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ABSTRACT
Data-intensive science, wherein domain experts use big data
analytics in the course of their research, is becoming increas-
ingly common in the physical and social sciences. Moreover,
data reuse is becoming the new normal, owing to the open
data movement [15] and arrival of big science experiments
such as the Large Hadron Collider. Here, a small group of
researchers with exotic equipment produce a dataset that is
shared by thousands. Unfortunately, weak and spurious cor-
relations are also on the rise in research [5, 27]. For example,
Google Flu Trends published their algorithms in 2008 [19]
for use in public health, and in the intervening time its accu-
racy has plummeted. In the 2011-2012 flu season, this system
produced estimates more than 50% higher than the number
of cases reported by the U.S. Center for Disease Control [32].

This work first examines common pitfalls associated with
data-intensive science and how they contribute to irrepro-
ducible results. We then propose a system for conducting
virtual experiments over existing data. It simulates random-
ized controlled trials by reframing the principles of empir-
ical research. These virtual experiments underpin a larger
platform we call Hephaestus. This framework accumulates
virtual experiments in a visualization to help scientists iden-
tify consistencies and anomalies in an area of research. We
then highlight a set of research challenges associated with
this platform. We argue that by using this approach, data-
intensive science may come to achieve accuracy on par with
its causality-driven predecessors.

1. INTRODUCTION
Data reuse is becoming increasingly prevalent in science.

The reasons for this are numerous. First, many science fund-
ing agencies are instituting open science mandates [17, 41],
and this promises to create a new flood of data sourced from
published research. In addition, many large-scale science en-
deavors are now designed to collect data first for use in any
number of studies later. For example, the Large Hadron Col-
lider makes its measurements available to more than 8,000
scientists, although relatively few people operate the particle
accelerator [10]. This pattern is echoed in the Large Synop-
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tic Survey Telescope [52], the Square Kilometer Array [9],
NASA’s MODIS satellite imagery [38], and many others.

There are many challenges and opportunities associated
with making use of this growing body of data. This data
reuse calls for new techniques because it changes how scien-
tists conduct their research. Traditionally researchers begin
with a hypothesis followed by an experiment designed to
prove or disprove it. These trials are conducted in carefully
controlled lab settings. In each experiment, the researchers
manipulate perhaps one or a few variables to establish cause-
and-effect relationships. It is unclear how these rigorous,
time-tested methods will evolve for scientific discovery over
existing data.

To explore these questions, we interviewed scientists to
learn about how they conduct data-intensive research now.
Their experiences span a variety of empirical disciplines, in-
cluding evolutionary biology, genomics, clinical trials, and
photonics. Our interviews revealed a widespread need to re-
frame the principles of empirical research for eScience. These
discussions also brought to light numerous pitfalls in data-
centric analysis; we discuss some of these hazards in the
context of machine learning below.

Machine learning alone is not enough Researchers
presently use statistics and machine learning to discover in-
teresting correlations from their experimental results. There
has been considerable excitement about this development
with many heralding it as the “end of theory-driven sci-
ence” [3, 24]. Recent evidence, however, suggests that one
quarter of research is statistically false [28], and others es-
timate a much higher rate [5, 27]. Although some of these
errors may be attributed to shoddy research procedures or
buggy code, the prevailing wisdom is that such failures are
owing to both the limits to and the misapplication of statis-
tics over massive datasets [12, 22, 45].

A plethora of examples illustrate this issue. Google Flu
Trends, in conjunction with the United States CDC, pub-
lished statistical models in Nature for use in predicting sea-
sonal illness rates [19]. Their approach used search engine
queries to predict the rate of people seeking treatment for
influenza-like illnesses. This technique was pitched as an
early detection method for flu pandemics. As time progressed,
it became clear that Google Flu Trends was vulnerable to
overfitting; its error rates skyrocketed in subsequent years [35].
In particular, as the tool became more well-known, users
queried it at a higher rate, confounding its results.

In unrelated research, epidemiologists published observa-
tional studies demonstrating a positive correlation between
post-menopausal women taking hormone replacement ther-



apy (HRT) and a reduction in heart disease [21]. This result
puzzled many experts in the field, because there is no intu-
itive link between the two. Despite this skepticism, the find-
ing was used to promote HRT to this demographic. Later,
the link was repeatedly refuted with randomized controlled
trials, reversing this policy recommendation [31]. This error
was attributed to the initial study’s use of subjects from a
single socioeconomic group, an unrelated variable that was
not controlled for in the study’s design.

Earthquake modeling has also demonstrated some high-
profile failures in its predictions. In 2006, seismologists pre-
dicted that an area in the Indian Ocean was at low risk.
In September of the following year, an 8.5 magnitude event
struck at exactly that location, discrediting this analysis. [49].
To this day, researchers struggle with this issue, but their
success has been stymied by an inability to measure the
underlying causes of the quakes. Scientists can measure an
event only when it is occurring.

Machine learning and statistics have shown immense use
in tackling real-world problems, such as pattern recogni-
tion for manufacturing defects and expert recommender sys-
tems. The needs of science—in hypothesis creation and test-
ing—are fundamentally different from the aims of machine
learning. Whereas the latter looks for actionable patterns in
data, it does not speak to the root causes of an outcome.
In contrast, the scientific method uses carefully designed ex-
periments to test for cause-and-effect relationships. Machine
learning also differs from the statistics used in science be-
cause its transformations and results rarely use error bars
denoting the quality of their predictions. In empirical sci-
ence, results always come with error bounds.

What changes with data reuse? We submit that as
science data becomes plentiful, it will dramatically alter how
research is conducted. The eScientist’s principle artifact or
work product will be the experiment that she will design,
develop, incrementally test, validate, and publish directly on
top of massive data sets. For this, one will need a language
and data management platform.

Eliminating the current data acquisition bottleneck frees
eScientists to focus on their primary contributions, namely
accurately modeling data that represents phenomena. More
specifically, how a researcher formulates a problem, and
whether that conception holds up to observations collected
from many sources, will become more important than who
collected the data. Hence, enabling eScientists to directly
express, manipulate, and test collections of hypotheses is
needed. In this context, models are analogous to rulesets
that express causal relationships. Indeed, it will be crucial to
automatically identify the conditions under which the data
agrees with the model and when the two diverge.

As data accumulates from many disparate sources, it will
become too large for researchers to download and query on
their own. Also, it is unlikely that the data they want to
analyze will be all located on a single host. Hence, eScientists
will need a means of creating queries and orchestrating their
execution to test hypotheses. This new challenge is at the
intersection of data management and statistics.

In addition, open science data will make it possible to sub-
ject discoveries to continuous verification. As new data ar-
rives, especially from studies that build upon the prior work,
people further test their findings. Over time, this will enable
researchers to distinguish short-term correlations from long-
term cause-and-effect relationships.

It is likely that these properties of data reuse will incen-
tivize ease of use and transparency in its application. When
it is clear how the research associated with a publication
was conducted, weak and spurious correlations will be more
readily identifiable. Ideally, this will increase the accuracy
of follow-on work. Right now, most efforts in this area focus
on workflow management [16], but we argue that this ap-
proach attempts to make programmers of scientists. There
are many tools for processing raw measurements into data
products [8, 25]. In this work we focus on the analysis of
data that has already been cleaned and labeled.

Man-Machine Symbiosis It is our position that data
science tools should augment the capabilities of human re-
searchers rather than supplant them. Computers alone lack
the deep domain knowledge needed to semantically break
down the space of possible hypotheses into tractable sub-
problems, and it is not clear that a solution to this issue is
on the horizon. On the other hand, humans are only capa-
ble of reasoning about models of limited complexity, with
fewer than ten concepts in short-term memory [37]. To real-
ize the complementary strengths of empirical research and
data-intensive science, we embrace man-machine symbiosis
in the tradition of Licklider [33]. Rather than mining the
data, it is our goal to help scientists search for cause-and-
effect relationships.

Our approach focuses on human-guided exploratory anal-
ysis rather than deferring to automated scientific discovery
as in [47, 48]. A recent survey of open problems in data min-
ing concluded that human verification of machine-discovered
relationships will be needed for the foreseeable future [12].
Hence, it is important to carefully consider the structure of
this partnership.

Virtualizing the Scientific Method Randomized con-
trolled trials are the gold standard for proving causality in
many domains of science. The central building block of our
vision is the virtual experiment (VE), a hypothetical lan-
guage with which scientists would design, develop, test, ex-
ecute, and publish data-intensive research. VEs are part of
a larger platform that we call Hephaestus1, a meta-system
that enables users to create and execute experiments over
local and remote big science data. We call it a meta-system
because it sits on top of existing science databases that ex-
ecute complex analytics locally. Using correlations that are
verified by experts, Hephaestus will assemble probabilistic
causal graphs, as defined in Section 3.2.

VEs will empower researchers to focus on experimental de-
sign, abstracting away the underlying plumbing, e.g., where
the data comes from and how the query will run. This exper-
imental design taps in to any number of data sources, which
may be stored locally or remotely. Working at this level will
enable researchers to focus on exploring the space of possible
theories working hand-in-hand with the meta-system.

VEs will also enable scientists to report their research pro-
tocols in a standardized fashion. Hence, when one publishes
using grant money tied to an open data mandate, she may
send her results to an open science repository with VEs for
reproducing her experiments. More importantly, these VEs
will let others understand and expand on these results thus
contributing to the fundamental objective of open data —ac-
celerating scientific discovery. The U.S. National Institutes
of Health has created two initiatives for this goal [39, 40].

1Named after the toolmaker of the gods of Olympus who
built automatons of metal to work for him.



Naturally, Hephaestus will aid the reproducibility efforts
of scientists by enabling them to compose and share hy-
potheses. Also, if their new experiments build on prior find-
ings, the scientist can verify that their assumptions are cor-
rect. The data management community is clearly in a posi-
tion to help solve this challenge.

This study extends the rich and challenging research area
of computational platforms for data-intensive analysis [42,
30, 50]. Our focus, however, is on data reuse for eScience and
on reframing concepts from empirical research, whereas their
approaches are more closely aligned with machine learning
and knowledge discovery. This proposal is distinct from an
electronic lab notebook (ELN) [46]. It is designed for probing
massive hypothesis spaces rather than improving data pro-
cessing workflows and maintaining provenance for specific
data.

This rest of this paper is organized as follows. In Section 2
we briefly summarize the principles of empirical research
and how we formulate the challenge of data reuse. Section 3
outlines our vision for the Hephaestus meta-system. In Sec-
tion 4, we delve into the open challenges associated with this
work and conclude.

2. BACKGROUND
It is our goal to lay the foundation for extending concepts

from empirical science to data reuse so that researchers can
directly and declaratively design experiments over massive,
open datasets. In this section, we briefly touch on the some of
the terms and methods most relevant to this study. We then
discuss how Hephaestus fits into the context of the current
practices in scientific research.

2.1 Principles of Experimental Design
Scientists search for causal relationships. They do so by

making predictions that are readily falsifiable, or capable of
being disproven. These relationships describe when an in-
tervention, or measurable action, creates an effect, the out-
come that is under prediction. [44] Whereas machine learn-
ing seeks out correlations with strong predictive power, sci-
entists pursue ones with strong explanatory power, a subtle
but important distinction. For a relationship to be causal, it
must also have validity, such that it generalizes to previously
untested circumstances covered in the initial theory.

Statistical hypothesis testing is a long-standing conven-
tion in empirical research, especially in the social sciences.
Economics is one such discipline. When analyzing a large,
dynamic system like a country’s economy, the scientist’s only
option is to obtain data collected previously without specific
controls. Conducting experiments by applying an interven-
tion in a controlled setting is not possible for them. Hence,
they use well-developed statistical tests to evaluate their the-
ories. VEs will confirm or deny hypotheses using the same
techniques for data reuse. This will make it possible to scal-
ably test many hypotheses, because the system will be able
to rapidly rule out many of them automatically. Therefore,
after the scientist has designed their experiment, they con-
sider only those correlations that pass the test, rather than
manually wading through a barrage of superfluous ones.

Researchers use statistical hypothesis testing to determine
whether a result is statistically significant or unlikely to have
occurred by chance alone. Starting with a hypothesis, the
experiment designer selects a null hypothesis that defines
the anticipated experiment outcome if the intervention has

no effect. For example, in clinical trials for new drugs the
null hypothesis is usually quantified using a placebo group.
They then propose an alternative hypothesis, or result if the
theory under test is correct. The clinical trial would use the
data from patients given an experimental drug to test the
alternative hypothesis.

Once these two competing hypotheses are established, the
scientist decides how to compare them, frequently with a p-
value, although other metrics are also used. The p-value is
used to reject the null hypothesis by calculating the proba-
bility that the outcome observed in the presence of the inter-
vention would have happened by chance alone. This figure
needs to be below a threshold for the theory to be judged
successful, and most disciplines use a threshold of 0.05. A
test with a p-value of 0.05 implies that the null hypothesis
has a 5% chance of being true. This threshold, and how to se-
lect it, has been the subject of intense debate in recent years.
Hence, a statistical hypothesis testing framework needs to
be sensitive to evolving standards for testing a causal link.

Causal relationships improve upon the null hypothesis.
Correctly designed controls are an important staple of nearly
all empirical studies. In practice, we found that most data-
intensive science uses one of three types of controls. A sam-
pled null hypothesis measures the experiment’s conditions in
the absence of an intervention, as in the clinical trial exam-
ple above. A synthetic control is a constant or probability
density function supplied by the user. For example, when
researchers at the Large Hadron Collider were searching for
the Higgs Boson, they used p-values for hypothesis testing.
Because they were trying to determine whether or not the
particle exists, they had no way of measuring the absence of
a discovery. Hence, they used a probability density function
to describe background noise for their control. Sometimes
controls are formulated as tests of independence, where the
null hypothesis presumes that no relationship exists between
two or more variables. . A researcher asking whether there
is a statistically significant link between gender and heart
disease might use this type of control.

Naturally, Hephaestus will need to support all three of
these approaches to control design. Clearly, picking the right
one for a given theory is not simple, and domain expertise
will be critical for this part of the VE design.

Pitfalls There are several challenges that arise when re-
searchers use statistical hypothesis testing, and here we list
a couple of prominent ones. Test designers need to be vigi-
lant about confounders or extraneous interventions that are
covariant with the target effect. It has been reported that
from 1998 to 2007 the diagnosis rate of autism was strongly
correlated with sales of organic food [36]. Although these
two variables are correlated, and this might pass a statistical
hypothesis test, organic produce is a confounder for this dis-
order. There are some techniques for detecting the existence
confounders at small scale [44], but they cannot determine
the variable is responsible for a spurious correlation.

Another issue that comes up with statistical hypothesis
testing is lurking variables. These variables have an effect on
the experiment outcome, but are not included in the analy-
sis. Simpson’s Paradox is one instance of this pitfall. Here,
a trend that is present in data that is binned into groups
disappears or is reversed when the data is aggregated. We
illustrate this issue with an example from a study of kidney
stone treatments [11]. The authors compare the efficacy of
two treatment options, A and B. They first consider two pa-



tient populations, one having small kidney stones, and the
other having large ones. For the small group, A is effective
for 93% (81/87) of patients, and B works for 87% (234/270)
of them. The second population had a success rate of 73%
(192/263) for A and 69% (55/80) for B. It would appear
from these results that Treatment A is the clear winner. On
the other hand, if we combine the groups, A cures patients
at a rate of 78% (273/350) and B helps 83% (289/350) of
the time. Here, Treatment B appears to be the best choice.
As we will see in Section 3.1, it would be easy to make a
VE for either scenario, and human intervention is needed to
select the right course of action. Both of these issues pose
greater challenges over massive datasets, where the number
of variables and complexity of the interactions rises.

2.2 Data Reuse Goals
In addition the principles of empiricism, there are several

other factors that shape the needs of scientists in the con-
text of data reuse. Every discipline has agreed-upon stan-
dards for how they test hypotheses statistically. In addition,
their inquiries may take the form of incremental steps or
big picture inquiries. Their interactions with the data are
very different when researchers are analyzing anomalies as
opposed to confirming existing theories.

Community Standards Practically every scientific dis-
cipline has community standards that dictate how its practi-
tioners apply statistical hypothesis testing to their discover-
ies. Each community has preferred methods for constructing
controls, comparing them against the alternative hypothe-
sis, and thresholds of significance. These practices are used
in peer review to confirm or reject a new discovery.

For a VE platform to aid in testing of new theories, it
needs access to libraries that capture these best practices.
Naturally, these libraries need to be extensible to follow the
norms of a community and support new techniques as they
arise. Presently, we are seeing this evolution happen in the
life sciences, where researchers are starting to adopt bayesian
hypothesis testing in lieu of frequentist approaches [28].

Discovery Approaches To identify the high-level tools
needed for data reuse, we draw from Kuhn’s study of the his-
tory of scientific discovery [29]. In it, he argued that research
happens in two flavors: normal science and occasional peri-
ods of revolutionary science. Normal science works within
a paradigm, building on a set of accepted discoveries that
provide a coherent “model of the world” for follow-on work.
This research is incremental and discoveries of this kind are
usually predictable by practitioners of a field. Take for ex-
ample Boyle’s Law, which codifies the relationship between
gas pressure and volume. In Kuhn’s taxonomy it is consid-
ered normal science because it built on established theories
of thermodynamics. Although this law is still in use today,
Boyle needed this paradigm to exist before he knew the right
questions to ask. The majority of science uses this “puzzle
solving” approach to discovery, and we designed VEs to sup-
port these questions.

Over time, normal science may accumulate data that ex-
poses the limitations of a paradigm. If these anomalies are
consistent—implying that certain parts of the paradigm are
incorrect or incomplete—then this opens the door for rival
frameworks. Kuhn terms these shifts “revolutionary science”
because they challenge long-held and seemingly obvious as-
sumptions. When Copernicus theorized that the earth re-
volves around the sun and not the other way around, this

was a new paradigm. Initially, his theory did not work us-
ing existing tools for calculating planetary motion and new
methods were needed to make accurate predictions about
the location of celestial bodies at a given time. To this end,
we also need to create tools so that scientists can evaluate
how individual contributions, such as a single publication,
fit into the larger context of their field. We propose proba-
bilistic causal graphs in Section 3.2 to help scientists probe
the strengths and limitations of the paradigms within which
they work.

In summary, we design the two main components of Hep-
haestus to address the ways that scientists conduct their
work. VEs will be useful for theory-driven normal science
that investigates discoveries in the context of a larger
paradigm. Here, the scientist proposes a relationship for
study that confirms an existing system of rules and stan-
dards. On the other hand, probabilistic causal graphs will
help scientists examine the broader implications of their
work by assembling collections of discoveries so that re-
searchers can relate them back to the underlying assump-
tions of their experimental design. This data-driven strategy
will help scientists look for results in the data that consis-
tently contradict the state of the art.

3. HEPHAESTUS
We now take a look at our proposed eScience open data

platform, Hephaestus. It consists of two parts: virtual ex-
periments and probabilistic causal graphs. The former is
designed for exploring relationships pertaining to a small
number of variables. VEs will do so by executing statis-
tical hypothesis testing over existing data. This analysis
is well-suited for identifying causal links to a specific phe-
nomenon. On the other hand, probabilistic causal graphs will
target scientists looking at their research at a high level.
These graphs maintain a large number of relationship de-
rived from VEs so that researchers can explore paths of
proposed causality identifying consistencies and anomalies
in a body of work. This approach will help scientists eval-
uate their work holistically and is amenable to comparing
competing scientific paradigms.

3.1 Virtual Experiments
The scientific method enables experimenters to produce

empirical data for a specific experiment. As we saw in the
previous section, designing an experiment is not a trivial
undertaking, and doing it correctly is crucial for meaningful
results. Recall that VEs are designed to simulate randomized
controlled trials. Below, we outline the requirements of these
trials, and how they might in principle translate to VEs.
Randomized controlled trials call for:

• Controls: Trials contain a test condition and a con-
trol to verify that the target effect only occurs when
the intervention is applied. If VEs are conducted over
the results from published studies, in many circum-
stances they will reuse existing controls. Sometimes,
however, the control needs to be either estimated with
a model or calculated from other sources, as discussed
in Section 2.1.

• Blocking: Lab experiments also include blocking,
where samples are divided into disjoint sets to evalu-
ate the hypothesis separately over naturally occurring
sources of variance. In the parlance of experimental



design, blocking is often expressed as “controlling for
x, y, and z”. VEs will take in blocking parameters de-
scribing how the data will be partitioned for evalua-
tion. Blocking also dictates how samples are selected
for reuse, by specifying traits that need representation.
Getting an experiment’s blocking correct is crucial for
avoiding lurking variables.

• Randomization: Researchers assign subjects to
groups (control or test) without explicit selection. When
a VE reuses data, samples have either already received
the intervention or did not. The new trial defers to the
randomization applied in the initial experiments. In
some VEs, such as chemistry experiments, randomiza-
tion is not necessary.

• Repeatability: Empirical trials replicate their find-
ings, collecting enough samples to identify natural
sources of variation and to have high statistical power.
VEs may have minimums on the sample sizes needed
to complete their calculations, such as being a repre-
sentative proportion of a known population.

Running Example We now introduce a running exam-
ple in a strawman query language to motivate this work.
This example works within a single relational-style engine,
but it is easy to envision extending it to any number of data
models and storage engines.

A VE evaluates one or more hypotheses to either identify
the most promising ones or to determine conditions where
human judgment is needed, e.g., to resolve confounders. VEs
start with an effect under study and may suggest one or more
interventions. If an oncologist is studying the root causes of
skin cancer, she might begin with hypotheses of her own,
such as sun exposure and fair skin. She would pose the query:

SELECT * LIMIT 10

FROM cancerSubjects

EFFECT ’skin cancer’ as S

INTERVENTION sun exposure, skin tone, *

ANALYSIS count(S)/count(*) as c

CONTROLLING FOR age, gender

SCORE BY pvalue(c) ASCENDING

WHERE pvalue(c) <= 0.05;

It returns a set of hypotheses, potentially including the
interventions listed, ranked by a user-supplied scoring func-
tion that estimates each’s likelihood of a causal relationship
if evaluated in a lab under rigorously controlled conditions.

3.1.1 Experiment Definition
The VE’s parts are:

• Sources The FROM clause designates a single source of
data, ’cancerSubjects’. In implementation, VEs may
draw from numerous data sources, and individual ones
may be local or remote. Hephaestus translates its queries
into the language of the underlying database in an ex-
ternal compilation step.

• Interventions It has one or more interventions for
evaluation. The wildcard, ‘*’, denotes the asker’s desire
to discover additional hypotheses using Hephaestus.
This initiates a search for interventions that will pass
the user’s hypothesis test.

• Effect The EFFECT keyword denotes the outcome un-
der study. It is a value or range of values for an at-
tribute in the source data.

• Analysis Within each blocking group’s control and
test sets, the VE performs analysis to summarize the
success of the intervention or characterize a correla-
tion. The oncologist calculates the percentage of sam-
ples testing positive for skin cancer, where the effect is
a binary value. The outcome of analysis is passed on
to the scoring function.

• Controls A VE’s blocking is declared with CONTROLLING

FOR. If the cancer subjects are binned by age into k
discrete groups, and it has two values for gender, this
experiment runs 2k blocks per hypothesis, each having
a control and test group.

• Scoring Function The user supplies a function for
Hephaestus to use when ranking each hypothesis. It
consists of one or more accuracy metrics, The oncol-
ogist scores a hypothesis by how it stacks up against
the null hypothesis with p-values.

• Limit Although the system may evaluate any num-
ber of correlations, the experimenter is free to limit
the number returned in order to expedite the query
and avoid burying the researcher in results. This is a
generalization of top-k querying [26].

• Thresholds Recall that many disciplines only accept
hypotheses having statistical significance over a thresh-
old in their peer-reviewed literature. The VE captures
this using the WHERE clause, and this denotes that the
query should not rank interventions below this bar.

• Uncertainty The source data for VE experiments
may contain uncertainty owing to human error or sen-
sor imprecision. Query writers can also inject uncer-
tainty if they are not confident about their source data
or the applicability of their analysis techniques, re-
flecting their domain expertise. The VE executor will
need to incorporate this into its analysis. It is unclear
whether the best approach for this is many worlds
modeling [14], probability density functions [18], or
ranges [54]. The model may be dependent on the appli-
cation. In addition, the experiment may produce error
bars in its results; these are most commonly confidence
intervals or standard errors.

3.1.2 Query Execution
Figure 1 has an overview of the logical steps of a VE

from the user’s perspective with the running example. The
query begins with a dataset selection, and this consists of
one or more sources residing in any number of external
databases. The VE continues by verifying the supplied hy-
potheses against the schema and searching for new ones to
satisfy the wildcard clause. It then scores each hypothesis,
either in parallel or sequentially. The per-hypothesis scoring
starts by assigning all of the samples with a recorded effect
of skin cancer or the absence thereof to a control block such
as ”female-1”. The VE evaluates each block, subdividing its
samples into control and test groups. It then performs the
analysis, taking the percent of samples affected by cancer in
each group for the p-value and aggregates over the blocks
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Figure 1: Virtual experiment logical model.

for each hypothesis. The query concludes with a set of inter-
ventions, ordered by the relevant scoring function. Three in-
terventions meet the p-value threshold, and they are ranked
by their statistical significance.

Dataset Selection The first step of the VE is dataset se-
lection. Once Hephaestus has the VE’s schema, it can com-
pose queries to the source database(s) for hypothesis test-
ing. To get started, the VE will rely on the user to declare a
VE’s sources, matching their schemas with the experiment’s
parameters, including the effect and interventions. In future
work, Hephaestus would benefit from search functionality to
aid users in locating datasets relevant to their queries. This
search will need to leverage the metadata associated with its
sources to determine the VEs matches In the long run, on-
tologies and metadata will be key to enabling researchers to
find data sources for their VEs; they may enable the engine
to automatically infer input schema mappings to clauses in
the VE query. One could imagine a search engine for data
that takes in a string describing the correlations the user
would like to explore and returns a ranked list of potential
sources for the query.

Hephaestus will need ways to determine how suitable dif-
ferent datasets are for a given VE. This will be a function of
how well the dataset corresponds to the controls, anticipated
distribution of samples, et cetera. The engine can estimate
this by tapping into metadata about how a dataset was col-
lected and processed.

If a dataset corresponds perfectly with the VE’s design,
we say it is empirical in this context. If a scientist is re-
porting the results of a published study, and they submit a
VE accompanied by the data collected for the paper, this is
empirical data. It is effectively the same as a conventional
experiment. On the other hand, if a dataset comes with lim-
ited metadata about its provenance and contents, we say
that it is abstract. The quality of a candidate source will
vary between these two endpoints and its value on this scale
will also depend on the VE.

It is an open question for eScience practitioners and statis-
ticians what level of metadata matching is necessary to prove
causality. As open data becomes more prevalent, we suspect

that this topic will be a subject of debate in the near fu-
ture and a part of community standards in the long run.
These standards will shape how one searches for datasets
and manages uncertainty throughout the trial.

Hypothesis Testing The main workhorse of Hephaestus
is hypothesis testing. Here, the engine composes queries to
the source databases to evaluate each proposed intervention.
The VE partitions the samples into control blocks, and ap-
plies the accuracy metrics to each one. In the skin cancer
example, the meta-system composes queries to extract the
percentage incidence of cancer in the various test and con-
trol groups as demonstrated in Figure 1. By translating the
accuracy metric into SQL queries. it extracts a hypothesis’s
score. The engine then evaluates all of the control blocks,
computing a p-value for each.

A scoring function may be a single metric, like p-values, or
a composite of several measures. For example, a researcher
might want to test their discovery using p-values and cross-
validation to see if their findings generalize cleanly to previ-
ously unseen data. They would then provide a function for
combining the two metrics.

When evaluating each block, getting the controls right is
crucial, and possibly one of the hardest parts of formulating
a VE. There are some statistical techniques for inferring the
null hypothesis under specific circumstances [28], but more
work is needed in this area. As outlined in Section 2, control
creation is a complicated part of experimental design.

Once the controls are established, the VE can start its
test of the individual blocks. The user supplies an input and
output schema to the analysis, as well as aliases to map
from the source data to the VE. This analysis may be sim-
ple or sophisticated. Some experiments will execute basic
aggregation, like the percentage in the oncology example.
Hephaestus will be sufficiently general to permit users to
pose more broad queries, using tools like Eureqa [48]. This
system automatically attempts to fit a library of math for-
mulas to a set of variables to predict an outcome. One could
imagine starting their study with“fishing expedition”queries
like this, followed by iteratively refining their search to more
specific interventions. Hephaestus will make use of feature
engineering [4] to infer relationships in these VEs.

After calculating the per-block statistics, the engine com-
bines the results using well-known techniques [34]. This step
calculates a weighted composite score for the hypothesis.

Intervention Ranking As Hephaestus evaluates a set
of hypotheses, it accumulates and sorts them by score. To a
first approximation, this is a generalization of top-k queries.
On the other hand, optimizing this for VEs is hard owing
to the presence of uncertainty and non-monotonic scoring
functions. We discuss this further in Section 4.

3.2 Probabilistic Causal Graphs
VEs enable users to identify correlations that are statisti-

cally strong candidates for causal relationships. This prop-
erty is important for users to determine what is present in
their data. It does not, however, say anything about why the
relationships exist. To do this, the researcher needs to look
at her experiments in the context of a larger body of re-
search. This will enable her to see the areas where the state
of the art is consistent and spot anomalies as they arise.

Causal graphs [43], directed acyclic figures containing col-
lections of cause-and-effect relationships, are well-suited to
this goal. This symbolic language was developed to help re-
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Figure 2: Probabilistic causal graph of skin cancer.

searchers integrate statistical methods with domain-specific
knowledge. Hence, Hephaestus will maintain a directed acyclic
graph denoting relationships that the experimenter has marked
as potentially causal for analysis. Owing to the VE’s use of
statistical hypothesis testing, we envision this as a proba-
bilistic causal graph (PCG) in implementation. To the best
of our knowledge, this is the first proposal we have seen of
this concept and data structure.

To continue the running example, after running her VEs,
the oncologist revises her experiments to test whether fair
skin and high-altitude living impact a test subject’s overall
sun exposure. The results of her VE are in Figure 2. She
adds three hypotheses into a causal graph: fair skin (f), sun
exposure (e), and high-altitude living (a). She demonstrates
that all three are linked to skin cancer, c, although two of
them impact it indirectly by modifying a subject’s level of
sun exposure.

PCGs differ from belief networks because they model con-
ditional probabilities whereas causal graphs capture inter-
ventional probabilities. The former is learned using observa-
tional studies and it manages a graph’s edges with Bayesian
variables, and its relationships read like, “What is the proba-
bility of seeing skin cancer given the subject has experienced
sun exposure?”. Interventional probabilities model the sys-
tem behavior if an intervention were directly applied, so it
answers questions of the kind, “What is the probability this
person will get cancer if we exposed them to the sun?”. To
date, no one has studied modeling these kind of graphs at
scale. Below, we explore the definition of these graphs and
the types of queries they are likely to service.

In the long term, VEs have the potential to empower com-
munity science efforts by assembling the experiments into
large-scale PCGs. This would help specialized experts in re-
lated research areas leverage one another’s work. Using this
system, scientists would also be able to visualize their work
in a larger context. It is easy to imagine such graphs hav-
ing thousands of nodes and edges. In fact, a map of human
cell signaling for cancer research has 1,600 nodes and 5,000
edges [13]. This graph was derived from the work of many
biologists. Clearly, this data structure exceeds the expertise
of a single person and requires groups of researchers work-
ing cooperatively to fully understand it. U.S. DARPA has
identified causality modeling as a high priority for the ad-
vancement of research [53], although they consider it in the
context of natural language processing and not statistical
hypothesis testing for open science data.

Definition The nodes in a PCG will describe variables

that may be an intervention or effect in any number of causal
relationships. Graph edges denote suspected causal relation-
ships, e.g., A =⇒ B. Each relationship has a weight associ-
ated with it, and this corresponds to the score of the edge’s
corresponding VE. This weight will be incrementally up-
dated using continuous verification, reflecting the relation-
ship’s quality as new data accumulates. It is easy to imagine
scientists subscribing to updates for relationships in their
area of research.

When modeling a relationship containing greater than two
nodes, a PCG may take one of three forms, as formalized
in [23]. Some will have cascading relationships, where the
effect is directly manipulated by one node that is influenced
by a third variable. The relationship f =⇒ e =⇒ c in Fig-
ure 2 is an example of this. Other nodes may exhibit a com-
mon cause, a 1:N relationship where a single node effects two
or more variables. Lastly, a relationship may be described as
common-effect, N:1, where a single node is jointly influenced
by two or more interventions. Sun exposure is one such com-
mon effect variable, because it composes the impact of the
other two interventions.

Composite relationships, containing an arbitrary number
of nodes, can be partitioned into these primitives for eval-
uation. They enable the researcher to verify the accuracy
of a science paradigm holistically. By identifying weak sub-
graphs, the platform will pick up on anomalies. This is cru-
cial in eScience owing to the scale of the data and PCGs [12].
These areas of low-scoring VEs might imply a blind spot in
the big picture or at least an area warranting further inves-
tigation. By assembling groups of anomalies, this will en-
able researchers to critically reason about the strength of a
paradigm’s underlying assumptions.

Computational Verification PCGs will let researchers
delegate the complicated, tedious process of verifying the
coherency of a paradigm to Hephaestus. These graphs may
aid in the aforementioned search for weak points in a model.
They will also be useful for identifying complementary
strengths between rival science paradigms.

Assembling a PCG will enable researchers to identify com-
peting explanatory relationships within a single graph. For
example, if two VEs from the literature have an effect of
A, the engine can rapidly identify this and score each hy-
pothesis, determining whether it is likely a joint effect or
conflicting observations. It could also present the pair to the
user who might then decide how to resolve it.

A graph verifier will test whether published findings from
many studies all fit within a globally consistent set of re-
lationships. This structure may be verified algorithmically.
The checker will test for invalid conditions, such as causal
loops, such as A =⇒ B =⇒ C =⇒ A. It will also
monitor rules provided by domain experts. Fast algorithms
already exist for many of these problems [51].

A computational verifier will also need to test for incon-
sistencies in the results of VEs. Simpson’s Paradox, as dis-
cussed in Section 2.1, is one such issue. This and other statis-
tical anomalies are easy to find computationally, but difficult
for humans to detect.

Hephaestus may also support user exploration of sub-
graphs from one or more PCGs. Hence, if they are comparing
two science paradigms, they might ask the meta-system to
identify matching subsets of their graphs where one outper-
forms the other. They may also search for contradictions
between the two graphs if they contain intersecting nodes.



This verification will also extend to continuous verifica-
tion of VEs. As more data becomes available, Hephaestus
will recompute the weights of its edges by applying the VEs
to the new sources. This may promote some relationships
over others in the case of competing VE-backed theories. It
also has the possibility of breaking some of the graph rela-
tionships, and this may create ripples of change throughout
the structure. Hence, the platform will need techniques to
efficiently test the integrity of a graph incrementally, rather
than recompute the whole set.

Exploratory Analysis PCGs will enable man-machine
symbiosis by helping researchers explore a hypothesis space.
They will do so by visualizing proposed relationships, by ad-
justing their model parameters, and by interactively probing
the graph.

A graph will render proposed relationships from new VEs
over the findings that are already accepted. This will be es-
pecially useful for VEs containing the wildcard. The new
ones might appear as dotted lines on top of the existing
nodes and edges so that the scientist can assess how they
would fit into the larger picture. The user could the query
the proposed edges to see any impact they might have on
the consistency of the graph. They could optionally accept
the ones they deemed most interesting to their personal col-
lection of theories.

The user may also dynamically adjust parts of their VE
design, seeing how it effects the graph as a whole. The PCG
visualization might come with sliders for setting the thresh-
old of a hypothesis test, where increasing or decreasing the
tolerances of the VE would make graph edges appear or dis-
appear accordingly. They could also manipulate the scoring
function and other parts of the experimental design.

Researchers may zoom in and out of the graph at dif-
ferent levels of abstraction. If a scientist is looking at how
clusters of cells interact with one another when cancer cells
grow, they might zoom in to see the relationships between
organelles in a single cell. Each level will contain reference to
different bodies of work, and mean plugging in to the graphs
of researchers in neighboring fields.

The graph will also facilitate visualizing the strength of its
relationships in different subgraphs. If a causal link breaks
owing to continuous verification of the underlying VEs, the
platform will alert the user to new anomalies. Users could
also generate a heat map, showing where the graph has
the strongest statistical significance and where the model
is strained. Clearly, there are huge gains possible by main-
taining this network of suspected causal relationships and
sharing them with others. By formalizing bodies of research
as graphs, researchers will computationally verify the as-
sumptions that underpin their work and visualize how new
results fit into the prior work.

4. RESEARCH CHALLENGES
The vision of Hephaestus gives rise to several important

challenges for the data management community. Many are
interdisciplinary and are well-positioned for collaborations
with statisticians and human-computer interaction
researchers. In this section, we explore the implications of
integrating statistics for hypothesis testing into query op-
timization. We then look at the challenges associated with
man-machine symbiosis for VEs and PCGs. Lastly, this sec-
tion contains an outline of several research opportunities for
the architecture of this meta-system.

4.1 Integrated Statistics
Although we propose Hephaestus as a meta-system on top

of existing databases, it will benefit from working with stor-
age engines optimized for statistical analysis. Rather than
decoupling the query processing on open data repositories
from statistical hypothesis testing, this issue lends itself to
an integrated approach as demonstrated by BlinkDB [2].
This database provides approximate query results over large
datasets using sampling. It taps into statistics about the un-
derlying data’s distribution to compute results with bounded
errors.

Hephaestus may benefit from a similar approach where it
takes into account the source data distribution and opera-
tor characteristics to compile VEs into relational-style query
plans. Below we detail several statistics challenge that are
amenable to performance optimization by integrating them
into the query optimization process.

Combining Disparate Datasets At present, putting
multiple datasets into a single analysis takes careful manual
planning. Limited techniques exist for this issue [7], and the
available options are targeted for data sources that share a
schema. There is work to be done in aggregating over the
results of many studies with differing degrees of overlap in
their experimental design. A platform may improve query
performance by selecting the most efficient intermediate rep-
resentation for each study and ordering the computation of
each result to rapidly rule out hypotheses.

The first version of Hephaestus will calculate the accuracy
metrics of each dataset independently, and take a weighted
sum over the control blocks shared among studies for the
hypothesis’s score. The experiment designer will select a
weighting function; they are likely to use factors such as
each block’s sample size or variance. This approach is ap-
pealing because if the datasets are not collocated, it sim-
plifies query planning by not aggregating all of the samples
into one mega-study.

Missing Data Imputation One aspect of data reuse
that makes designing experiments non-trivial is that not all
of the variables the experimenter wants to account for may
be present in every dataset. To address this, the researcher
may reduce their control blocks to the intersection of the
source schemas. They can then analyze the variance of their
experiment blocks to see if this is satisfactory.

If these reduced sets of controls are insufficient, the re-
searcher may statistically infer the missing variables from
more complete samples [20]. Any uncertainty introduced
from this process needs to be propagated through the rest
of the analysis. This typically involves applying a modeling
function, like linear regression, to the data in order to learn
from the fully populated dataset the likely values of the un-
available variables. Identifying opportunities to apply impu-
tation at scale and optimizing this process over distributed,
heterogeneous data sources is an open problem. The same is
true about efficiently managing the uncertainty created by
this technique for massive datasets.

False Discovery Rate Support Data-intensive science
has the novel potential that researchers can test an unprece-
dented number of hypotheses over a single dataset. For ex-
ample, a genomics study with n human subjects may record
thousands of measurements per person. It is likely that cor-
relations will emerge from this analysis that pass the thresh-
old of statistical hypothesis testing, but are nonetheless are
spurious because the number of potential hypotheses vastly



exceed the count of human subjects. There are a variety of
techniques for controlling the number of false positives [6],
such as taking some fraction of all of the hypotheses that
tested true. This fraction is selected from the hypotheses
that have the highest accuracy ratings.

At first glance, this problem is similar to a top-k selection,
but the k is not known up front because it is a function
of how many hypotheses make it over the bar. Moreover, k
only grows with time as more hypotheses pass the threshold.
Optimizing this adaptive cutoff of the query results is an
unsolved challenge.

Sampling Another possibility for query speedup is to
use sampling to estimate the hypothesis with high confi-
dence over a smaller subset of the data. If the user is will-
ing to accept some uncertainty, perhaps making the results
within 95% of the correct figure, many scoring functions are
amenable to sampling.

As demonstrated by BlinkDB, integrating principled sam-
pling into query execution dramatically speeds up the pro-
cess. There are several generalizations needed to this frame-
work to make it applicable for data reuse. This database
leverages precomputed sample sets for its fast, approximate
answers. For data that is not stored locally, this approach
may need to create composite samples from multiple sources,
each of which will be of varying size and may have different
data distributions.

A related issue arises when the samples used for approxi-
mate query processing produce inaccurate error bounds. The
research in [1] demonstrated that techniques for deriving er-
ror bars on approximate relational query results produce
high error rates in practice. The authors created ways to es-
timate these errors and use them to either enlarge the error
bars or to report that sampling is not possible. Clearly more
work is needed for adaptive, iterative sampling within the
query planner. This class of queries will need error bars and
primitives describing their quality as first-class objects in
its evaluations in order to converge on satisfactory solutions
quickly.

4.2 Man-Machine Symbiosis
We now examine a set of open challenges regarding how

to efficiently use human attention to accelerate scientific dis-
covery. These problems revolve around making the compu-
tation of results fast enough for interactive visualization.
We also look at the conditions under which the engine will
need to alert the user to ambiguities in the datasets and hy-
pothesis testing results. We also briefly touch on the issue
of empowering researchers to prune the space of hypotheses
and visualize uncertainty.

Incremental Graph Evaluation Probabilistic causal
graphs call for a rich set of interactions, as outlined in Sec-
tion 3.2. First off, the visualizer will need techniques to
store the results from VEs in a way such that they can be
combined with new runs of the same VE over different in-
put data. Having these intermediate results would enable
the database to combine the hypothesis tests from multi-
ple datasets into a single scoring function without rerunning
the previous VEs. Materialized views may provide an effi-
cient way to incrementally compute this figure for one or
more VEs, but they may require new building blocks in or-
der to support complex scoring functions. Second, the PCG
engine would benefit from working with sampling as out-
lined above in order to rapidly recompute the visualization

when the user modifies parameters such as their hypothesis
testing threshold.

Hypothesis Space Modeling One approach to taming
the complexity of mining a large number of hypothesis is
to selectively tap into human intelligence. When a VE is
proposing interventions owing to a wildcard operator, the
engine could display a partial list to the experiment writer
and ask them to eliminate ones they deem uninteresting or
irrelevant. If a community of users leverages Hephaestus,
it may be possible to learn from this feedback collectively.
Hence, domain experts could provide rules like “the weather
is never affected by a person’s pulse”, and anyone can use
them. Ultimately, we suspect that a hypothesis space will be
pruned using a combination of sampling, feature engineer-
ing, and crowdsourcing.

A second challenging aspect of hypothesis space modeling
in Hephaestus is handling complex correlations. If the exper-
iment designer asks a question of the form A =⇒ B =⇒
C, they want to score each link in the chain. If A and B are
both a large set of proposed interventions, this will create an
explosion in the space of correlations to quantify. Clearly this
won’t scale up. VEs where many interventions contribute to
a single outcome will also call for sophisticated modeling to
select the most plausible hypotheses for user feedback.

Another scenario where this hypothesis space could get
complicated to model is for conditional interventions. Some
causal relationships are not simply stated with “A implies
B”, hence Hephaestus may need to create forks in its causal
graph. In the running example, the VE may determine that
the youngest cohort in the study has high-altitude living as
its strongest intervention, whereas the elder control block’s
cancer rate is more influenced by skin tone.

Language Design VE language design involves under-
standing and meeting the requirements of eScientists ex-
pressed in a form that is amenable to database optimization.
Examples include expressing empirical requirements such as
multiple, ordered hypotheses with scoring and blocking and
allowing subqueries in a VE. We introduced a simple lan-
guage in Section 3.1, but clearly a richer model is needed to
express VEs. In particular, if nested queries have wildcards,
careful thought is needed to find efficient ways to create
relational-style plans. This is another place where feature
engineering is likely to make VEs more efficient.

Managing Inconsistency Building in mechanisms for
inconsistency in eScience will be necessary make VEs ef-
fective. Presently there is no principled way to differentiate
complex interactions from confounders and human experts
are needed to intervene for these circumstances. Instead, we
will focus on identifying inconsistencies and finding ways to
economize the user’s time for the ones that are most likely
to yield results. The system also needs to be flexible for a
diverse set of directives in response to these alerts. Expert
feedback might include“eliminate this intervention”,“the or-
der is most probably this, and these ones seem plausible”,
or “ evaluate these combinations”.

Visualizing Uncertainty Another interesting challenge
in this framework is presenting uncertainty to the user. Al-
though error bars are needed for nearly every step in Hep-
haestus, displaying them on a graph is not a solved problem.
There are many possible ways to do this, such as varying the
thickness of the edges and color coding relationships by their
VE’s score. User studies are needed on the best way to con-
vey this important element of the experimental results.



4.3 Architecture & Performance
There are several challenges associated with building this

platform to make it both accurate and performant. Here, we
outline a few of the architectural questions. Many of them
are likely to build on existing database research, and we
sketch out these approaches when applicable.

Source Data Search As we touched upon earlier, iden-
tifying the best data sources for a VE will call for a mix
of conventional search techniques and specialized ones to
accommodate the needs of statistical hypothesis testing. In
particular, users will want to take advantage of metadata
about the provenance and schema of potential data sources.
Work will need to be done to identify ones that meet the
experiment’s design, even in the presence of data that may
vary from empirical to abstract in the context of a VE.

Query Translation Once a language is researched and
established for VEs, the Hephaestus engine will need to be
able to compile it into queries for the open data repos-
itory. These queries might be in SQL or any number of
domain-specific languages depending on how the data is
stored. Finding the right building blocks for rewriting VEs
for one or more storage engines is an open question.

Aggregation VEs with many possible interventions are
likely to benefit from reframing multiple hypothesis tests
as data cube queries. Rather than executing the query in
Figure 1 once per intervention, Hephaestus could compose
and evaluate bins from multiple hypotheses at the same
time. If the system groups by the proposed interventions, the
binning query in Figure 1 becomes SELECT count(*) FROM

cancerSubjects GROUP BY age, gender, intervention1,

intervention2, . . . CUBE(<interventions>). This would
aggregate the count at every level, potentially reusing in-
tersecting sets of controls. This batching would also be use-
ful for probabilistic causal graph verification for ambiguities
like Simpson’s Paradox. Identifying the right levels of ag-
gregation and coordinating this effort among multiple data
sources is an open question.

Uncertainty The database community has created a va-
riety of methods for managing uncertainty in relational data
[14, 18, 54]. It is unclear how to propagate the models for
these solutions through the steps of a VE, especially in the
presence of multiple evaluations of the same VE over differ-
ent data sources, and in cascading relationships. More work
is needed to find efficient ways to complete these queries.

Top-k Generalization If the VE limits the number of
results returned, this may reduce the search space of hy-
potheses to evaluate. Taking a page from relational top-k
optimization, there are at least two vectors for this approach.
First, the database would use sampling to evaluate thresh-
olds, such as the p-value being ≤ 0.05. Interventions that do
not meet this requirement would not compute any additional
metrics for complex relationships.

Another direction is to opportunistically ordering the eval-
uation of multiple datasets for a single intervention. Here, if
the results are combined by a weighted sum on their sam-
ple size a la [7], the optimizer can determine the bounds
of the smaller dataset’s scoring function that will result in
the intervention being rejected. This would prevent a second
round of testing on the larger data source. There are several
aspects to the VE’s structure that make this type of opti-
mization challenging. Supporting false discovery rates, un-
certainty, and complex analysis like p-values makes it hard
to model the outcomes of different hypotheses. Sampling will

be key to speeding up this process.
Distributed Query Optimization A related issue to

top-k generalization is that of coordinating queries over mul-
tiple data sources. This work can be made more efficient by
taking into account the relative capabilities of each member
database to select the storage engine that will run first. Run-
ning the smallest datasets will efficiently eliminate hypothe-
ses. In addition, if data needs to be moved from one host to
another for joins and other comparisons, the optimizer will
need to accurately estimate the cost of these operations and
availability of hardware resources on each host.

In summary, we outline the first research steps needed to
create a data reuse platform. We examine the integration of
statistics, optimization of man-machine symbiosis, and a set
of architecture challenges associated with open science data
management. Each has the opportunity to build on existing
database solutions, but still has numerous novel directions.

5. CONCLUSIONS
In this vision paper, we explore how science is changing as

research data becomes more abundant and open. We note
that this creates an opportunity to statistically test hypothe-
ses on existing data in many circumstances. To this end, we
propose Hephaestus, a platform for data reuse in eScience.
This system will enable scientists to explore their theories
in two ways. First, virtual experiments (VEs) are designed
for statistical hypothesis testing from empirical in-house tri-
als, publicly available open science repositories, or a combi-
nation of the two. These queries will simulate randomized
controlled trials by implementing the principles of empirical
scientific research. VEs will estimate the statistical signifi-
cance of correlations using a scoring function supplied by the
user. We then propose to assemble the correlations found by
Hephaestus and by existing empirically-derived scientific dis-
covery into probabilistic causal graphs, so that researchers
can share and inspect their findings, updating them as dis-
coveries are made. This framework will let researchers cre-
ate experimental designs that are testable on any number of
data sources. Hence, they have the opportunity to perform
continuous verification on their discoveries as new data be-
comes available from related research.

This work puts forth numerous research directions for the
data management community. In particular, we advocate
for integrating statistics more closely with query execution
in science databases, carefully rationing human attention for
hypothesis selection, and generalizations to relational-style
database architecture to support VEs. This work is a first
step toward enabling eScience practitioners to mine reality
from massive datasets for scientific discovery.
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