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Abstract— We introduce a new learning-based solution for
portable database workload performance prediction. The current
state of the art addresses performance prediction for individual,
static hardware configurations and thus cannot generalize to new
platforms without additional training. In this work, we focus on
analytical databases that might be deployed on different hard-
ware configurations, possibly offered by various Infrastructure-
as-a-Service (IaaS) providers in the cloud. Enabling workload
performance predictions that can be ported across hardware
configurations and IaaS offerings could significantly help cloud
users with their service-purchase decisions and cloud providers
with their provisioning decisions.

Our solution is based on collaborative filtering modeling and
prediction. We applied it to lightweight workload fingerprints
that model the characteristics and behavior of concurrent query
workloads for carefully selected, abstract hardware configura-
tions. Our preliminary results are derived from experiments with
TPC-H and TPC-DS benchmarks on the Amazon and Rackspace
clouds. They demonstrate that our techniques can predict analyt-
ical workload throughput values for diverse hardware platforms
with low training overhead and within approximately 30% of the
correct figure.

I. INTRODUCTION

There has recently been considerable interest in bringing
databases to the cloud [1], [2], [3], [4], [5], [6]. It is well
known that by deploying in the cloud, users can save sig-
nificantly in terms of upfront infrastructure and maintenance
costs. They benefit from elasticity in resource availability by
scaling dynamically to meet demand.

Hardware offerings for DBMS users now come in more
varieties and pricing schemes than ever before. Users can
purchase traditional data centers, subdivide hardware into
virtual machines or outsource all of their work to one of
many of cloud providers. Each of these options is attractive for
different use cases. In this work we focus on infrastructure-as-
a-service (IaaS) in which users rent virtual machines, usually
by the hour. Major cloud providers in this space include
Amazon Web Services and Rackspace [7], [8].

Past work in performance prediction revolved around work-
ing with a diverse set of queries, which typically originate
from the same schema and database [9], [10], [11], [12], [13],
[14], [15], [16]. These studies relied on either parsing query

1 The work was done while the author was at NEC Laboratories America.

execution plans to create comparisons to other queries or learn-
ing models in which they compared hardware usage patterns
of new queries to those of known queries. These techniques
are not designed to perform predictions across platforms; they
do not include predictive features characterizing the execution
environment. Thus, they require extensive re-training for each
new hardware configuration.

To address this limitation, our work aims at generalizing
workload performance prediction to what we call portable
databases, which are intended to be used on multiple plat-
forms, either on physical or virtual hardware. These databases
may execute queries at a variety of price points and service
levels, potentially on different cloud providers.

Predicting workload performance on portable databases is
an open problem. Having a prediction framework that is
applicable across hardware platforms can significantly ease the
provisioning problem for portable databases. By modeling how
a workload will react to changes in resource availability, users
can make informed purchasing decisions and providers can
better meet their users’ expectations. Hence, the framework
would be useful for the parties who make the decisions on
hardware configurations for database workloads.

In addition to modeling the workload based on local sam-
ples, we also examine the process of learning from samples
in the cloud. We find that by extrapolating on what we learn
from one cloud provider we can create a feedback loop where
another realizes improvements in its prediction quality.

As an important design goal, our framework requires little
knowledge about the specific details of the workloads and the
underlying hardware configurations. The core element we use
is an identifier, called fingerprint, which we create for each
workload examined in the framework. A fingerprint abstractly
characterizes a workload on carefully selected, simulated hard-
ware configurations. Once it is defined, a fingerprint would
describe the workload under varying hardware configurations,
including the ones from different cloud providers. Fingerprints
are also used to quantify the similarities among workloads.
We use fingerprints as input to a collaborative filtering-style
algorithm to make predictions about new workloads.

Our main contributions in this work are:
• Creating a framework for simulating arbitrary hardware

configurations, which we use to fingerprint workloads.



• Applying machine learning on fingerprints to predict
workload performance for new hardware configurations.

• Proposing strategies to reduce the training overhead for
new workloads.

The rest of the paper is organized as follows. In Section II
we survey the current state of the art for workload model-
ing and performance prediction. In Section IV we give an
overview of our prediction framework. Next we look at a
system we created to simulate hardware configurations in local
computers in Section V. We discuss the algorithm we used
to make our predictions in Section VI. After that we discuss
our sampling techniques in VII. In the final two sections we
explore our results and conclude.

II. RELATED WORK

There has been considerable work to date in workload
modeling and query performance prediction.

Workload Characterization In [17] the authors created a
system to automatically classify workloads as analytical or
transactional. In [18] the researchers explored different types
of transactional workloads and how the implementation of an
OLTP workload can dramatically impact its performance char-
acteristics. [19] examined how to identify individual analytical
templates within a workload. In [20] researchers analyzed how
individual components of traditional RDBMSs contribute to
latency. All of these techniques can help us create generalized
models for database workloads.

There has also been work on profiling and managing
workload performance in the cloud. In [2], [3], [4] the au-
thors managed workloads from the perspective of maximizing
profits from service level agreements (SLAs). In [5], [6]
the researchers built models to profile workloads for multi-
tenant databases in the cloud. Database consolidation was
studied in [21]. Analytical query interactions were modeled
in [9], [10]. In [22], the researchers presented a system for
automatically managing database parameters for a workload.
Our approach is similar to this work in that we characterize
a multidimensional response surface for workloads under
varying conditions.

A related problem of finding the right virtual machine
configuration for a database workload was studied in [23].
In this work the authors focused on configuring hardware
resources with regard to each workload in a multi-tenant
environment. In contrast we quantify query performance as a
reaction to changing hardware availability. Our predictions are
targeted toward end user consumption whereas the prior work
was for qualitatively comparing competing virtual machine
configurations.

The earliest work in query performance prediction studied
query progress indicators. This research included [24], [25],
[26] and existing solutions are covered in [27]. In [24] the
authors reason about the percent of the query completed. How-
ever their solution does not directly address latency predictions
for database queries. In [26] the researchers propose a single
query progress indicator that can be applied on a large subset
of query types. [25] estimates the time remaining for a query.
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Fig. 1. Fine grained regression for workload throughput prediction on
Amazon Web Services instances using TPC-DS.

All other progress indicator research only estimates query
progress in terms of unit-less percentages.

Query Performance Prediction In [14], [15] the re-
searchers used machine learning to predict latency for an-
alytical queries executing in isolation. In [16] the authors
addressed the problem of query execution time prediction by
using a white-box approach, namely by leveraging the detailed
query plan and the corresponding cost model obtained from the
query optimizer. In [9], [19] the authors built models of query
interactions to predict the end-to-end latencies of batches of
analytical queries. [12] used machine learning to predict query
performance as a range. [13] created finer-grained latency
predictions for individual queries executing under concurrency.
We depart from this work by considering workloads executing
on changing hardware platforms.

III. FINE GRAINED PROFILING

In the section, we demonstrate that a simple, query-at-a-time
modeling approach poorly predicts throughput for portable
databases. This finding underlines the need for a more general
profiling solution. In this approach, we create a model for each
platform based on aggregating over its member queries. Our
goal is to see if by analyzing the resource requirements of
individual queries in our workload, we could build a model to
describe how they would perform as a collection. By summing
up how the member queries used resources, we could quantify
the total strain on our system.

In theory this approach should be promising. We build a
profile of each workload where we sum up the strain that
the member queries would place on the system if executed in
isolation. This should indicate the rate at which our workload
can make progress and hence predict throughput. However we
found that in practice this approach fails to capture the lower
level interactions among our queries. We cannot model savings
from beneficial relationships such as shared scans. We also fail
to capture slowdown, such as two memory-intensive queries
creating expensive thrashing in the buffer pool.



We start by profiling the query templates on three dimen-
sions: memory, CPU and I/Os executed. We collect this data
from database logs. We created a vector for each template with
these three parameters, which capture the resource footprint
for the query. To describe a workload, we summed up this
3-D vector over all templates in the workload. We then built
a model using multivariate regression to learn the throughput
of individual workloads. In our multivariate regression, the
independent variables were the summed memory, I/O and CPU
usage, and the dependent variable was the throughput for the
whole workload on a given hardware configuration. We built
one model per hardware platform.

We experimented with the TPC-H and TPC-DS workloads
detailed in Section VIII-A. We found that this approach
worked reasonably well in TPC-H, with an average relative
error of 23%. This is because the TPC-H benchmark uses
a simple schema of just one fact table and few dimension
tables. The opportunity for complex (i.e., negative) interactions
are limited because all of the queries are sharing the same
bottleneck.

In contrast, under the same framework, the prediction
quality for TPC-DS was very poor, with a mean relative
error of 1307%, as shown in Figure 1. The errors are a
result of very complex interactions among the queries. The
database has skew, and includes seven fact tables and many
more dimension tables. There are various degrees of data
overlap among the queries. For this more complex dataset
we regressed to the mean. In other words, there was no
clear correlation between this linear combination of variables
and the throughput. Hence our models had very large y-
intercepts and negligible slopes for our independent variables.
For most cases this does adequately, albeit via over-fitting.
For 80% of our samples, on average we get within 40% of
the correct throughput. Our simple model creates an inaccurate
representation of the workload as it fails to capture such richer
interplay among queries. This corroborates the findings in [13],
[14].

IV. PORTABLE PREDICTION FRAMEWORK

Our framework consists of several modules as outlined in
Figure 2. First, we train our model using a variety of reference
workloads, called training workloads. Next, we execute limited
sampling on a new workload on the local testbed. After that
we compare the new workload to the references and create a
model for it. Finally, we leverage the model to create workload
throughput predictions (i.e., Queries per Minute or QpM).
Optionally we use a feedback loop to update our predictions
as more execution samples become available from the new
workloads.

We initially sample the execution of our known workloads
using the experimental configuration detailed in VIII-A. Es-
sentially, a new workload consists of a collection of queries
that the user would like to understand the performance of on
different hardware configurations. We sample these workloads
under many simulated hardware configurations and generate a
three-dimensional local response surface. This surface, which
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Fig. 2. System for modeling and predicting workload throughput.

is part of the workload fingerprint, characterizes how the work-
load responds to changing I/O, CPU and memory availability.
We explore the details of this sampling approach more in the
proceeding sections.

In addition, we evaluate each of our reference workloads
in the cloud. Our framework seamlessly considers multiple
cloud providers, regarding each cloud offering as a distinct
hardware platform. By quantifying how these remote response
surfaces varied, we determined common behavioral patterns
for analytical workloads in the cloud. We learn from our
reference workloads’ performance in the cloud rather than
interpolating within the local testbed. This learning approach
makes our framework robust to hardware platforms that exceed
our local capacity.

Next we sample new workloads that are disjoint from
the training set. We locally simulate a representative set
of hardware configurations for the new workloads, creating
local response surface. Finally we create predictions for new
workloads on remote platforms by comparing their response
surface to that of the reference workloads. We present the
details of this process in Section VI.

In addition we incrementally improve our model for new
workloads by adding in-cloud performance to its fingerprint.
As we refine our fingerprint for the workload, we create higher
quality predictions for new, unsampled platforms.

V. LOCAL RESPONSE SURFACE CONSTRUCTION

In our design, we create a simple framework for sim-
ulating hardware configurations for each workload using a
local testbed. When we evaluate our new queries locally we
obviate the noisiness that may be caused by virtualization
and multi-tenancy. Although we did not empirically find these
complexities to be a significant factor, the local testbed allows
us to control for them.

We call our hardware simulation system a spoiler because
it occupies resources that would otherwise be available to
the workload.1 The spoiler manipulates resource availability
on three dimensions: CPU time, I/O bandwidth and memory.
We consider the local response surface to be an inexpensive
surrogate for cloud performance.

1We derive its name from the American colloquialism “something that is
produced to compete with something else and make it less successful.”
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Fig. 3. Local response surface for a TPC-DS workload with high I/O
availability. Responses are in queries per minute. Low I/O dimension not
shown.

We experiment with a workload by slicing this three di-
mensional response surface along several planes. In doing so,
we identify the resources upon which the workload is most
reliant. Not surprisingly, the I/O bandwidth was the dominant
factor in many cases, followed by the memory availability.

We control the memory dimension by selectively taking
away portions of our RAM. We did this by allocating the
space in the spoiler and pinning it in memory. This forced the
query to swap if it needed more than the available RAM. In
our case we start with 4 gigabytes of memory and increment
in steps of four until we reach our maximum of 16 gigabytes.

We regulate the CPU dimension by taking a percent of
the CPU to make available to the database. For simplicity
we set our number of cores equal to our multiprogramming
level (MPL). Hence each query had access to a single core.
We simulated our system having access to 25%, 50%, 75%
and 100% of the CPU time. We did this by making a top
priority process that executes a large number of floating point
operations. We time the duration of the arithmetic and sleep
for the appropriate ratio of CPU time.

We had a coarse-grained metric for I/O availability: low
or high. Most cloud providers have few levels of quality
of service for their I/O time. Some cloud service providers,
such as Amazon Web Services, have started offering their
users to provision I/Os per second as a premium option.
We simulated this by making our high availability give the
database unimpeded access to I/O bandwidth. For the low I/O
bandwidth case we had a competing process that circularly
scanned a very large file at equal priority to the workload.

An example local response surface is depicted in Figure 3.
We see that its throughput varies from one to seven QpM.
This workload’s throughput exhibits a strong correlation with
memory availability. Most contention was in the I/O subsystem
both through scanning tables and through swapping interme-
diate results as memory becomes less plentiful.

VI. MODEL BUILDING

We elected to use a prediction framework inspired by
memory-based version of collaborative filtering [28] to model
our workloads. This approach is typically used in recom-
mender systems. In simplified terms, collaborative filtering
identifies similar objects, compares them and makes predic-
tions about their future behavior. This part of our framework
is labelled as “model building” in Figure 2.

One popular application for collaborative filtering is movie
recommendations, which we shortly review as an analogous
exercise. When a viewer v asks for a movie recommendation
from a site such as Netflix, the service would first try to
identify similar users. It would then average the scores that
similar viewers had for movies that v has not seen yet to
project ratings for v. It can then rank the projected ratings
and return the top-k to v.

In our case, we forecast QpM for a new workload. We
compute the similarity for our new workload to that of our
references. We then calculate a weighted average of their
outcomes for the target cloud platform based on similarity.
We found that by using these simple steps, we could achieve
high quality predictions with little training on new workloads.

Our implementation first normalizes each reference work-
load to make it comparable to others. We zero mean its
throughputs and divide by the standard deviation. This enables
us to account for different workloads having distinct scales in
QpM. For each reference workload r and hardware config-
uration h, we have a throughput tr,h. We have an average
throughput of ar and a standard deviation σr. We normalize
each throughput as:

tr,h =
tr,h − ar

σr

This puts our throughputs on a scale of approximately -1...1.
We apply this Gaussian normalization once per workload. This
makes one workload comparable to the others.

When we receive a new workload i, for which we are
creating a prediction, we normalize it similarly and then
compare it to all of our reference workloads. For i we have
samples of it executing on a set of hardware configurations
Hi. We discuss our sampling strategies in the next section.
For each pair of workloads i, j we compute Si,j = Hi ∩Hj

or the hardware configurations on which both have executed.
We can then estimate the similarity between i and j as:

wi,j =
1

|Si,j |
∑

h∈Si,j

ti,htj,h

The above weight wi,j approximates the Pearson similarity
between the normalized performance of workload i and that
of workload j. After that we forecast the workload’s QpM
on a new hardware platform, h, by taking a similarity-based
weighted average of their normalized throughputs:

ti,h =

∑
j|Si,j 6=∅,h∈Hj

wi,jtj,h∑
j|Si,j 6=∅,h∈Hj

|wi,j |
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Fig. 4. An example of 2-D Latin hypercube sampling.

This forecasting favors workloads that most closely resemble
the one for which we are creating a prediction. We downplay
those that are less relevant to our forecasts.

Naturally we can only take this weighted average for
the workloads that have trained on h, the platform we are
modeling. We can create predictions for both local and in-
cloud platforms using this technique. While we benefit if
our local test bed physically has more resources than the
cloud-based platforms upon which we predict, we can use the
model for cloud platforms exceeding our local capabilities.
The only requirement for us to create a prediction is that we
have data capturing how training workloads respond to each
remote platform. Experimentally we evaluate cloud platforms
that are both greater and less than our local testbed in hardware
capacity.

We then derive the unnormalized throughput as:

ti,h = ti,hσi + ai

This is our final prediction.

VII. SAMPLING

We experimented with two sampling strategies for exploring
a workload’s response surface. We first consider Latin hyper-
cube sampling, a technique that randomly selects a subsection
of the available space with predictable distributions. We also
evaluate adaptive sampling, in which we recursively subdivide
the space to characterize the novel parts of the response
surface.

Latin Hypercube Sampling Latin hypercube sampling is
a popular way to characterize a surface by taking random
samples from it. It was used in [13], [19] for a static hardware
variant of this problem. It takes samples such that each plane in
our space is intersected exactly once, as depicted in Figure 4.

In the complete version of Figure 3, we first partition the
response surface by I/O bandwidth, a dimension that has
exactly two values for our configuration. We do this such
that our dimensions are all of uniform size to adhere to the
requirement that each plane is sampled exactly once. We then
have two 4x4 planes and we sample each four times at random.

Adaptive Sampling We submit that our local response
surface is monotonic. This is intuitive; the more resources a
workload has, the faster it will complete. To build a collabo-
rative filtering model we need to determine its distribution of
throughputs. Exhaustively evaluating this continuous surface is
not practical. On average it would take us 88 hours to analyze
a single workload if we did so in a coarse grid.
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Fig. 5. Example workload for throughput evaluation with three streams with
a workload of a, b, and c.

We also considered using a system such as [22], in which the
authors explore a high dimensional surface of database config-
urations. They identify regions of uncertainty and sample the
ones that are most likely to improve their model. However this
technique is likely to evaluate more than is necessary because
it presumes a non-monotonic surface. By exploiting the clear
relationship between hardware capacity and performance, we
may reduce our sampling requirements.

Hence we propose an adaptive sampling of the space. We
start by sampling the extreme points of our local response
surface. This corresponds to (2.4 GHz, 16 GB, High) and (0.6
GHz,4 GB, Low) in the full version of Figure 3. We first test
to see if the range established by these points is significant.
If it is very small, then we stop. Otherwise we recursively
subdivide the space until we have a well-defined model.

We subdivide the space until we observe that the change
in throughput is ≤n% of the response surface range. Our
recursive exploration of the space first divides the response
surface by I/O bandwidth. We do this because I/O bandwidth
is the dimension most strongly correlated with throughput.
After that we subdivide on memory availability. It too directly
impacts the I/O bottleneck. Finally we sample among changing
CPU resources if we have not reached a stopping condition.

VIII. PRELIMINARY RESULTS

In this section, we first detail our experimental configura-
tions. We then explore the cloud response surface, for which
we are building our models. Next, we evaluate the effec-
tiveness of our prediction framework for cloud performance
based on complete sampling of the local response grid. After
that, we investigate how our system performs with our two
sampling strategies. Finally, we look at the efficacy of our
models gaining feedback from cloud sampling.

A. Experimental Configuration

We experimented with TPC-DS and TPC-H, two popular
analytical benchmarks at scale factor 10. We evaluated using
all but the 5 longest running queries on TPC-H and using
74 of the 100 TPC-DS templates, again omitting the longest
running ones. We did not use the TPC-DS templates that ran
for greater than 5 minutes in isolation on our highest local
hardware configuration. We elected to omit the longest running
queries because under concurrency their execution times grow
very rapidly and we kept the scope of our experiments to 24
hours or less each. Nonetheless a portion of our experiments



(2%) still exhibited unbounded latency growth. We terminated
them after 24 hours and record them as having zero QpM.

We implemented a variant of the TPC-H throughput test.
An example of our setup is displayed in Figure 5. Specifically
we created a workload with 5 templates, ± 1 to account
for modulus cases. Our trials were all at multiprogramming
level 3, in accordance with TPC-H standards. Each of our
three query streams executed a permutation of the workload’s
templates. We executed at least 5 examples of each stream
before we concluded our test. We omit the first and last few
queries from each experiment to account for a warmup and
cool down time. We compute the queries per minute (QpM)
for the duration of the experiment.

We created 23 TPC-DS workloads using this method. The
first 8 were configured to look at increasing database sizes.
The first two access tables totaling to 5 GB, the second
two at 10 GB, et cetera. The remaining 15 workloads were
randomly generated without replacement. For TPC-H we ran-
domly generated 9 workloads. There were three sets of three
permutations without replacement.

We evaluate the quality of our predictions using mean
relative error as in [13], [14], [19]. We compute it for each
prediction as |observed−predicted|observed . This metric scales our pre-
dictions by the throughputs, giving an intuitive yardstick for
our errors.

For our in-cloud evaluations we used Amazon EC2 and
Rackspace. We rented EC2’s m1.medium, m1.large, m1.xlarge
and hi1.4xlarge instances. The first three are general purpose
virtual machines at increasing scale of hardware. The final is
an I/O intensive SSD offering. We considered experimenting
on their micro instances and conducted some experiments on
AWS’s m1.small offering. However we found that so many of
our workloads do not complete within our time requirement in
this limited setting that we ceased pursuing this option. When
a workload greatly outstrips the hardware resources available it
is reduced to thrashing as it swaps continuously. In Rackspace
we experimented on their 4, 8, 16, and 32 GB cloud offerings.

We used k-fold cross validation (k=4) for all of our trials.
That is, we partition our workloads into k equally sized folds,
train on k − 1 folds and test on the remaining one.

B. In Cloud Performance

In Figure 6 we detail the throughput for our individual
workloads as they are deployed on a variety of cloud instances.
We see a monotonic surface much like the ones that we
encounter with the local testbed. This indicates that there may
be exploitable correlations between the two surfaces.

For TPC-H we see that the majority of our workloads
are of moderate intensity. They have a gradual increase in
performance until they reach the extra large instance. At that
point many of the workloads fit in the 7.5 GB of memory,
seeing only modest gains from the largest instance. There
are three workloads that are more intensive (shown in dashed
lines). They have greater hardware requirements and do not see
performance gains until the database is completely memory
resident.
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Fig. 6. Cloud response surface for (a) TPC-H and (b) TPC-DS

TPC-DS has a more diverse response to the cloud offerings.
The majority follow a curve similar to that of TPC-H. There is
one that never achieves performance gains because it is entirely
CPU bound. We also have two examples of the memory-
intensive “knee” as seen in TPC-H, again as a dashed line.
The consistency of the response surfaces also indicates that
our cloud evaluation was robust to noisiness that is a part of
the multi-tenant cloud environment.

Next we examine the quality of our predictions for a new
workload if we have very good knowledge of its local response
surface. For each workload we sampled the entire grid in
Figure 3 locally. Our prediction results are in Figure 7. We
observed that the quality of our predictions steadily increased
for TPC-DS with our provisioned hardware. As the workloads
had more resources they thrash and swap less. This makes
their outcomes more predictable.

In contrast our predictions in TPC-H get slightly worse for
the larger instances. This is a side effect of the three dashed
workloads that are memory-intensive. They exhibit limited
growth in the smaller instances and have a dramatic take off
when they have sufficient RAM. This is an under-sampled
condition. If we omit them from our calculations, our average
error drops to 20% for the highest two instances.

C. Cross Schema Prediction

It is interesting to see that these two response surfaces in
Figure 6 are very comparable despite their different schemas.
This demonstrates that both analytical benchmarks are highly
I/O bound and that we have fertile ground to learn across
databases rather than having to deploy a new database in the
cloud before we can make predictions.

We found that we could predict TPC-DS based on TPC-
H only training within 27% of the correct throughput on
average. The results showed encouraging evidence that the
framework can successfully identify the important similarities
across workloads that are drawn from different set of queries
and schemas.
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Fig. 7. Prediction errors for cloud offerings.

D. Sampling

Next we quantify the speed at which adaptive sampling
converged on a response surface. We configured our algorithm
such that if the range is less than 1 QpM we cease sampling.
We made our stopping condition for recursion 33% of the
range established by the initial, most distant points. We found
that on average we sampled 43% of the space for TPC-DS
and 33% for TPC-H.

This is a very high sampling rate, considering that our
local trials take 165 minutes on average. This would mean
that for TPC-DS we would have to conduct 38 hours worth
of experiments before we could predict on the cloud. This
is a very high cost and perhaps not a practical use case.
We also noticed that there is a high degree of variance in
the number of points we sampled per response surface. The
standard deviation for our number of points sampled was 5.5
trials for TPC-DS, demonstrating noticeable unpredictability
in our sampling times.

Adaptive sampling displayed an impedance mismatch with
our prediction model. The collaborative filtering model re-
quired a set of samples that is representative of the data both
in terms of its distinct values and their frequency. Adaptive
sampling captures their distinct values more precisely, but
fails to observe their frequency. This distorts the normalization
phase and hence our predictions.

For our Latin hypercube sampling trials we sampled 8 points
or 25% of the local response surface. While this sampling
is robust, it is considerably less costly than the adaptive
alternative. By spacing our random samples such that they
all intersect each distinct dimension value once we achieve a
more representative view of the space.

We evaluate the accuracy of our predictions using differ-
ent sampling techniques in Figure 8. We see that adaptive
sampling does very poorly in comparison to the full grid and
Latin hypercube approaches. This is because we oversample
the spaces that exhibit rapid change and do not give due
weight to the ones that are more stable and likely to be the
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Fig. 8. Prediction errors for each sampling strategy in TPC-H.

average case. In future work we could mitigate this limitation
by interpolating the response surface based on known points.
Latin hypercube sampling demonstrates prediction accuracy on
par with that of grid sampling, showing that this approach is
well-matched to our prediction engine. We do perform slightly
better in the m1.large case. This is a 2% difference is a
negligible noise due to the spoiler simulations.

In Figure 9 we compare (1) our TPC-DS predictions on
Rackspace with Latin hypercube sampling to (2) those that are
based on LHS and incorporating m1.medium and m1.xlarge
samples from our AWS experiments. For the LHS-only sam-
pling case we found that it was slightly harder to predict than
in Amazon AWS. The response surfaces on Rackspace were
slightly less smooth than AWS, implying that multi-tenancy
may have been playing a larger role in this environment.

In the second series (shown as Local LHS+AWS), we eval-
uated how augmenting our models with cloud samples would
improve our predictions. We found that this feedback modestly
but appreciably increased our accuracy. This demonstrated that
our incremental improvement of the model benefits from the
feedback and that cross-cloud knowledge is portable.

IX. CONCLUSIONS

In this work we introduce the problem of creating per-
formance predictions for portable databases with analytical
workloads. Our framework creates workload fingerprints by
simulating various hardware configurations. We train our
learning models using these signatures. This approach allows
us to predict throughput as the databases migrates to different
cloud offerings. Our prediction framework enables users to
“right size” their provisioning and cloud deployments.

We first discuss how we created a local testbed and simulate
different hardware configurations to profile our workload.
After that we explored how we brought collaborative filtering-
style modeling to bear on this problem. Finally we explore
two sampling approaches to reduce our training time: adaptive
sampling and Latin hypercube.
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Fig. 9. Prediction accuracy for TPC-DS on Rackspace based on Latin
hypercube sampling, with and without additional cloud features.

We have demonstrated that using these techniques we can
predict workload throughput, on TPC-H and TPC-DS, within
approximately 30% of the correct value on average. These
results are obtained by sampling only a quarter of the local
response surface, which makes our solution practical for low-
overhead deployment.

One interesting extension to this problem could be predict-
ing the latency of individual queries as they are moved from
one hardware platform to another. This could be studied either
in isolation or under concurrency. In either context it would
make portable databases more accessible to users.

Future research in this area could also include generalizing
our models to accommodate growing and shrinking databases.
By scaling our predictions, we may be able to support incre-
mentally changing workloads. This would further improve the
usability and applicability of our approach.

Another research direction in this area is modeling trans-
actional workloads under changing hardware configurations.
The underpinnings of this model would be different because
it would need to take into account latches, locks and other
more complex interactions among write-intensive queries. It
too would make portable databases more accessible to users.
This more detailed modeling is beyond the scope of this work.

In summary we created a system to fingerprint analytical
workloads by using a locally executed testbed to simulate a
variety of hardware platforms. We then compare this profile to
that of other analytical workloads using collaborative filtering.
We use careful sampling to further reduce our training time
and cost.
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