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ABSTRACT
Predicting query performance under concurrency is a difficult task
that has many applications in capacity planning, cloud computing,
and batch scheduling. We introduce Contender, a new resource-
modeling approach for predicting the concurrent query perfor-
mance of analytical workloads. Contender’s unique feature is that
it can generate effective predictions for both static as well as ad-
hoc or dynamic workloads with low training requirements. These
characteristics make Contender a practical solution for real-world
deployment.

Contender relies on models of hardware resource contention to
predict concurrent query performance. It introduces two key met-
rics, Concurrent Query Intensity (CQI) and Query Sensitivity (QS),
to characterize the impact of resource contention on query interac-
tions. CQI models how aggressively concurrent queries will use the
shared resources. QS defines how a query’s performance changes
as a function of the scarcity of resources. Contender integrates
these two metrics to effectively estimate a query’s concurrent exe-
cution latency using only linear time sampling of the query mixes.

Contender learns from sample query executions (based on
known query templates) and uses query plan characteristics to gen-
erate latency estimates for previously unseen templates. Our ex-
perimental results, obtained from PostgreSQL/TPC-DS, show that
Contender’s predictions have an error of 19% for known templates
and 25% for new templates, which is competitive with the state-of-
the-art while requiring considerably less training time.

1. INTRODUCTION
Concurrent query execution offers numerous benefits for

database applications. It can decrease the time required to execute
analytical workloads [1, 2] and lead to better use of hardware re-
sources by exploiting parallelism. At the same time, concurrent ex-
ecution raises numerous challenges, including reasoning about how
interleaving queries will affect one another’s rate of progress. As
multiple queries compete for hardware resources, their interactions
may be positive, neutral, or negative [3]. For example, a positive
interaction may occur if two queries share a table scan; one may
prefetch data for the other and they both enjoy a modest speedup.
In contrast, if two queries access disjoint data and are I/O-bound,
they will slow each other down.

Accurate concurrent query performance prediction (CQPP)
stands to benefit a variety of applications. This knowledge would
allow system administrators to make better scheduling decisions
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for large query batches, reducing the completion time of individual
queries and that of the entire batch [4]. With CQPP, cloud-based
database applications would be able to make more informed re-
source provisioning and query-to-server assignment plans [5, 6].
High quality predictions would also pave the way for more re-
fined query progress indicators by analyzing in real time how re-
source availability affects a query’s estimated completion time.
Moreover, accurate CQPP could enable query optimizers to create
concurrency-aware execution plans.

Because of such important applications, there has been much re-
cent work on CQPP for both transactional [7] and analytical work-
loads [1, 8]. We focus primarily on CQPP for analytical queries
(OLAP), for which existing techniques [1, 8] suffer from two main
limitations. First, they require that performance samples of differ-
ent query mixes are collected before predictions may be produced.
Hence, their prediction models are valid for only known query tem-
plates. Second, the sampling requirements for existing approaches
grow polynomially in proportion to the complexity of their work-
loads, limiting their viability in real-world deployments.

In this paper, we propose a general CQPP framework, called
Contender, that is practical to use for static as well as dynamic
and ad-hoc workloads. Dynamic workloads are present in many
exploration-oriented database applications including science, engi-
neering, and business. Contender relies on models of resource con-
tention for analytical, concurrently executing queries. It leverages
both resource usage statistics and semantic information from query
execution plans to model a query’s performance as it changes due
to concurrent queries that are competing for the same resources.
Specifically, our query performance predictions are based on mod-
eling the query’s I/O bandwidth and how it is affected by memory
availability. Scarcity of I/O bandwidth and memory are the dom-
inant sources of slowdown for analytical queries executing under
concurrency; these queries access very large data sets while filling
the available memory with intermediate results, further limiting the
available resources [9].

Contender first models how query performance varies under dif-
ferent resource availability scenarios. Specifically, for each query
for which we want to predict its performance (the primary query),
we create its performance range, which we call the continuum. We
define the lower bound of this continuum as the query’s execution
time in isolation, which gives its minimum execution latency. The
upper bound of this range is provided by limiting the availability of
I/O bandwidth and memory to simulate the worst-case scenario for
a query executing under concurrency.

In the next steps, Contender quantifies the resource availabil-
ity during the primary query’s execution to predict where in the
performance range (continuum) the primary’s latency will reside.
The framework leverages query plan information of the concur-



rent queries - those running simultaneously with a primary - to
estimate the conditions under which the primary query will be ex-
ecuted. Specifically, we propose the Concurrent Query Intensity
(CQI) metric to quantify the I/O usage of concurrent queries and
use this metric to estimate the availability of I/O bandwidth for the
primary query. A unique feature of the CQI metric is that it mod-
els the percentage of time concurrent queries compete directly with
the primary for shared resources. We show that CQI is highly cor-
related with concurrent query latency. Given the CQI value, Con-
tender builds a performance prediction model (Query Sensitivity
(QS)) to predict the primary query’s latency.

A unique feature of Contender is that it can make performance
predictions for new templates without requiring a priori models. In-
stead, our framework first assembles a set of QS reference models
for the templates it has seen already. Next it learns the predictive
models for new templates based on these reference models. An
interesting discovery is that new templates with similar behavior
in isolation (e.g., latency, I/O-to-CPU ratios), have similar perfor-
mance prediction models (e.g., QS models). This approach elimi-
nates the need to collect samples on how new queries interact with
the existing workload, which is the main bottleneck of previous
work [1, 8]. Therefore, Contender dramatically simplifies the pro-
cess of supporting unpredictable or evolving query workloads.

Lastly, Contender reduces training requirements as it eliminates
the need to collect samples of query performance under varying
resource availability conditions. We show that query plan char-
acteristics, paired with resource profiling on a template’s isolated
performance, are effective in predicting how a query reacts to dif-
fering levels of hardware availability by comparing it to other, simi-
lar queries. This permits us to estimate the worst-case performance
scenario with reduced sampling of new templates. Therefore, Con-
tender significantly lowers training time for new queries compared
with existing work [1, 8]. We show that our sampling requirements
can be reduced from polynomial to linear, and with further restric-
tions, to even constant time.

For completeness, our work also includes a study of CQPP using
well-known machine learning techniques. These algorithms effec-
tively predict the performance of queries executed in isolation (with
a prediction error of around 25%) [10, 11]. Our results demon-
strate that these models are poorly fitted to the complex case of
concurrent query executions and motivate the need for more ad-
vanced techniques.

Our main contributions can be summarized as follows:

• We evaluate established machine learning approaches for
CQPP and establish the need for more advanced techniques.

• We introduce novel resource-contention metrics to predict
how analytical queries behave under concurrency: Concur-
rent Query Intensity quantifies the resources to which a query
accesses when executing with others, and Query Sensitivity
models how a query’s performance varies as a function of
resource availability.

• We leverage these metrics to predict latency of unseen tem-
plates using linear-time sampling of query executions.

• We further generalize our approach by predicting worst-case
scenario performance of templates, reducing our sampling
overhead to constant time.

Our paper is organized as follows. In Section 2, we briefly in-
troduce the characteristics of the analytical workload used for eval-
uating our performance predictions. In Section 3, we evaluate so-
phisticated machine learning techniques to predict new template

Template 1 2 3 4 5
1 X
2 X
3 X
4 X
5 X

Figure 1: Example of 2-D Latin Hypercube Sampling

performance. Section 4 examines the relationship between I/O con-
tention and query performance. Next, we describe our approach to
building models for CQPP. We present our experimental results in
Section 6, survey related work in Section 7, and conclude.

2. ANALYTICAL WORKLOADS
The following sections include a number of experimental obser-

vations and results. This section describes the assumptions and
characteristics of our workload. A more detailed discussion is
available in Section 6.
Workload Characteristics In this paper, we target analytical
workloads. We assume that all queries are derived from a set of
known query classes (e.g., TPC-DS query templates) and that they
are primarily I/O-intensive. Thus, we focus on modeling I/O and
memory availability for our latency predictions. Our models do
not directly address CPU utilization because in modern architec-
tures the number of cores per host usually exceeds the concurrency
level. Hence, this resource is not a source of contention for queries
executing under concurrency.

The workload consists of 25 templates of moderate running time
with a latency range of 130-1000 seconds when executed in isola-
tion. This decision is based on the observation that long running
queries are poorly suited for running under concurrency [12], and
the shortest queries are not useful to model due to their limited du-
ration. We created our workload by recording the latency of each
template when run in isolation with a cold cache. The workload
consists of the template with the median latency and the 24 others
immediately less than it.

Contender builds a prediction model for each district query tem-
plate. Query templates (or classes/types) are parameterized SQL
statements, and examples of the same template share a structure,
differing only in the predicates they use. For example, the tem-
plate:

SELECT * FROM STORE_SALES
WHERE ITEM_KEY=[IKEY];

is used repeatedly to look up different instances of sales by an
item’s key. We note that recurring use of query templates is a com-
mon case for analytical workloads [13]. For the duration of this
paper, we use the terms query and template interchangeably.
Sampling Concurrent Query Mixes To build our predictors, we
learn from samples of concurrent query mixes. Here, queries are
drawn from a set of n templates. Concurrent mixes where k queries
are executing at the same time are said to have a multiprogramming
level (MPL) of k[12]. When evaluating concurrent mixes for each
MPL k, with n distinct templates, there exist n-choose-k with re-
placement combinations. This results in

(
n+k−1

k

)
= (n+k−1)!

k!(n−1)!
dis-

tinct mixes. For pairwise interactions (MPL 2) we sampled all pairs
to avoid bias in our evaluation. As the MPL increases, the number
of distinct concurrent mixes grows exponentially. For instance, at
MPL 5 our 25 templates result in 118,755 unique mixes. Clearly,
evaluating this space exhaustively is prohibitively expensive.

Therefore, for MPLs higher than 2 we used Latin Hypercube
Sampling (LHS) to select mixes as in [3]. This technique uniformly
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Figure 2: An example of steady state query mixes, qa running
with qb at MPL 2

distributes the samples over the query mix space. The sampling is
done by creating a hypercube with the same dimensionality as the
MPL, k, and each dimension value corresponds to a distinct query
template. The experiment selects samples such that every value
on each dimension is intersected exactly once. We evaluated four
disjoint LHS samples for MPLs 3-5 over our 25 templates.

An example of LHS at MPL 2 is shown in Figure 1. Here, each
template appears in up to two query mixes. For instance, Template
1 is evaluated with T2 and T3. Therefore, each LHS run produces
n mixes, where n is the number of unique query templates in the
sampling workload.

In each experiment we hold the query mix constant using a tech-
nique we call steady state, as demonstrated in Figure 2. We create
one stream for each template represented in a mix and introduce
new examples of a template when prior ones end. This is anal-
ogous to the TPC-DS throughput test, but simplified to focus on
CQPP for individual mixes. We continue the experiment until each
stream has collected at least n samples (for our trials n = 5). We
omit the first and last few queries to insure that conditions are con-
sistent for the duration of each experiment. Steady state execution
captures how each template is affected by a mix when concurrent
queries start at different time offsets.
Prediction Quality Metrics We assessed each model’s prediction
quality using mean relative error (MRE):

MRE =
1

n

n∑
i=1

|observedi − predictedi|
observedi

(1)

This normalized metric denotes the high-level impact of each error.
MRE is the standard for query performance prediction research [3,
7, 8, 11].

Finally, unless otherwise specified, we conduct our evaluation
using k-fold cross validation (k = 5). Hence, the data is subdivided
into k equally-sized pieces, and the system trains on k − 1 folds,
evaluating its models on the remaining data. We cycle through the
folds, creating predictions for each one, and average all predictions
to determine overall model quality.

3. EXTENDING EXISTING
LEARNING TECHNIQUES

In this section we discuss well-known machine learning tech-
niques and study their effectiveness in addressing the CQPP prob-
lem. Specifically, we tried to leverage existing techniques for pre-
dicting performance of isolated queries [10, 11] by adapting them
to concurrent workloads. These approaches rely on the query exe-
cution plans (QEPs) of individual queries to obtain the steps that a
query executes. These steps are then provided as a feature set to sta-
tistical machine learning techniques such as Kernel Canonical Cor-
relation Analysis (KCCA) and Support Vector Machines (SVMs)
to model query performance. Next we describe our attempts to
adapt these techniques to CQPP and explain their ineffectiveness
for predictions of concurrent query performance.
Feature Set Extension Our first step was to adapt the models
in [10, 11] for isolated query latency prediction to include features
from the concurrent executions. We begin with the query plan fea-

tures: our feature vector includes a list of distinct QEP nodes for all
of the queries in our training set as opposed to a single query. This
defines a global feature space to describe all concurrent queries in
our workload. For each unique execution step (e.g., table scan, in-
dex scan, join) we record i) the number of times it occurs in a plan,
and ii) the summed cardinality estimate of its instances. For exam-
ple, if a query plan has two nested loop joins, one with a cardinality
estimate of 10,000 rows and the second with an estimate of 1,000,
our nested loop join feature would be (2, 11,000). If there are n
potential steps that a query may execute, we describe a given query
with 2n features, which we call the primary features.

Our next goal was to add features to capture interactions among
queries. Sequential table scans are an ideal candidate for analyti-
cal workloads; they are likely to cause reuse among concurrently
executing queries or resource contention if there is no intersection
in the query plans of the current batch. To achieve this, we treat
sequential scans on different tables as distinct features. Therefore,
we extended the feature vector of a query to include one feature per
table in our schema. Like our prior features, the table-based ones
each had a (scan count, summed row estimate) pair.

To predict the performance of a primary, we also model the im-
pact of concurrent queries using their QEPs. We sum up the fea-
tures of each concurrent template and create a second 2n vector of
features. We then concatenate this vector with the primary features
to create a single feature set per prediction. This brings our total
number of features to 4n, where n is the number of distinct QEP
steps. In our experiments, we had 168 features for 42 QEP steps,
which resulted in very complex models.
ML Prediction Techniques As in [10, 11], we evaluated two
machine learning techniques to created predictions for new tem-
plates based on the features described above. In the first technique,
KCCA, we create predictions by identifying similar examples in
the training data. In the second technique, SVM, we learn by clas-
sifying queries to latency labels. For both cases, we work at the
granularity of the query plan and used well-known implementa-
tions of each technique [14, 15].

To train KCCA, we create one feature vector per query and a cor-
responding performance vector. Our approach applies a Gaussian
kernels to compare each input to the other training examples. If
we haveN queries, this produces twoNxN matrices, one for each
feature and performance vector. KCCA then solves the eigenvec-
tor problem, producing two maximally correlated projections based
on the feature and performance space matrices. These projections
take into account both QEP characteristics and how they compare
to correlations in performance. To create a new prediction, we ap-
ply a set of basis vectors learned from the eigenvector problem.
This projects new feature sets into feature space. We take our k
nearest neighbors (k=3) and average their latency each prediction.
Our implementation uses the Kernlab [15] package for R [16].

For SVM, we take as input a feature vector for each training
query and and use their latency as a label. SVM creates a series of
vectors to subdivide feature space by coarse-grained labels. When
a new query arrives, the model places it in global feature space and
derives the corresponding label for that location. SVM returns this
label for its latency estimate. We use the LibSVM [14] implemen-
tation of this approach. Both learners use k-fold cross validation
(k=6) to tune their models.
Prediction Accuracy We found moderate success with this ap-
proach for static workloads at MPL 2 (i.e., with the same templates
in the training and test set but differing concurrent mixes). For this
experiment, we trained on 250 query mixes and tested on 75 mixes,
resulting in a 3.3:1 ratio of training to test data. Each template was
proportionally distributed between the training and test set. We
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Figure 3: Relative error for predictions at MPL 2 using ma-
chine learning techniques on new templates.

found that we could predict latency within 32% of the correct value
with KCCA on average and within 21% for SVM. Their predictions
are competitive with the work [8], however they are more complex
to produce and time-intensive to train.

We also evaluated these approaches on dynamic workloads, i.e.,
on “new” query templates not present in the training phase. For
this study we reduced our workload from 25 to 17 templates, omit-
ting ones having features that do not appear in any other template.
These statistical approaches require significant training sets, so for
these experiments we learn on 16 templates and test on the remain-
ing one from our workload. As shown in Figure 3, we found that
neither technique was very good at estimating latency for previ-
ously unseen templates.

KCCA was very sensitive to changes in the QEP steps used be-
cause it takes the Euclidean distance between the new template and
its n nearest training examples. When a new template is far in fea-
ture space from all of the training examples, its predictions are of
lower quality. Likewise, SVM over-fits the templates that it has
rather than learning interactions between QEP nodes. This is prob-
lematic because execution steps that are salient in one QEP may
be less important or absent in others. For example, templates 82
and 22 share a scan on the inventory fact table, unlike all of the re-
maining templates. In KCCA, they are regarded as similar despite
differing significantly in the rest of their structure. Our prediction
quality for both is very low. Likewise several of our templates use
a hash aggregate plan node, including 15, 26 and 27, but for only
template 22 it is a bottleneck. In SVMs, this behavior is not well-
captured by broad classification. Furthermore, both techniques per-
form well on queries where they have one or more templates that
are close in plan structure (e.g., templates 56 and 60).
Conclusions In this context, we concluded that the machine learn-
ing techniques applied poorly fit the complex interactions presented
by CQPP. On one hand, such solutions work proportionally to the
quality of their training data. The QEP feature space, however, is
sparsely populated in practice and this results in a dearth of rele-
vant examples for many templates. Furthermore, the set of features
varies across database engines and hence, solutions based on QEP
features are not platform independent.

Finally, although accurately modeling individual QEP step in-
teractions (i.e., a table scan running with a join) could improve
our predictions, such models expand our prediction space expo-
nentially. An accurate prediction framework would model both the

execution time of each execution step and how it is affected by oth-
ers. One important challenge we faced was identifying which QEP
operators/steps affect one another as they have varying levels of
overlap. Therefore, in the above study we had difficulty collecting
samples, building a robust model, and making predictions within
a reasonable amount of time. To address the challenge of CQPP,
we propose an alternative novel approach that casts the problem in
terms of resource contention rather than interactions of individual
QEP steps.

4. MODELING RESOURCE ACCESS
UNDER CONCURRENCY

This section describes how we model I/O contention between a
primary query and concurrent queries in a mix. Specifically, we in-
troduce the Concurrent Query Intensity (CQI) metric, which mea-
sures the I/O usage of concurrent queries and quantifies the band-
width available to the primary for a given mix. Contender uses CQI
to describe the environment in which the primary query is execut-
ing, providing input for the models in Section 5.5. In the follow-
ing sections we provide evidence that CQI is highly correlated with
query latency for known templates, and therefore an effective proxy
for predicting query execution times.

In our models we focus on interactions at the level of query tem-
plates rather than individual query execution plans (QEPs). The
reasons for this are twofold. First, as discussed in Section 3, mod-
eling interactions at the QEP level is not very effective, due to spar-
sity in the sampling of feature space. Second, we observed that
on average our templates exhibited a standard deviation in latency
of 6% when executing in isolation, which is a manageable level
of uncertainty. Were we to find higher variance, we could use the
techniques in [1] to divide our templates into subclasses.

4.1 Concurrent Query Intensity
Given a primary query t executing concurrently with a set of con-

current queries, C = {c1, ..., cn}, Contender uses the CQI metric
to model how aggressively concurrent queries will use the under-
lying resources. Specifically, we focus on how to accurately model
the usage of I/O by the concurrent queries. This is important be-
cause the I/O bottleneck is the main source of analytic query slow-
down [8]. This metric first examines how much of the I/O band-
width each concurrent query uses when it has no contention. Next,
it estimates the impact of shared scans between the primary and
concurrent queries. Finally, CQI evaluates how shared I/O among
the non-primary concurrent queries may further reduce I/O scarcity.
Baseline I/O Usage First, we examine the behavior of each concur-
rent template, ci, by estimating its I/O requirements. In particular,
we measure the percent of its isolated execution time that uses I/O,
pci . This approach deliberately does not differentiate between se-
quential and random access. By measuring only the time expended
on the I/O bus, all of our comparisons share the same units. We cal-
culate pci by recording (using Linux’s procfs) the time elapsed
executing I/O while ci is running in isolation, and divide by the
query’s latency.
Positive Primary Interactions In the next step, Contender esti-
mates the positive impact of interactions between concurrent query
ci and the primary. One way for ci to create less interference with
the primary query is for it to share I/O work. Sharing needs to
be large enough for the interaction to make an impact on end-to-
end latency. We expected the bulk of our positive interactions to
occur from shared fact table scans, and empirically confirmed this
assumption in our experiments. The reason for these positive inter-
actions is that fact tables are the largest source of I/O for analytical



Symbol Definition
pt % of exec. time spent on I/O when t runs

in isolation
gf,c Boolean for if c and primary scans f
sf Time required to scan table f in isolation
ωc I/O time shared between concurrent query c

and primary
zf,c Boolean for if c scans f and primary does not
hf Number of concurrent queries scanning table f
τc I/O time in which concurrent query c executes

shared scans with other non-primaries
rc I/O time concurrent query c spends competing

with primary
rt,m CQI for primary t in mix m
lmint Minimum (isolated) latency of template t
lmaxt Maximum (spoiler) latency for template t
lt,m Observed latency of template t when run

in mix m

Table 1: Notation for a query t, table scan f , and concurrent
query c.

queries: their data are often requested and hence cached in shared
buffers and reused by concurrently running queries.

Based on this observation, we quantify for each concurrent query
how it interacts with the primary by estimating its time spent on
shared I/Os. To this end, we first determine the fact tables scans
shared by the primary, t, and each concurrent query, ci as:

gf,ci =

{
1 if both template ci and primary scan table f
0 otherwise

Then, we estimate the time the concurrent template ci will not re-
quire the I/O bus exclusively, ωci . This represents the I/O time
spent on I/O requests shared with the primary and is:

ωci =

n∑
f=1

gf,ci × sf (2)

where sf is the time required to perform a table scan on the fact
table f . We empirically evaluate the time of each table scan by
executing a query consisting of only the sequential scan. The above
formula sums up the estimated time required for each shared fact
table scan.
Concurrent Query Interactions In addition to determining the I/O
that is likely to be shared between the primary and its concurrent
queries, we take into account the work that will be shared among
concurrent queries. For example, if the primary is executed with
queries a and b, this metric estimates the savings in I/O time for
scans that are shared by a and b.

We first determine the table scans that are shared between ci and
other non-primary queries with:

zf,ci =

{
1 if ci scans f , the primary does not and hf > 1
0 otherwise

where hf counts the number of concurrent queries sharing a scan
of table f . Because we are only interested in shared scans, we add
the limit that hf must be greater than one. We also require that fact
table f must not appear in the primary to avoid double counting.
Our model assumes that concurrent templates will equally split the
cost of shared sequential scans. We calculate the reduction in I/O
due to shared scans for each concurrent query ci as:

τci =

n∑
f=1

zf,ci × (1− 1

hf
)× sf (3)

Baseline I/O Positive I/O CQI
MPL 2-5 25.4% 20.4% 20.2%

Table 2: Mean relative error for CQI-based latency prediction.

Concurrent I/O Requirements Given the I/O requirement reduc-
tions owing to positive interactions among the primary and its con-
current queries, we estimate the I/O requirements of a concurrent
query ci as:

rci = (lminci
× pci − ωci − τci)/lminci

(4)

The above equation estimates the time ci spends directly competing
for I/O bandwidth with the primary as follows. It evaluates the total
I/O time by multiplying the latency of ci executing in isolation,
lminci

, by pci , the percentage the query spend executing I/Os. We
then subtract the I/O savings from its positive interactions with the
primary, ωci , and other concurrent queries, τci . We now have the
percentage of ci’s “fair share” of hardware resources it is likely to
use. Higher rci values indicate the concurrent query will spend
more time competing with the primary for the I/O bus, delaying the
primary’s progress. A lower rci indicates that a concurrent query
will create little contention for the primary.

Given a query mixm wherem is comprised of the primary t and
concurrent queries, C = {c1, ..., cn}, we define the Concurrent
Query Intensity (CQI), quantifying the average percentage of I/O
time during which each concurrent query competes for I/O, rci :

rt,m =
1

n

n∑
i=1

rci (5)

We truncate all negative I/O estimates to zero. This occurs when
queries have negligible I/O expectations outside of their shared
scans. We use this estimate as the independent variable for our
predictions of the primary’s continuum point, ct,m in Equation 7.
Latency Predictions For Known Templates We now evaluate the
CQI’s utility in predicting query latency for known templates. We
propose a linear relationship between the two metrics, and tested
this hypothesis by generating one prediction model per template.
We experimented with MPLs of 2-5, using k-fold cross valida-
tion for each template t. Hence, this evaluation predicted latency
for 1/kth of the sampled concurrent mixes at a time after training
on the remaining examples. For each training mix, we collect the
primary’s average execution latency and CQI. Taken together, the
training pairs produce a linear regression model with the primary’s
latency as the dependent variable, derived from the CQI figure in
Equation 5. The prediction errors for MPLs 2-5 are displayed in
Table 2.

We compare the accuracy of the linear model using CQI as its
independent variable with models derived from subsets of CQI’s
three components. The first variant (Baseline I/O), predicts the
query latency based only on the average percent of I/O time used by
the concurrent queries when run in isolation (i.e., the average of the
pci values). The hypothesis here is that if we knew how much of
the I/O bandwidth each concurrent query would uses to complete
its work, we can average it out to determine the amount of “slack”
available. This approach has moderate accuracy with a mean error
rate of 25.4%.

The second variant (Positive I/O), predicts the primary’s latency
based on the baseline I/O requirements and the positive interac-
tions of the concurrent queries with the primary. Specifically, we
evaluated whether subtracting from the baseline I/O time (i.e., pci
values) the I/O time spent on shared scans between the concur-
rent queries and primary (i.e., wci values) improves our estimates.
This metric indeed offered improvements in our accuracy, com-



pared with the Baseline I/O, bringing our mean relative error down
to 20.4%.

Lastly, the CQI metric, which takes into account the positive in-
teractions among the concurrent queries (i.e., tci values) further
refines our estimates. This results indicate that the CQI metric is a
good predictor for query’s execution time. The prediction improve-
ment offered by CQI over the Positive I/O metric is relative small,
implying that savings among the concurrent queries only reduces
their duration and not that of the primary. In this work, we opt to
use the CQI metric for our predictions since it takes into account all
sources of query interaction: it is the only metric that considers the
interactions among non-primary queries and in addition to interac-
tions with the primary. Hence, it provides a more holistic metric
than the Positive I/O alternative.

5. PREDICTIVE MODELS FOR
QUERY PERFORMANCE

This section describes the steps Contender completes to learn the
relationship between resource contention and query performance
for static, known queries as well as new, previously unseen tem-
plates. First, we generate a latency range for the primary based on
the minimum and maximum I/O and memory contention. We re-
fer to this range as the primary’s performance continuum. Then,
we introduce our Query Sensitivity (QS) framework, a linear model
that predicts the performance of a query (i.e., where its latency lies
on the continuum) based on the resource contention metric, CQI,
introduce in Section 4.

To handle ad-hoc templates, Contender first builds a set of ref-
erence QS models for the known templates available in its training
workload. After that, it learns the predictive QS model for un-
known templates based on the reference models. Our approach is
discussed in Section 5.2. Finally, we analyze the sampling require-
ments of our framework and demonstrate how its sampling time can
be reduced, from linear to constant time, by predicting the worst-
case performance of a new template. We do so by using a mix of
semantic and empirical modeling of individual templates.

5.1 Performance Continuum for
Query Templates

Contender creates a continuum that establishes a range for the
latency of the primary query template. To make new templates
comparable to known ones, we normalize the query’s latency as a
percentage of its continuum and we estimate the upper and lower
performance by simulating the best and worst resource contention
scenario. By quantifying where a template’s performance is on the
continuum for individual mixes, we more generally learn how the
query responds to contention.

We set the lower bound of our continuum to be the latency of
the primary query t when running in isolation, lmint . This metric
captures the best-case scenario, when the query makes unimpeded
progress. For each template t and a given MPL, we use a spoiler1

to calculate its continuum’s upper bound, lmaxt (spoiler latency).
The spoiler charts how a template’s latency increases as contention
for I/O bandwidth and memory grows. The spoiler simulates the
highest-stress scenario for the primary query at MPL n. It allocates
(1-1/n)% of the RAM, pinning it in memory. The spoiler circularly
reads n− 1 large files to continuously issue I/O requests.

Thus, if lt,m is the query latency of a template t executing with

1Based on the American colloquialism “something produced to
compete with something else and make it less successful”

a query mix m, its continuum point is defined as:

ct,m =
lt,m − lmint

lmaxt − lmint

. (6)

Contender predicts the continuum point, ct,m by inserting a mix’s
CQI into its QS model, and then based on Equation 6 estimates the
latency of the primary query t, lt,m. The following sections de-
scribe how this framework constructs a prediction model for ct,m.

5.2 Query Sensitivity Models for
Known Templates

In Section 4, Table 2, we demonstrated that we can build accu-
rate latency predictions using the CQI metric for known templates.
This implies that, given a new query mix m and an established pri-
mary query t, we can calculate the CQI metric in Equation 5 for
the template t in the mix m and then use a linear regression model
to predict the template’s performance (i.e., its continuum point).
We refer to this linear model as the Query Sensitivity (QS), because
it captures how a template responds to resource contention. This
section describes how such a model is built.

In Section 4 we established that there is a linear relationship be-
tween CQI and query duration. Therefore, the performance pre-
diction model for template t executed in a query mix m has the
form:

ct,m = µt × rt,m + bt (7)

Each QS model consists of an y-intercept (bt) and a slope (µt).
Next, we describe how to learn these model coefficients for the
known templates in a pre-existing workload. Such examples are
reference models, and new templates use them to build their own
prediction models (see Section 5.3).

To build the QS reference models for a known template t and
MPL n, we evaluate sample mixes of n queries including the pri-
mary t. We collect these training executions using LHS as outlined
in Section 2. For each mix m generated by LHS, we calculate the
CQI rt,m and the primary’s performance, lt,m. We also obtain the
isolated latency, lmint and spoiler latency for the template t, lmaxt .
Then, based on Equation 6, we evaluate the continuum point ct,m.
This provides a collection of (rt,m, ct,m) pairs based on which we
build the QS regression model for the training template t. This
model accepts as an input the CQI for a primary query in a given
mix and predicts its continuum point. Given the continuum point,
we use the isolated and spoiler latencies for the template to scale it
into a latency estimate, reversing Equation 6.

5.3 Query Sensitivity Models for
New Templates

Building QS models for known templates is a simple way to pre-
dict latency for queries executing under concurrency based on the
mix’s CQI. Contender also learns the QS model (i.e., µt and bt) for
a new template, by comparing it to ones we have already sampled
under concurrency. Contender addresses this challenge for ad-hoc
queries, setting it apart from existing CQPP approaches [1, 8]. Next
we discuss our approach.
Coefficient Relationship We first examined the relationship be-
tween µt and bt for each template in a workload. The study in
Figure 4 assembles pairs of the coefficients from QS models gen-
erated for MPL 2, applying linear regression to the set. This graph
shows the linear relationship between the coefficients.

The y-intercept (bt) represents the minimum performance of
the primary template t under concurrency. The results show that
even when the concurrent queries have an I/O usage of near zero
(rt,m = 0) the primary query still experiences some slow down due
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Figure 4: Linear relationship between QS coefficients.

to fixed costs of concurrency such as reduced memory access. Fur-
thermore, the y-intercept may be also negative. This corresponds
to query mixes having a positive impact on the performance of the
primary, leading to faster execution times than it executing in isola-
tion. These are mostly queries that share the bulk of their I/O work
with concurrent queries and have lightweight CPU requirements.

The model slope (µt) denotes how quickly the template responds
to changes to resource availability. A higher slope indicates that
the primary’s performance is more sensitive to variations in the I/O
requirements of its concurrent queries. These are typically I/O-
bound queries executing sequential scans having small intermediate
results.

The figure demonstrates that for the majority of our queries the
y-intercept and slope are highly correlated (they lie closely along
the trend line). This demonstrates that we can learn the the per-
formance prediction model of a new template (i.e., its QS model)
by only estimating one of these parameters and without collecting
sample executions of the query with the preexisting workload. We
focus on this in the following paragraph.
Learning QS Coefficients Next, we identify template features for
predicting the coefficients of the QS model for previously unseen
templates. We examined both performance features, such as the
percent of time spent executing I/O in isolation, pt, and maximum
working set size, the size of the largest intermediate result. We also
considered query complexity features, by examining how closely
the number of plan steps and records accessed correlate with the
coefficients. Finally, we studied whether the isolated run time,
spoiler latency, and spoiler slowdown (spoiler latency divided by
the corresponding isolated query time) are correlated with the QS
coefficients.

Our results are charted in Table 3. We use the coefficient of deter-
mination (R2) to assess the goodness of fit between the model and
each of the features. R2 is a normalized measure that relates the
error of the model to the overall variance of the data set. It ranges
from 0...1, with higher values denoting better fit. Our performance
features, I/O time and working set size, were poorly correlated with
the QS model parameters. This is not surprising because such in-
dicators are too fine-grained to summarize the query’s reaction to
concurrency. Likewise, the number of QEP steps and records ac-
cessed also yielded too little information about overall query be-
havior. Spoiler slowdown only captures the worst-case scenario,
stripping out valuable information regarding the query as a whole.

We found that isolated latency is inversely correlated with slope
of our model. Isolated latency is a useful approximation of the

Query Template Features Y-Intercept b Slope µ
% execution time spend on I/O 0.18 -0.05

Max working set -0.24 0.11
Query plan steps 0.31 -0.29
Records accessed 0.12 -0.22
Isolated latency 0.36 -0.51
Spoiler latency 0.27 -0.49

Spoiler slowdown 0.08 -0.24

Table 3: R2 for linear regression correlating template features
with y-intercept and slope of the QS models.

“weight” of a query. Queries that are lighter tend to have larger
slopes. They are more sensitive to changing I/O availability and
exhibit greater variance in their latency under different concurrent
mixes. In contrast, heavier queries (with long durations) tend to
be less perturbed by concurrency; their longer lifespans average
out brief concurrency-induced interruptions. Isolated latency also
has the highest correlation with the y-intercept. This relationship
makes sense, since queries that are I/O-bound (and have a higher y-
intercept) tend to be more sensitive to concurrency; those that have
a fixed high overhead imply CPU-boundedness. Based on these
results, we use isolated latency to predict the QS model parameters
for new templates.
Contender Prediction Pipeline This prediction framework for a
new templates operates in two phases, shown in Figure 5. First,
it trains on a known workload and a given MPL n, i.e., for each
known template t, it evaluates the isolated and spoiler latency. We
also use LHS to collect limited examples of concurrent query mixes
(Step 1) of size n. Based on these mixes, Contender builds its ref-
erence QS models for each known template t (Step 2).

Once a new template t′ appears, we use linear regression to es-
timate the slope, µt′ , based on the query’s isolated latency, lmt′ .
The input to our linear regression includes the isolated latency of
the known templates and the slope (µ) coefficient of our reference
QS models. Using this estimated slope, we learn the y-intercept,
b′t, using a second regression step (Step 3).

Having estimated the coefficients of the QS model, we predict
t′’s continuum point for a mix of concurrent queries m. We do
this by first parsing the concurrent queries and calculate the CQI
value for the template query t′, rt′,m (Equation 5, Step 4). We
then apply our QS coefficients, µt′ and bt′ , to the CQI value to
predict the continuum point, ct′,m, based on the regression model
in Equation 7.

Given the continuum point, we use the isolated and spoiler laten-
cies of t′ to scale it into a latency estimate, reversing Equation 6.
Using this technique, we predict end-to-end latency for new tem-
plates using only the template’s isolated and spoiler latencies (Step
5), and semantic information from the query execution plans of all
members of a mix.

5.4 Reduced Sampling Time
One of the appealing aspects of Contender is that it requires very

limited sampling to achieve high-quality predictions. Furthermore,
it is a simple and flexible framework for making predictions on new
templates.

Prior work [8] required significant sampling of unseen templates
before making any predictions. This is brittle and incurs a poly-
nomial growth in sampling requirements as the number of distinct
workload templates rises. That system used LHS in its training
phase for each template. For a workload with t templates with m
MPLs and k samples taken at each MPL, this approach necessitates
t×m× k samples (O(n3)) before it can start making predictions.
Incorporating a new template requires executing numerous sam-



ple mixes with the previous workload templates in order to collect
statistics on their performance. Specifically, that work required at
least 2×m×k additional samples per template to determine how it
interacts with the pre-existing workload. Adding a new template is
similarly expensive when using traditional machine learning tech-
niques for producing predictions, as described in Section 3. For in-
stance, the cost of adding a new template for our experiments with
KCCA and SVM was 109 hours on average to achieve static work-
load accuracy levels. Therefore, previous work on performance
prediction [8, 10, 11] cannot efficiently handle ad-hoc templates.

In contrast our approach reduces sampling to linear time. We
only require one sample per MPL, i.e., the spoiler latency. Our
experimental study shows that this dramatically reduces our sam-
pling time for known workloads to 23% compared with the cases
where we need to sample the spoiler latency for each template. In
addition, this approach does not predispose our modeling towards
a small subset of randomly selected mixes. Rather, we profile how
the individual template responds to concurrency generically. This
makes Contender particularly suitable to handle dynamic work-
loads that include both known and new query templates. In the next
section, we introduce a technique to predict the spoiler latency, fur-
ther reducing the sampling requirements of this framework.

5.5 Predicting Spoiler Latency
for New Templates

Contender relies on sampling the primary template performance
at every MPL for which it makes prediction. Hence, for each new
template, it samples the query once per concurrency level in order
to get the spoiler latency. This process can be cumbersome. We
address this limitation by learning the spoiler latency from isolated
template execution statistics.
Spoiler-MPL Relationship Our first step is to determine whether
template spoiler latencies are predicted based on the concurrency
level. We theorized that latency would increase proportionally to
our simulated MPL. Qualitatively, we found that templates tend to
occupy one of three categories. One example of each is plotted in
Figure 6. The first category is demonstrated by Template 62. It is
a lightweight, simple template. It has one fact table scan and very
small intermediate results. This query is subject to slow growth as
contention increases because it is not strictly I/O-bound. In isola-
tion it uses 87% of the I/O bandwidth. The medium category is
shown with Template 71. It is I/O-bound, using greater than 99%
of its isolated execution time on I/O. T71, however, does not have
large intermediate results. Because of these two factors, this tem-
plate exhibits modest linear growth as we increase the MPL. The
final query types are heavy; they are shaped by large intermediate
results which necessitate swapping to disk as contention increases.
Such queries have a high slope. These templates still exhibit linear
increases in latency, however their growth rate is much faster than
the other two categories.

In addition, we test this hypothesis using linear regression on
each template. The training set consisted of spoiler latencies at
MPLs 1-3 and testing was performed on MPLs 4-5. We found that
on average we could predict spoiler latency within 8% of the correct
elapsed time by using the MPL as the independent variable. There-
fore, Contender predicts the spoiler latency for a new template t′ at
MPL n by using the following linear model:

lmaxt′ = µt′ × n+ bt′ . (8)

In the next paragraph we discuss how this model is generated for
each new template.
Learning Spoiler Growth Models We discovered empirically that
spoiler latency for individual templates grows linearly proportional
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Figure 5: Contender CQPP framework for new templates.

to the simulated MPL. Individual templates, however, have very
different spoiler latencies. This implies that we must learn the co-
efficients of the linear model (µt′ and bt′ ) for each new template
t′ independently. Contender predicts these coefficients by evalu-
ating how comparable t′ is to known templates in our workload.
In particular, we rely on comparing the I/O behavior of templates.
To compare different templates, the model predicts spoiler latency
growth rate as opposed to spoiler latencies. This figure is calcu-
lated by dividing the spoiler latency by the template’s isolated du-
ration, producing a scale-independent value. The intuition here is
that queries with the same percent of time spent executing I/O have
similar rates of slowdown as resources become scarce.

To test this hypothesis, we evaluated whether the percent of exe-
cution time spent on I/O, pt, is correlated with the spoiler latency.
We found that pt corresponds moderately with the model coeffi-
cients (Equation 8), having an R2 of 0.63. Likewise, the working
set size indicates the rate at which a template will swap its interme-
diate results as resources become less available. We also checked
the correlation of this metric to the spoiler latency and it had an
R2 of 0.41. Although it is not as well-correlated as I/O rate, this is
still a useful indicator and gives us another dimension with which
to predict the model’s coefficients.

Based on these two metrics (I/O rate and working set size) col-
lected during isolated query execution, we devised a technique for
predicting spoiler latency. Specifically, Contender uses a k-nearest
neighbors (KNN) approach to learn spoiler model coefficients for
the new template based on similar ones. The KNN predictor first
projects each known template in a two-dimensional space, with
their working set size in one dimension and I/O time, pt, on the
other. For each known template, we have a linear model for pre-
dicting their spoiler latency (Equation 8). Next it projects a new
template into this space and identifies the k nearest templates based
on Euclidean distance. The predictor then averages their model co-
efficients for the new template’s parameters. This way, we learn the
spoiler latency patterns of new queries by comparing them directly
to members of the prior workload.

This approach learns models for new templates leveraging only
isolated performance statistics (i.e., the query’s working size and
I/O rate when executed in isolation). In doing so, we reduce our
training time for new templates from linear (sampling each spoiler
at each MPL) to constant (executing the new query only once inde-
pendently of the MPL).
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Figure 6: Spoiler latency under increasing concurrency levels.

6. EXPERIMENTAL RESULTS
In this section we evaluate the effectiveness of the Contender

framework. We begin by reviewing our experimental setup. After
that we evaluate the effectiveness of our CQI metric in predicting
query performance, and study the accuracy of our QS model for
both known and new templates. Finally, we demonstrate the effi-
cacy of predicting our spoiler latencies to reduce sampling time,
and show how this step impacts our overall performance modeling.

6.1 Experimental Setup
In this work we experimented with TPC-DS [17], a decision sup-

port benchmark, in its 100 GB configuration. We executed the
benchmark on PostgreSQL 8.4.3 on Ubuntu 9.04 using an 8 core
Intel i7 2.8 GHz processor and 8 GB of RAM.

Our workload queries have significant variety. Individual tem-
plates access between one and three fact tables. Several of our
queries are I/O-bound (e.g., templates 26, 33, 61 and 71); tem-
plates 17, 25 and 32 execute random I/O, and there are also exam-
ples of where the CPU is the limiting factor, such as templates 62
and 65. Contender supports this scenario well because the CPU
time is captured in the Query Sensitivity model. Finally, we have
a handful of queries that are memory-bound, templates 2 and 22.
Memory-intensive queries have significant working set sizes, on
the order of several GB. They are the exception in our primarily
I/O-bound workload; such templates typically produce higher pre-
diction errors. Nonetheless, we report their prediction accuracy in
our results unless otherwise noted.

Our spoiler latency is designed to provide an upper bound for
each template’s execution time. In a few cases, however, the ob-
served latency exceeds the spoiler’s estimate. This occurred when
long running queries are paired with very short ones; it is an artifact
of our steady state sampling. The cost of restarting, including gen-
erating the query plan and re-caching dimension tables, becomes a
significant part of its resource consumption. Empirically we found
that cases where the query latency is greater than 105% of spoiler
latency occurs at a frequency of 4%. Identifying these outliers is
possible (e.g., [18]), however it is beyond the scope of our work.
We omit them from our evaluation because they measurably exceed
the continuum. Addressing this limitation is left to future work.

6.2 Concurrent Query Intensity
First we evaluate the accuracy of using CQI to predict query la-

tency. We build one model per template per MPL. For a given tem-
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Figure 7: Prediction error rate at MPL 4 with CQI-only model.

plate (the primary), our training set consists of sampled mixes for a
given MPL that include this template. For each mix we collect the
CQI with its resulting continuum point (the primary’s performance
in that mix) and generate a linear regression model for predicting
the query latency. Figure 7 shows the prediction error for the mod-
els of the 25 workload templates at MPL 4. On average we predict
latency within 19% of the correct value, demonstrating a well-fitted
model for these complex query interactions. The prediction accu-
racy was similar for MPL levels of 3 and 5. We omit their graphs
due to space limitations.

Our results also reveal that we can predict the performance of
extremely I/O-bound queries very well, within 10% of the correct
latency. Recall that templates 26, 33, 61 and 71 are examples of
such queries. They spend 97% or more of their execution time
in I/O operations in isolation. The results demonstrate that CQI
modeling is particularly suited for these queries.

The figure also shows that our prediction error is around 23%
for queries that execute random I/O operations (i.e., index scans).
Random seeks cause their performance under concurrency to ex-
hibit higher variance. This is because I/O time under concurrency
is sensitive to the speed at which the disk completes seeks–previous
research shows that random I/O can vary by up to an order of mag-
nitude per page fetched [8].

This workload also includes memory-intensive queries, 2 and 22,
for which our prediction error was higher. These templates have
large intermediate results that necessitate swapping to disk as con-
tention grows; they demonstrate a different performance profile un-
der limited I/O availability. We did not have enough similar queries
in our workload to train such models, so we continue to use the less
accurate linear modeling for such templates.

Also, we had a slightly higher error rate for Template 40. This
template had two outlier samples in which it ran with queries that
both had high memory and were primarily random I/O. Both of
these factors reduced the prediction accuracy as discussed above.
Without the two outliers, its relative error is reduced to 21%.

6.3 Query Sensitivity
In this section we study the accuracy of our performance pre-

diction model (i.e., QS model) when applied on both known and
unseen templates. Figure 8 shows our results for MPLs 2-5.
Known Templates In Figure 8, Known-Templates represents pre-
dictions for templates which have been sampled under concurrency.
Here, we already know the QS model for the query template and
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Figure 8: Latency MRE for known and unknown templates.

hence, we only need to evaluate its CQI metric for a given mix to
produce a performance prediction. The QS model works very well
for known templates having a prediction error of 19% on average,
showcasing the effectiveness of this model. They also demonstrate
that the CQI metric is robust to complex and changing concurrent
execution conditions owing to the variety of this workload.
New Templates Next, we evaluate our prediction accuracy when
working with unknown templates. Using the k-fold cross vali-
dation (k = 5), we train on 20 TPC-DS templates and estimate
the performance of 5 unknown ones. Here, we evaluate the pre-
diction error of the Contender approach that learns the entire QS
model of new templates (Unknown-QS) from reference QS models
as described in Section 5.3. Once a new template t′ appears, this
approach uses a linear regression model to estimate the slope µt′

based on the query’s isolated latency lm,t′ . The input to this linear
regression includes the isolated latencies and slope (µt′ ) coefficient
of our reference QS models. It uses the learned µt′ to predict the
y-intercept bt′ for the new template using a second regression step.

We compare Contender with the Unknown-Y approach. Here
we start with a known set of QS models which we build for all
templates as described in Section 5.2 (i.e., we learn the relationship
between CQI and query latency). Once a new template t′ appears,
we get the µt′ coefficient from the QS model on t′ we produced.
We still learn the the bt′ coefficient using a second linear regression
model, similarly to the Unknown-QS experiment.

The results in Figure 8 demonstrate the accuracy of all ap-
proaches. Unknown-Y has an average error of 23% while our ap-
proach (Unknown-QS) has an average error of 25%. This is be-
cause (as shown in Figure 4) the y-intercept and the slope are not
perfectly correlated. Unknown-Y reflects a close linear relationship
between the two coefficients demonstrated in Figure 4.
Prior Work Comparison Our accuracy for predicting latency for
known and unknown templates is an improvement over the state-of-
the-art on CQPP for analytical workloads [8]. Prior work predicted
query latency with 25% prediction error on average but required
LHS to collect examples of query mixes for each new template
(i.e., therefore their 25% accuracy is for known templates). Given
this limitation, that work is not fit to provide predictions for new,
never before trained upon templates. We achieved approximately
the same accuracy for unknown templates and better accuracy (only
19% prediction error) for known templates using linear time sam-
plings. Moreover, our training does not require any sampling of
concurrent mixes.

0%#

5%#

10%#

15%#

20%#

25%#

2# 3# 4# 5#

M
ea
n%
Re

l.%
Er
ro
r%

Mul-programming%Level%

KNN#

I/O#Time#

Figure 9: Spoiler prediction for new templates.

6.4 Spoiler Latency Prediction
This section gauges the effectiveness of our spoiler prediction

model, which estimates the worst-case performance for a new tem-
plate at a given MPL by leveraging the spoiler latencies of known
templates. This approach reduces our training time for new tem-
plates from linear to constant. Contender’s approach (KNN) pre-
dicts the spoiler latency of such templates based on the k nearest
neighbors as described in Section 5.5. The closest neighbors are
selected based on the working set size and I/O time of the queries
when executed in isolation. Our experiments have a k of 3 for
neighbor selection.

We compare our proposed technique with the I/O Time approach
that predicts the spoiler latency using linear regression models.
Specifically, this baseline builds on the observation that queries
with the same percent of time spent on I/O when executing in iso-
lation (pt) have similar spoiler growth rates as the I/O bandwidth
becomes scarce. We learn the two coefficients (µt′ , bt′ in Equa-
tion 8) for the new template t′ by building a linear regression mod-
els for each. Both models have pt′ as their independent variable.
In this experiment, we train on all but one template and evaluate
our model on the excluded one. Both techniques rely on statistics
collected only from isolated executions of the new template.

Figure 9 shows the prediction error for these techniques on dif-
ferent MPLs. In all cases, Contender’s KNN approach delivers
higher prediction accuracy. The prediction error is approximately
15% while the I/O Time has an error rate of 20% in average. The
main advantage of our approach is that it employs two statistical
metrics (i.e., working set size and I/O time) as opposed to a single
indicator of the I/O Time approach; it is able to better characterize
the worst-case performance of the new template based on similar
previous queries.

6.5 Performance Prediction for
New Templates

Lastly, we evaluate the accuracy of our overall framework when
predicting latencies for new templates. In these experiments, Con-
tender is using the QS model and the KNN technique to pre-
dict spoiler latency (as opposed to results discussed in Section 6.3
where the spoiler latency was known in advance). The experiments
are shown in Figure 10. Here, we average over all templates except
T2, the most memory-intensive query. We had too few points of
comparison to build a robust model of its spoiler latency growth,
however, using linear time sampling, Contender makes accurate
predictions for the template.

In these experiments we train on all templates but one and test
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Figure 10: Latency prediction for new templates with standard
deviations.
our model on the excluded one. We compare the prediction error of
three approaches. Known Spoiler uses the QS model but the spoiler
latency is measured empirically. It requires a linear time sampling
of query executions. Predicted Spoiler uses the same CQPP models
as the prior experiments, however the spoiler latency is predicted
based on the KNN method of Section 5.5. This approach requires a
single execution of the query in isolation. Finally, Isolated Predic-
tion predicts the inputs for our models (working set size, latency,
and I/O time) of a new template using a simulation of the predic-
tion model proposed in [11]. These statistics are then provided to
the KNN spoiler prediction technique and QS framework. This
evaluation introduces a randomized error rate of ±25% to the iso-
lated template execution statistics and is congruent with the finding
in [11], but requires zero sample executions of the new template.

The results demonstrate that Contender’s prediction error (which
is represented by the KNN Spoiler approach) is 25% for MPL val-
ues of 2-5 and it is slightly higher than the prediction error when the
spoiler latency is not predicted. In most cases the spoiler latency
predictions were sufficiently close such that it did not significantly
impact our ability to predict template latency in individual mixes.
One side effect of predicting spoiler latency, as the figure shows,
is that the standard deviation of our predictions increases. This is
because our model becomes less resilient to high-stress mixes as
we predict spoiler latencies from the KNN technique. Finally, the
Isolated Prediction has the highest prediction error, proportional to
its less accurate model sources. This demonstrates that one sam-
ple execution of the query in isolation (as Contender does) is more
effective than relying on the existing prediction models for input.

The above experimental results clearly state Contender offers
prediction errors comparable to the state-of-art in latency predic-
tion for known templates without concurrency [11] and with con-
currency [8]. Therefore, our framework offers a significant im-
provement over existing techniques as it can deliver comparable
prediction accuracy on more complex scenarios (i.e., unknown tem-
plates executed concurrently) with significantly less overhead (i.e.,
constant sampling as opposed to exponential/linear).

7. RELATED WORK
There has been significant work in the field of query performance

prediction and progress indicators. In this section, we outline the
main advancements to date.
Query Progress Indicators Query progress indicators have been
proposed in [19, 20, 21] and established solutions are surveyed

in [22]. In [19] the authors model the percent of the query com-
pleted, however their solution does not directly address latency pre-
dictions for database queries and they do not consider concurrent
workloads. [20, 21] take into account system strain and concur-
rency, but they focus on performance of queries in progress. In
contrast, we predict the latency of queries before they begin.
Query Performance Prediction In [10, 11, 23, 24] the researchers
use machine learning techniques to predict the performance of an-
alytical queries. Although they predict query latency, they do not
address concurrent workloads. In Section 3 we experimented with
the same machine learning techniques and found our adaptation un-
suitable for CQPP.

Query performance prediction under concurrency was first ex-
plored in [3, 18, 25]. The authors create concurrency-aware mod-
els to build schedules for batches of OLAP queries. Their solutions
create regression models based on sampled query mixes. These
systems generate optimal schedules for a set of OLAP queries to
minimize end-to-end batch duration. [2, 4] extends the work in [3,
18] to predict the completion time of mixes of concurrent queries
over time from given query batches. This work does not target
individual query latencies either; instead the authors predict end-
to-end workload latencies. Their models are designed for known
templates. Our framework, however, provides finer-grained predic-
tions that estimate the response time of individual queries. In [8],
we proposed predictive latency models for concurrently executing
queries. Although Contender also forecasts query duration, it han-
dles new templates and does not require sampling how they interact
with the preexisting workload.

An alternative approach was explored in [26]; the authors pre-
dicted the performance of queries that are already running. [7, 27]
researched workload modeling for transactional databases (OLTP),
however their solutions are tailored to the buffer management tech-
niques of MySQL. [28] makes prediction for the throughput of ana-
lytical workloads on varying hardware. In [12, 29], the authors ex-
plored workload modeling under concurrency. [29] makes predic-
tions about query latency under concurrency as a range, and [12]
examines high-level workloads. None of these approaches make as
precise query latency predictions as we do in this work.

8. CONCLUSIONS
We studied Concurrent Query Performance Prediction (CQPP)

for dynamic, analytical workloads. This problem has many impor-
tant applications in resource scheduling, cloud provisioning, and
user experience management. This work demonstrated that the
prior machine learning approaches for query performance predic-
tion do not provide satisfactory solutions when extended for con-
currency. The same is true for dynamic workloads that include new
query templates due to their high sampling requirements.

We propose a novel framework for CQPP named Contender; it
models the degree to which queries create and are affected by re-
source contention and is targeted for I/O-bound workloads. This
approach uses a combination of semantic information and empiri-
cal evaluation to build a model for each template at different con-
currency levels. In doing so, we show significant improvements
over the black-box machine learning techniques.

We formally define Concurrent Query Intensity (CQI), a novel
metric that quantifies I/O contention and demonstrate that is effec-
tive for predicting query latency. We then introduce our Query Sen-
sitivity (QS) predictor that makes accurate predictions for known
and arbitrary queries with low training overhead. QS relies on gen-
eralizing from similar queries in the preexisting workload to build
its models. Its parameters convey how responsive a template is to
changing availability of shared resources.



Our experimental results showed our predictions are within ap-
proximately 25% of the correct value using linear time sampling
for new queries, and 19% for known templates. Our approach is
thus competitive with alternative techniques in terms of predictive
accuracy, yet it constitutes a substantial improvement over the state
of the art, as it is both more practical and efficient (i.e., requires less
training).

In future work, we would like to explore CQPP at the granu-
larity of individual query execution plan nodes. This would make
our models more flexible and finer-grained, however, it necessi-
tates sophisticated sampling strategies to model arbitrary interac-
tions among operators. The work of [24] has made the case for this
promising line of research.

Another interesting direction for this work is developing models
for predicting query performance on an expanding database. As
database writes accumulate, this would enable the predictor to con-
tinue to provide important information to database users.

An additional open question is that of modeling interactions for
distributed analytical workloads. Distributed query plans call for
modeling their sub-plans as they are assigned to individual hosts
as well as the time associated with assembling intermediate results.
This would also require incorporating the cost of network traffic
and coordination overhead.
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