
query, pi is the progress of query i, Ri is the number of logical
page requests for i. Iterating over all queries in workload w

qmin = ∅, t = 0
while qmin �= qp do

for each qi in w do
li = EstimateTimeRemaining(qi, pr, w)

end for
w = sort(l, q) // sort to find the query with the lowest remaining
time estimate
t+ = l0 // add minimum time to primary’s estimate
for i = 1; i ≤ |w|; ++i do
pi+ = (l0/li) ∗ (Ri − pi)

end for
w0 = get_queue_next() // replace the query with the least
remaining time with the next one in the queue

end while
return t;

we model our changing mix by looking ahead in the queue when
we project that our current mix will end. We refer to this scenario
as a Queue Modeler (QM).

The Queue Modeler requires access to a queue of queries sub-
mitted. QM works very similarly to JIT predictions, except it ex-
amines the currently executing workload and models the addition
of the next query in the queue as a replacement when a current
query will terminate. This system allows us to give an end-to-end
estimate of progress without starting the execution of some of the
queries that are included in our prediction.

The Queue Modeler is shown in Algorithm 1. Queue modeling
starts with a list of status information for each presently executing
query, much like JIT. This too is a pair of the query execution time
and the progress the query has made in terms of logical I/O re-
quests. We add the new query to the list (qp) with its progress and
current latency at zero. Next we model the steady state latency of
each query in the mix and sort the resulting estimates of latency re-
maining. The query with the least projected time remaining, qmin,
is estimated to continue running for lmin time. Next we update
the progress of the remaining queries by taking the ratio of lmin
to their projected time remaining. We update their latency estimate
by adding qmin’s projected completion time to model the amount
of time that the query will remain in this mix. Finally we replace
qmin with the next one on the queue. We continue this cycle until
the query for which where are creating a prediction is qmin.

6. EXPERIMENTAL EVALUATION
In this section we set out to verify the accuracy and utility of

the four modules in our framework. First we look at the accuracy
of B2L, or how well our experiment-driven model can use buffer
access latency to predict end-to-end query latency under varying
concurrency levels and query mixes. Next, we examine how well
our B2cB model can predict BAL for use with B2L. After that we
explore the accuracy of combining these two techniques to produce
end-to-end latency estimates. Finally, we experiment with creating
prediction on random, dynamically generated workloads at a fixed
multiprogramming level using our JIT and queue modeler timeline
analysis techniques.

We gathered data in two phases for our steady state experiments.
Initially, we create our training data consisting of several steady
state mixes. Our training set draws from samples at multiprogram-
ming levels 1-5. Using the training data set we build our predic-

tion models for the concurrent buffer access latency (B2cB) and
the end-to-end latency (B2L). The details of this training process
are in Section 4. B2cB produces coefficients for the multivariate
prediction model for each multiprogramming level. B2L produces
its simple linear model for each query class.

Next we looked at a test data set, consisting of randomly selected
mixes that are disjoint from the training data. Our test data set is
drawn from two Latin hypercube sample sets per multiprogram-
ming level, producing 20 steady state measurements. Each steady
state measurement is comprised of at least 5 queries per template
in the mix.

Finally, we experimented with completely arbitrary mixes, re-
laxing our steady state assumption. This allowed us to evaluate our
timeline analysis. Here we looked at both incremental re-evaluation
of our predictions (JIT) as well as creating only one prediction
when each query started (queue modeler).

6.1 Setup
We experimented with a TPC-H query workload consisting of

moderate weight queries that exert strain on different parts of the
database system. We targeted OLAP because the queries are longer
running, giving us a more time to characterize their interactions.
Analytical queries tend to be more highly I/O-bound, allowing us
to focus on this element for our interaction modeling rather than
a more complex multidimensional model that would have to take
into account CPU slicing and other resource sharing.

We worked with a mix of ten moderate weight queries. Specifi-
cally, our workload is comprised of TPC-H queries 3, 4, 5, 6, 7, 8,
10, 14, 18 and 19 on an instance of TPC-H, scale factor 10. We se-
lected the ten queries on and around the median execution time for
all of the TPC-H templates. We focus on medium-weight queries
because they are long running enough such that we can make useful
inferences about their behavior. They are also light enough to allow
for us to experiment with meaningful multiprogramming levels.

Furthermore, we wanted to predict realistic workloads. We study
concurrent query mixes of different multiprogramming levels, how-
ever we do not address predictions for cases of very high con-
tention. Therefore, we do not consider cases where it is likely that
a mix of queries could complete all of their executions in isolation
faster than running its queries concurrently.

We also elected to focus on moderate-weight queries because
modeling across multiple query weights adds another layer to the
problem as demonstrated in [8]. In this work they classified their
queries according to a relative weight and built models for each
group. In future work, we may extend our framework with a similar
labeling strategy.

In our experimental configuration we added the primary key in-
dexes provided by the standard TPC-H implementation. The bench-
mark was deployed on a modified version of PostgreSQL 8.4.3.
The source code was instrumented to measure BAL. All of our tri-
als were run on a machine with an Intel i7 2.8 GHz processors and 8
GB of RAM. The machine ran on Ubuntu 9.04 on Linux 2.6.28-11.

6.2 Predicting Query Contention
In this section we will look at how well our B2cB and B2L sys-

tem can predict BAL and end-to-end latency. All of the results
below are evaluated on our test data, disjoint from the training sam-
ples.

6.2.1 B2L
First we examine the effectiveness of B2L for estimating latency

based on a provided BAL. We built our linear models for each query
class on our training set at multiprogramming levels 1-5. Our train-

344

Figure 6: Fit of B2L to steady state data at multiprogramming
levels 3-5. Error rates for this data are in Table 2

ing phase produces simple equations of the formL = Oα+Pα∗Bα
for each query class in our workload.

We demonstrate the fit of our model with Figure 6. The points on
this graph are all from individual queries of our test data set with
concurrency levels 3-5. The lines denote the slope of an individ-
ual B2L model. Each query class fits very well with its regression
model. Our evaluation data produced an average error of just 5%.
This tight fit is because queries generally will have latency propor-
tional to the rate at which they can access physical pages. This
shows that despite relatively few mixes sampled and varying con-
currency levels, buffer access latency is an efficient and robust es-
timator of query latency. To reiterate, none of the points evaluated
here were a part of the training phase.

It is clear that our B2L models fall into two main trajectories.
These different slopes are a consequence of our query templates
having different query execution plan layouts. Query plans can be
divided into processing pipelines. These pipelines delineate points
in the query execution where results from the previous pipeline
must be completed before the next phase of a query may start. For
example, sorts require access to all of the tuples in their operation
and thus require that executor start a new pipeline for them (sepa-
rate from the operators that provided tuples to the sort). In future
work, we may consider breaking our predictions down to the gran-
ularity of pipelines as was done for progress estimators in [7].

The queries with smaller latency growth (queries 6, 14 and 19)
had a single pipeline (i.e., no materialization points such as sorts or
group-by aggregates). The remaining query classes which demon-
strated a faster latency increase in proportion to their BAL generally
had greater than one pipeline in their query plans. This means that
the overall growth rate for each BAL is higher, due to the overhead
of the tuples having to traverse multiple pipelines and typically be
evaluated by more operators in the query plan.

6.2.2 B2cB
Now that we have established that average BAL is a good pre-

dictor of latency in the case of varying resource contention, we turn
to evaluating how well we can predict this metric. We examine the
accuracy of the B2cB approach for predicting average BAL on the
test data set.

The fit of B2cB predictions to measured BAL at multiprogram-
ming level 3 in is displayed in Figure 7. This charts all of the
queries in the test mixes in steady state. There were a total of 20
steady state mixes sampled for this experiment.

Our samples create a uniform fit around the trend line, denoting

Figure 7: B2cB predictions on steady state data, multiprogram-
ming level 3

that the model can make reasonable “ballpark estimates” of BAL.
There is some variance within queries of the same class and mix.
Much of this can attributed to buffer pool contents and changing
predicates for each example of a query template.

Another cause of variance is temporal shifts (i.e., queries in the
same mix start at different times in relation to their complements).
These shifts are displays as horizontal lines of points on this graph.
We have experimented with breaking our queries into sections and
evaluating our predictions on this finer-grained basis. Experimen-
tally we did not find significant improvements by evaluating these
queries on a section-by-section basis. We also found that sampling
to quantify all pairs at this granularity caused our training time to
grow significantly.

Also, our model works best at low–to moderate–levels of con-
tention. As contention increases (denoted by a higher observed
BAL), our estimates have reduced accuracy. This is because as we
get closer to a state of overload, our growth pattern gradually shifts
from linear to exponential. Modeling overload and the shift in our
distribution of BAL is left to future work.

In summary, our B2cB estimates had an average error of 24-
35%. As we increased our multiprogramming level, our estimates
became slightly less accurate as we neared a state of overload.

6.3 Steady State Predictions
Next we examine our ability to predict end-to-end latency un-

der steady state conditions by composing our BAL estimates with
B2L. For each query in a steady state run we first predict the BAL
using B2cB. Then we translate this predicted BAL to latency using
the B2L models depicted in Figure 6. We hold the mix constant
to allow us to model discrete mixes despite the underlying queries
having different execution latencies. We will later quantify the ad-
ditional challenges posed by continuously changing query mixes.

In Figure 8 we assess our model’s accuracy on the test data. We
divide our findings into query classes and also averaged overall.
We tested this system for multiprogramming levels 3-5. The figure
shows our relative error, calculated as: |recordedQoS−prediction|

recordedQoS
.

For reference, we include the standard deviation for each query
in each mix. This is normalized to the average latency of the sam-
ple that it came from. This is to quantify the variance-inducing
conditions caused by temporal offsets and changes in our template
predicates. It is averaged over multiprogramming levels 3-5.

At multiprogramming level 3, our error rate roughly equals to
the average standard deviation. Our error averages to 15%, which
is well-fitted considering the variety of cases handled (20 discrete

345

Figure 8: Steady state relative prediction errors for query la-
tency at multiprogramming levels 3-5

mixes times 3 queries per mix). Queries that have relatively simple,
highly I/O dominated plans such as Q6 are modeled well. Queries
that have more complex aggregation are more reliant on prefetching
and consequently are sensitive to the temporal offsets of their com-
plements. Examples of this phenomenon include Q3 and Q5. Later
we will discuss the effects of relaxing this steady state assumption.

6.4 Timeline Evaluation
Next we evaluate how well our timeline approaches estimates

individual query latency. Once again, we experimented with three
multiprogramming levels. We ran 250 randomly generated queries
(both the template and predicates were selected in this manner).
These measurements excluded a warmup and cool down period for
each run to allow our multiprogramming level to remain constant.
All of these results are from the same set of query executions, pro-
cessed for both JIT and queue modeling timeline analysis.

JIT predictions produce a latency estimate for all queries cur-
rently executing when a new query is started. We use this tech-
nique to simulate the scenario where users are submitting queries
that are run immediately. This system will enable the user to esti-
mate how long a new query will take and its projected impact on
currently running queries’ latencies. In this context, we work from
the scenario where the user has no way of predicting the incoming
workload. Thus we re-evaluate our latency predictions every time
a new query is introduced into the mix.

This technique also allows us to do real-time “course correc-
tions” for our estimates. We can see how our prediction errors
converge as time passes for the JIT technique in Figure 9. Our
predictions naturally follow a half-cone shaped distribution. The
closer a query is to completion, the better our predictions are. We
could improve our readings further by evaluating more frequently,
perhaps at regular intervals rather than when we are scheduling a
new query. This would be useful if we are (for example) updat-
ing a real-time progress indicator for users who are awaiting query
results or running real-time load balancing.

With the JIT estimator our average error is around 10%. This
is a combination of having good latency estimates paired with cor-
rections from the re-evaluations. This is the reason that the higher
multiprogramming levels generally perform better; they re-evaluate
more frequently as they schedule queries at a faster rate.

This outcome demonstrates that we can (a) give users real-time
guidance about how scheduling decisions will affect currently run-
ning queries as well as ones that they are considering scheduling;
and (b) we can make predictions with arbitrary mixes. Thus we are
not limited by our initial steady state configuration. The ability to

Figure 9: JIT prediction errors as we re-evaluate queries peri-
odically at multiprogramming level 3.

Figure 10: JIT relative latency estimation errors at various
multiprogramming levels.

depart from steady state estimates and still produce similar error
rates is caused by the database being so large that most of it can-
not fit in memory at any given time. Thus, our estimates adapt to
the RAM changing its contents regularly, negating the necessity of
discretely modeling buffer pool state.

Finally in Figure 11, we examine how well our predictor can han-
dle arbitrary mixes paired with more uncertainty about the duration
and content of the individual mixes. Using the queue modeler tech-
nique, we build a latency estimate from predicting both when the
primary query and its complements will terminate. We model for
a continuous multiprogramming level by adding new queries from
a provided queue when complement queries are projected to termi-
nate. The simulation ends when our primary query is projected to
be the next query replaced by an element of the queue.

Overall, this brings our accuracy levels to an average of 21%.
This is close to our estimation accuracy in steady state. This accu-
racy demonstrates that our framework can make predictions under
realistic scenarios of queries starting and stopping at intervals off-
set from each other. This allows a user to make straightforward
“what-if” analysis when they are considering scheduling a batch of
queries. This framework could potentially enable a user to formu-
late different orderings of their queries and submit them for evalua-
tion to our system. This would search for time-saving orderings of
submitted queries.

These results also demonstrate that our system can tolerate some

346

Figure 11: Queue modeling relative latency estimation errors
at various multiprogramming levels.

uncertainty about the mixes being executed. Despite our steady
state estimates having limited inherent errors, this does not unduly
affect our mixed workload case. In many cases the timeline errors
are not significant because as we are transitioning between mixes,
we do this one query at a time. Thus the subsequent mixes are only
slightly different from each other in terms of how they affect the
primary query.

7. RELATED WORK
The topic of performance prediction for database workloads has

recently gained significant interest in the research community. There
have been many studies regarding how to characterize workloads,
plot query progress and predict query performance. In this section
we explore each of these topics in turn.

Workload Characterization Prior work characterizing database
performance [11, 17] study utilization of individual resources (such
as CPU time) for a database workload and how to profile queries.
In our research we target a higher level metric: query latency.

In [5] the authors analyzed how to classify workloads. Work
has been done to characterize the usage of specific resources in
databases including [4] and [10]. Here the authors examined mem-
ory and CPU usage under various workloads respectively.

Query Progress Indicators There has also been significant work
on query progress indicators [7, 13, 12, 6]. In [7], the authors
reason about the percent of the query completed, however their
solution does not address direct latency predictions for database
queries and does not apply on concurrent workloads. In [12], the
authors estimate the remaining execution time for multiple, concur-
rent running queries and their approach relies on previous work on
single-query progress indicators. Therefore, they rely on semantic
information of the SQL queries. Our solution is simpler as it uses
statistics collected through experimental sampling and we predict
the total response time of the queries with similar accuracy. [6]
provides a survey of existing progress indicators and recommends
the best ones for use in practice.

In [13] the authors propose a single query progress indicator that
can be applied on a large subset of database query types. Their so-
lution uses semantic segmentation of the query plans and strongly
relies on the optimizer’s (often inaccurate) estimates for cardinal-
ity and result sizes. Although their progress estimator takes into
account the system load, their work does not specifically estimate
progress of concurrent queries and includes limited experiments
on resource contention. In the contrary, our work primary focuses

on concurrent workloads and does not rely on the optimizer’s es-
timates. Moreover, our timeline analysis identifies the overlap be-
tween concurrent queries to continuously improve the prediction
error and thus can effectively address resource contention for con-
current queries. Finally, progress estimators have been researched
for MapReduce queries [15]. This work assumes a different work-
load model from the one we have developed for analytical queries.

Query Performance Prediction In [8] the authors use machine
learning techniques to predict multiple performance metrics of an-
alytical queries. Although their predictions include our QoS metric
(query latency), their system does not address concurrent work-
loads. Moreover, their solution relies on statistics based on the SQL
text as well as ones obtained from the query execution plan.

In [9] the authors also use machine learning to predict query per-
formance. They predict a range for their query execution latency.
Like us, their work considers concurrency, but only models based
on the multiprogramming level rather than individual query mixes.
In contrast, we provide a direct latency estimate and consider sys-
tem strain at a higher granularity.

Furthermore, [12] examines predicting query latency with con-
currency. The authors make predictions including remaining la-
tency on queries that are executing concurrently. Like this work,
the authors consider the addition and removal of queries during the
time for which they are creating a prediction. In contrast to this
work, it does not consider multiple, diverse query classes.

Query interactions have also been addressed and greatly advanced
in [1] and [2]. In this work the authors create these concurrency-
aware models to build schedules for batches of OLAP queries. Their
solutions create regression models based on sampling techniques
similar to the ones that we use. These systems created schedules
for a list of OLAP queries to minimize end-to-end latency for a
large set of queries. Our experiment-driven approach predicts the
response time of individual queries, and presumes that the order of
execution of the queries is fixed for a real-time environment.

[3] models the mixes of concurrent queries over time from a pro-
vided workload, but does not target individual query latencies, in-
stead optimizing for end-to-end workload latencies. This approach
uses an incremental evaluation approach, which our timeline anal-
ysis is inspired by. Our timeline modeling uses a very different
framework to project latency.

Finally, [14] explores how to schedule OLAP mixes by vary-
ing the multiprogramming level and priority assigned to individual
queries. They use this priority-based control mechanism to prevent
overload and under-load, allowing the database to maintain a good
throughput rate. Like this work, our model experiments for many
multiprogramming levels, but our focus in this work is in predicting
execution latency rather than prioritizing queries effectively.

8. CONCLUSIONS AND FUTURE WORK
This work proposes a lightweight estimator for concurrent query

execution performance for analytical workloads. To the best of our
knowledge it is the first to predict execution latency for individual
queries for real-time reporting without using semantic information.

Our system starts with studying the relationship between BAL
and quality of service as measured by query execution latency. We
have demonstrated that there is a strong linear relationship between
these two metrics, which we model with our system B2L. This re-
lationship is based on the observation that as long as there is con-
tention for a resource and we can instrument its bottleneck, then
we can accurately predict latency. We produce very accurate esti-
mates of latency given the average BAL despite this metric exhibit-
ing moderate variance. We accomplish this because our queries are
sufficiently long that we collect enough samples to produce a rep-

347

resentative average. This naturally is proportional to the latency
because the queries are primarily I/O-bound. We predict the BAL
by extrapolating higher degree interactions using pairwise BALs in
a system we call B2cB.

We then adapt this baseline system to a dynamically changing
workload using timeline analysis. We predict the steady state la-
tency of each query in a workload and determine which will termi-
nate first. We then estimate the progress of each query after the first
terminates and conjecture about which will end next. We continue
this cycle in two formulations: just-in-time and queue-modeler. In
the former, we build our prediction based on the currently execut-
ing batch. The latter fixes our multiprogramming level and predicts
when new queries will be started as old ones end.

There are several open directions for future work in the area of
concurrent query performance prediction. In the short term, we
plan to experiment with more advance machine learning techniques
for predicting the query latency. One approach we are considering
is extending the Kernel Canonical Correlation Analysis that was
used in [8] to predicting single query latency in the context of con-
current execution. We can apply this technique to mapping mixes
to latencies by mapping features to performance. We could also
benefit from using a richer feature set including query execution
plan data to refine our predictions.

We also plan to capture our BAL distribution under varying con-
ditions using a Gaussian process model [16]. This would enable
us to smooth the surface of our predictions by developing a piece-
wise model for predicting BAL. It may enable us to serve a wider
workload range.

Another direction we plan to research in the future is incremen-
tally tuning our estimates to workloads as they change over time.
We would have to incrementally update our B2L model to handle
changing table cardinalities from inserts and deletes. This would
also require us to identify when the query execution plan changes
in response to growing or shrinking data and how this impacts our
indicator metrics.

Finally, this paper performs modeling at the granularity of query
templates. We would like to generalize our solution for cases in
which such templates are not available. To this end, we are inter-
ested in automatically identifying clusters of queries that exhibit
similar concurrent interaction behavior and use these as the basis
for predictive modeling.

9. ACKNOWLEDGEMENTS
This work was funded by in part by NSF under Grants IIS-0905553

and IIS-0916691.

10. REFERENCES
[1] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala.

Modeling and exploiting query interactions in database
systems. In Proceeding of the 17th ACM conference on
Information and knowledge management, CIKM ’08, pages
183–192, New York, NY, USA, 2008. ACM.

[2] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala.
Qshuffler: Getting the query mix right. Data Engineering,
International Conference on, 0:1415–1417, 2008.

[3] M. Ahmad, S. Duan, A. Aboulnaga, and S. Babu.
Interaction-aware prediction of business intelligence
workload completion times. Data Engineering, International
Conference on, 0:413–416, 2010.

[4] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
system characterization of commercial workloads. In
Proceedings of the 25th annual international symposium on

Computer architecture, ISCA ’98, pages 3–14, Washington,
DC, USA, 1998. IEEE Computer Society.

[5] M. Calzarossa and G. Serazzi. Workload characterization: A
survey. In Proceedings of the IEEE, pages 1136–1150, 1993.

[6] S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When can
we trust progress estimators for SQL queries? In
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, SIGMOD ’05, pages
575–586, New York, NY, USA, 2005. ACM.

[7] S. Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating
progress of execution for sql queries. In Proceedings of the
2004 ACM SIGMOD international conference on
Management of data, SIGMOD ’04, pages 803–814, New
York, NY, USA, 2004. ACM.

[8] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox,
M. Jordan, and D. Patterson. Predicting multiple metrics for
queries: Better decisions enabled by machine learning. In
ICDE ’09: Proceedings of the 2009 IEEE International
Conference on Data Engineering, pages 592–603,
Washington, DC, USA, 2009. IEEE Computer Society.

[9] C. Gupta, A. Mehta, and U. Dayal. PQR: Predicting Query
Execution Times for Autonomous Workload Management.
Autonomic Computing, International Conference on,
0:13–22, 2008.

[10] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and
W. E. Baker. Performance characterization of a Quad
Pentium Pro SMP using OLTP workloads. volume 26, pages
15–26, New York, NY, USA, April 1998. ACM.

[11] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M.
Levy, and S. S. Parekh. An analysis of database workload
performance on simultaneous multithreaded processors.
SIGARCH. News, 26(3):39–50, 1998.

[12] G. Luo, J. Naughton, and P. Yu. Multi-query sql progress
indicators. In Y. Ioannidis, M. Scholl, J. Schmidt, F. Matthes,
M. Hatzopoulos, K. Boehm, A. Kemper, T. Grust, and
C. Boehm, editors, Advances in Database Technology -
EDBT 2006, volume 3896 of Lecture Notes in Computer
Science, pages 921–941. Springer Berlin / Heidelberg, 2006.

[13] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke.
Toward a progress indicator for database queries. In
Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, SIGMOD ’04, pages
791–802, New York, NY, USA, 2004. ACM.

[14] A. Mehta, C. Gupta, and U. Dayal. BI batch manager: a
system for managing batch workloads on enterprise
data-warehouses. In Proceedings of the 11th international
conference on Extending database technology: Advances in
database technology, EDBT ’08, pages 640–651, New York,
NY, USA, 2008. ACM.

[15] K. Morton, M. Balazinska, and D. Grossman. ParaTimer: a
progress indicator for MapReduce DAGs. In Proceedings of
the 2010 international conference on Management of data,
SIGMOD ’10, pages 507–518, New York, NY, USA, 2010.
ACM.

[16] C. Rasmussen. Gaussian processes in machine learning. In
Advanced Lectures on Machine Learning, volume 3176,
pages 63–71. Springer Berlin / Heidelberg, 2004.

[17] P. Yu, M.-S. Chen, H.-U. Heiss, and S. Lee. On workload
characterization of relational database environments. IEEE
Transactions on Software Engineering, 18:347–355, 1992.

348

