A Generic Auto-Provisioning Framework for
Cloud Databases

Jennie Rogers, Olga Papaemmanouil Ugur Cetintemel

IBrown University, 2 Brandeis University
j enni e@s. brown. edu, ol ga@s. brandei s. edu, ugur @s. brown. edu

Abstract— We discuss the problem of resource provisioning the provider charges for each resource type. We propose a
for database management systems operating on top of anresource provisioning framework that identifies a collaati
Infrastructure-As-A-Service (laaS) cloud. To solve this poblem, of minimum-cost infrastructure resources (i.e., a set of po

we describe an extensible framework that, given a target qug
workload, continually optimizes the system’s operationalcost, tentially heterogeneous virtual machines) that can cbiely

estimated based on the laaS provider's pricing model, whilsat- Satisfy a predicted time-varying workload within target o
isfying QoS expectations. Specifically, we describe two d@frent expectations. Moreover, at run-time, we make best use of the
approaches, a “white-box” approach that uses a fine-grained reserved resources by intelligently routing incoming igger
estimation of the expected resource consumption for a work- to specific machines.

load, and a “black-box” approach that relies on coarse-graned
profiling to characterize the workload's end-to-end perfomance In this work-in-progress paper, we describe two solutions

across various cloud resources. We formalize both approaels as 10 the resource provisioning probleiBlack-box provisioning

a constraint programming problem and use a generic constrait uses end-to-end performance results of sample query execu-
solver to efﬁCie”t'yl_ta_Ck'e them. - tained b tions, whereaswhite-box provisioning uses a finer grained
rurYr\{anpr?;?Lp;eugrr]ilgsar\)//vitehxrlgec:lsrtnsegrr‘etaasgfn;ne;\sﬁquéil’gelsczy, approach that relies on the DBMS optimizer to predict the
that provide evidence of the feasibility and utility of our ap- Physical resource (i.e., I/O, memory, CPU) consumption for
proaches. We also briefly discuss the pertinent challengesn@a €ach query. We formulate both solutions as multi-dimeredion
directions of on-going research. bin-packing problems and efficiently tackle them using a
generic constraint solver. We discuss the strengths and lim
itations of these approaches and present preliminary exper

Cloud computing is widely touted as "the greatest thinghental numbers (based on TPC-H queries running on top of
since sliced bread”, as it allows computing to behave mutbstgreSQL/Amazon EC2) that offer additional insight abou
like a generic utility that is always available on-demantheir feasibility and utility.
from anywhere. This utility-oriented model of hardware and
software usage establishes cloud computing as a potgntiall Il. SYSTEM MODEL
transformative technology, while the associated payeasgo
model often renders it as a savvy economic choice for manyCloud environment. Our model assumes a cloud infrastruc-
entities that would like to avoid up-front capital expenaesl ture similar to the offerings from various laaS provider§ [1
reduce cost of ownership over time. [10]. Vendors provide access to pre-configured computing

DBMSs are good candidates for adoption in the cloud -virtual machines (VMs or cloud servers) on which users can
they are difficult to configure and manage and serve workloadgnotely install and run their software. Available VM types
that are resource-intensive and highly time varying. Whikre differentiated by the resources they provide such as CPU
many DBMSs have already been ported as appliances p@wer, I/O bandwidth, disk space and memory size.
virtualized hardware offered by laaS providers, key qoesti Cloud resources are offered through a “pay-as-go” pricing
that challenge widespread, cost-effective deploymentmfcc model; they are rentable for a certameservation period,
databases remain open. typically an hour, and thiger-period cost is fixed in that

One such guestion involves database system optimizatiéindepends only on the server configuration and not on the
which traditionally assumes the availability of a fixed nes® actual server utilization over the course of the periodSlaa
configuration and exclusively deals with performance optilouds also provide storage and data transfer servicea|lyisu
mization. This view ignores the operational (monetary)tcowith additionalper request charges. For example, Amazon’s
of running the database. The pay-as-you-go model of clo&fBS service offers persistent storage volumes and chagges p
computing, however, requires operational costs to beadearequest for each 1/O operation. In this work we consider the
as a prime consideration along with performance. charges only for the VMs and I/O operations.

In this paper, we discuss the problem of minimizing the Regardless of the pricing model used, it is the respontibili
operational cost of running a DBMS on laaS. The operationall the laaS client to provision its resources appropriately
cost of a DBMS depends on the monetary cost function Based on an estimation of the expected workload, clients
the underlying laaS provider. That is to say, by how muchill deploy, observe, and accordingly adjust their comipgiti

I. INTRODUCTION

‘ Data Management Application ‘ 3

Performance goals 25 v
ﬁ Target Workload ’P V“ a

2 > C
> = Query 1
i Workload profiler S 15 > < Query 2

s 1

Solver Cloud Profiler A Query 4
05 » Query 5

Pricing VM specs 0
loud Provider 0 100 200 300 400 500 600 700

Max Latency (secs)

VM provisioning
& monitoring

VM Type 2
Fig. 2. Latency vs. cost for various input rates on one ircgan

(e.g., assignment of certain query types to certain mashine
maximum acceptable query rate of each machines).
Constraint Solver. The constraint solver is responsible for
solving both the offline resource provisioning and onlineryu
routing optimization problems. Both problems are exprésse
Fig. 1. High-level cloud DBMS and provisioning model. constraint programs, which get solved by a central cootdina

. . . . using an off-the-shelf optimization tool.
capacity by reserving or releasing VMs over time to meet any 9 P

QoS requirements. Our framework addresses this problem. 1. EXPERIMENTAL CONFIGURATION

Database deployment modelCloud-based DBMSs are Thrgughout this document we reference results using a
typically instantiated through database appliance [3], i.e., @ proof-of-concept for our framework deployed on Amazon Web
VM image with a pre-installed pre-configured database engirsepyices [1]. We deployed PostgreSQL 8.4.1 on a variety of
We assume a replicated database model on top of a shargfls instances rated in terms of being 1/O-intensive, CPU-
nothing network of multiple VMs, each running an indepenptensive or well-weighted for both. We created our workloa
dent database appliance (Figure 1). We consider readymogthsed on TPC-H Query Classes 1-5 (scale factor 10), which
workloads common to ana_llytical processing applic_atione. V}_/epresent a mix of daily (short) and long term (strategic)
assume that write operations are performed off-line and Hleries. We also extended the PostgreSQL optimizer to pro-
parallel across all our cloud servers. duce estimates for CPU and I/O operations used by each query.

Target workload. For provisioning to be meaningful, thewe correlated this with actual resources consumed by using
query workload has to exhibit some predictability. We assumgernel-level instrumentationp¢ ocf s, i ostat). To sup-
the availability of a representative workload, which can bﬁort consistency and high availability in our configuratiore
obtained either manually (e.g., by the application proviole ,se EBS volumes as storage disks. This creates an additional
the administrators) or automatically (through DBMS praé)e charge for each I/0 operation.

We require that the representative workload consists of afse e experimented with two provisioning approaches. Black-
query classes along with the expected distribution of @serihox relies on end-to-end query performance and assigns
across the different classes. In either case, the elgsodit queries to individual instances based on query arrivalsrate
cloud resources allow quick re-provisioning, which ameligyhjle white-box provisions a set of VMs using optimizer
rates the negative impact of inaccurate workload predistio estimates and limited fine-grained sampling. Both appresich

Resource ManagementGiven the target workload, QoSare expressed as bin-packing problems implemented using

goals (expressed as latency bounds), the cloud's resouiGsy [11], a constraint problem solver.
specification and its monetary cost model, our framework

identifies the most cost-effective VM allocations that wbul IV. BLACK-BOX PROVISIONING
meet the QoS expectations of the workload. We propose twoBlack-box provisioning profiles the performance and cost
provisioning approaches that rely on profiling techniqums fof different VM types under varying query input rates using
evaluating the resource availability of the cloud servbe t sample executions. Our goal is to capture the input rates eac
resource consumption of the target workload, as well as ¥ can support without violating the QoS of the queries it
expected performance and operational cost. The recomrdendgecutes. Based on the profiling results, we identify the-min
set of VMs are reserved for the next reservation period ardst collection of servers to be reserved for each quensclas
each new VM will host a different replica of our database sThin order to complete the workload within its latency bounds.
process is then repeated for each reservation periodngcali Problem formulation. In this approach, each virtual server
our system up or down depending on the expected workloadnfiguration is characterized by a setpefformance vectors,
Workload Management. During run-time, our framework one for each pair of query class and input rate for that class.
routes incoming user queries to the reserved machines. Wie presently evaluate performance vectors once per irstanc
goal is to assign queries to machines with sufficient ressurdype and deal with predicate uncertainty by running many
to execute both new and existing queries within their Qo&les of each query class. Hence, for each combination
bounds, while minimizing any extra monetary cost due t@, j, k), wherei, 1 <i < z is the instance typej, 1 < j <g¢g
per request charges. Moreover, the online query routing miss the query class and, 0 < k < m is a sample input rate,

respect any assumptions/decisions of the provisioning@have create a performance vecﬁqﬁj = [tfj, cfj, lfj], where

Input Rate Latency | Instance (Qty) Cost / Query | Cost / Hour

e _ o
1) t;j is the expected input rate of the combinatiayy,), 10 268.656 | mismall (2) | $2.42406 $24.24
i.e., how many queries of clagsit can accept within 14 31862 | clmedium (1) | $2.42851 $34.00
the reservation period. 12 29322 | _milarge (4) $2.37784 $28.53
2) ¢}, is the cost per query, i.ec}; = c/t};, wherec is the TABLE |
total operational cost for achieving this input rate. INSTANCE SELECTIONS FORQUERY 4

3) Lij is the cumulative distribution function of the querjyeyy tg be interrupted, thus for the vast majority of inpates
latency for the combinatiofy, j, k). Also [jj(a) retums it requires the same latency and monetary cost. Q1 is heavier
the a%-percentile latency. and naturally overloads the system thus it allows almost no

To eliminate any interference among different query classghanges in input rate. Thus this trade off of input rate fatco

our provisioning approach does not mix queries from différeand latency is most interesting in the case of moderatehteig
classes on the same servers. Also, we assume that the wibrkiggeries that stress the system in distinct ways, allowiegnth
we are provisioning for consists ef; queries from each classto potentially share resources.

J that need to be completed within the reservation period. ||jystrative provisioning example. Consider a scenario in
Finally, all queries in a given class have the same latencywhich we have a workload specification that calls for 81
expectationoS;. queries/hour of Q4 with a latency bound of 333 seconds (this

The decision variable of our problem formulationifs; and corresponds to 125% of the best latency option available).

equals to the number of virtual servers of tyipand the input Drawing on the experiment set used to create Figure 2, we
rate & they can receive in order to complete all queries of haye the options found in Table I. A greedy solution would

that class within their expectatiaoS;: select 7 instances of ml.large because it has the least-expen
q sive cost per query. However our solver selects 4 ml.large
mmZZfoJ xtho st (1) instances, 1 cl.medium instance (at 13 queries per hour) and

i=1 j=1k=1 2 ml.smalls. This provisions for exactly 81 queries as well

Em as saves on reservation costs with the slower instanceke whi

szk_] ” Z Ny () still meeting QoS requirements.
o i=1 k=1 On_Ii_ne query routing. The solution to the above problem

sz. » lk (100) < QoS 3) specifies the types and number of cloud servers we sho_uld
— ©J reserve for each query class as well as the maximum incoming

The objective function 1 minimizes the total operation oals. At runtime, incoming queries should be routed to the

cost. Note, that the cost per query might be different f achines executing their query types and in a rate that does
different combinations of VM instance types and input rateﬁOﬁ

The constraint 2 guarantees that we have reserved eno g
servers and assigned them incoming rates that allows usy
execute all queries of the clags Constraint 3 ensures that
we assign input rates to each server such that all its agkigne
gueries can be executed within their latency constraints.
Input Rates. The black-box approach allows a user to The white-box approach solves the resource provisioning
estimate the latency and cost for a given input rate. Therepgoblem by estimating the availability and consumption of
a trade off to be harnessed here between query input rate &rtividual physical resources. First, it quantifies theilade
latency (QoS). As the input rate goes up, the cost per quégsources by profiling the available VM configurations. Néxt
goes down as the cost of the reservation period is amortizéxiluates the resource requirements of the target workisad
over more queries. On the other hand, high query rates isereg query-specific statistics from the database optimizéeq
contention leading to higher latency for each individuagigu with a profiling-based scaling factor. Vector representi
We demonstrate this tradeoff by profiling a series of peef both the resource availability and query requiremeneés ar
formance vectors on an Amazon EC2 instance (ml.largeyaluated once for an entire workload and then fed to a
We varied the time between for each query class from g@nstraint solver, which then recommends a set of VMs by
concurrency (i.e., the length of time for one query to rurths solving a multi-dimensional bin-packing problem.
threshold level (near overload) in declining increment&@¥ Cloud profiling. We assume that the cloud provider offers
from the case of no concurrency. These varying query inpudifferent VM configurations, each characterizeddyirtual
rates correspond to different QoS (latency) options. Kigur resources. We will use eesource vector r; = [r0 7}, .., rd],
shows the trade-off between cost per query and latency lsound< ¢ < z to represent configuration of the computing instance
We observe that relaxing latency requirements does indeedf type ¢. Without loss of generality, we assume thiat 3
drop monetary costs in most of our queries. In the casesasfd this vector includes (1) the I/O operations/sec, (2) CPU
Q3-Q5, this holds true. Q1 and Q2 are less amenable to havirygles/sec and (3) the effective memory available in theeser
multiple meaningful performance vectors for this instar@g2 We estimate I/Os per second by benchmarking Amazon
is “lighter” in that it is more likely to be fully cached andde EBS, through a mixed workload of reads, writes and copies

iuery rate these servers can handle without violating th® Qo

violate their acceptable input rate. This routing peoibl
also be expressed as a constraint program, which we omit
to space limitations.

V. WHITE-BOX PROVISIONING

with uni xbench. CPU and memory availibility are derivedas our decision variable that equals to 1 if the work vector

from Amazon’s specifications. w;; is assigned to the instaneel < ¢t < m. Our constraint
Query profiling. For each query of a representative workprogramming problem is:

load setQ = {Q1,...,Q.}, we construct ad-dimensional m

work vector that represents the query’s consumption of 1/0 min ¥ (max a;j) x Cy + 4)

bandwidth, CPU cycles and memory. We obtain these statistic oy 1StEmisisk o

through a “what-if” interface we built that collects optirer m k n

estimates under different resource configurations. We cope Z(Z Zaij X w; ;) % s St

with variety within a query class by experimenting with sale =1 t=1j=1i=1

(5-10 in our experiments) examples per class.
Most database optimizers generate query plan costs as m o

estimated 1/Os and CPU operations, using memory as Zam‘ =1, vi,i € {1,...,n} ()

a constrained resource. For example, in PostgreSQL the

ef fective_cache_si ze parameter is a hint to the op-i:z":at ol <l
i,j i.j t

timizer regarding the maximum memory available for that_ .
query. Hence, different memory values could lead to varying' !

Vi, t € {1,..m}, Vi, 1l € {1,...d}6)

query plans which impact resource consumption. For example ai; €{0,1}, Vi,i€{1,..n},V],j € {1,..kX7)
large memory values will drive the optimizer to pick planatth vt t € {1,...,m}
reduce the number of I/O operations (e.g., opt for hashs)oin a

In our PostgreSQL-based implementation, we experimented Z Zju =1, vj €{0,..,m} (8)
with different values for theeffective_cache_size u=1

par anet er. Our goal was to identify a set of distinct The objective (Eq. 4) aims to minimize the total operational
memory allocations that produce different query plans amdst (the cost of renting the virtual machines for a single
hence different work vectors, i.e., total resource requ@ets. reservation period as well as any per-request costs). gigin
We then solve the bin-packing problem by picking only onminimize both charges will drive our solver towards soloto
of these work vectors for each query and assigning it tothat minimize the number of machines we use, reserve the
virtual machine. We use an “no-execution” query planningheapest machines when possible, and also choose a set
mode (PostgresSQL&XPLAI N command) to obtain theseof work vectors that incur the lowest possible discrete cost
hypothetical statistics without executing the query. Téaob per resource (e.g., have the least possible /0 operations)
the set of work vectors for a given query, we sample the fi®onstraint 5 guarantees that our solution uses exactly one w
(5) distinct memory configurations available on AWS. Fovector from each query in the given workload. Constraint 6
each sample, we obtain the query’s I/O and CPU operatiensures that each reserved machine has enough capacity to
estimates from the optimizer and create a new work vectorcover the resource requirements of its assigned work v&ctor
Finally, work vectors and resource vectors need to be co@iven the solution to the above problem it is straightfoward
patible in that they must be expressed with the same metrigsidentify the number and types of virtual machines we need
Since, 1/0 (and CPU) resource availability is expressedh wito reserve is. Finally, constraint 8 guarantees that eacleise
rate-based metrics, we use the query-specific QoS targetsadsbe assigned queries of the same class.
our normalizing factor to transform total “total” number of Online query routing. At runtime, user queries can be
I/0 (and CPU) operations to rate-based values. The QoS vakxecuted on any of the reserved machines, however, certain
represents the maximum tolerable query response time foqaery assignments could yield lower operational costs. For
guery. Specifically, we normalize the optimizer's estinsatg instance, a machine with higher available memory could
the latency expectation for its corresponding query. Thisgy execute query plans with fewer 1/0 operations. We assign
us the minimum resource usage rate needed to ensure thattkeming queries to the reserved machines in two stepd, Firs
query finishes within the specified QoS bound. we construct the work vectors of the new queries. Second, we
Problem formulation. We assumé: different work vectors solve an incremental bin-packing problem that is cognizant
for k different memory values for each of the queries in to the currently executing queries and the residual resourc
our target workload, aneh = n x z available instances, oneavailability. We omit the details due to space constraints.
for each VM type and query statement. This is the maximum Calibrating Estimations. Our white-box approach relies
number of possible configurations. on the accuracy of its work vectors. To assess the accuracy
Moreover, each query belongs to oneqoflifferent query of the estimations, we ran several TPC-H queries in isatatio
classes and we sgt ; to be equal tal if query ¢ belongs to and quantified how many 1/O operations and CPU cycles were
classj. We definez; , to be equal td if machine; is assigned consumed. By running the queries alone with a cold cache, we
a query of classi, zj., = maxi<i<n1<i<k{a} ; X Yiu}. have a conservative estimate of the resources consumesl,. Thu
Finally, we assume each computing instance is rentable tbis approach gives us the maximum slice of resources that a
C; dollars per reservation period and there are per-requgsiery class will require. We experimented with five diffaren
chargess; for each resource typg 1 < i < d. We useaﬁ_’j query examples for each of TPC-H queries Q1-Q5.

18 140000 Input Rate (/ hour) Latency Req | Best Inst | Cost/ Query | Cost/ Hour

16 B—t———a 120000 B g gy 720 30 cl.xlarge $0.00344 $2.47590
oM i 360 30 m1large $0.00120 $0.43109
e 3 240 20 m1.large $0.00145 $0.34912
ﬁﬂﬂm’_" T =a 180 20 milarge | $0.00102 $0.34508
- A Al M 144 5 clxlarge | $0.00474 $0.68300
o was 3 w00 S 120 15 cl.xlarge $0.00569 $0.68260
= :.—.—.—.—. =05 6 by p 05 103 12 cl.xlarge $0.00663 $0.68257

. A T3 TABLE Il

1 2 3 4 5 1 2 3 4 5
Trial Trial INSTANCE SELECTION FOR VARYING WORKLOADS

(a) (b)

instance and varied the query input rates and latency requir
o]] ments. Workloads with faster input rates had more relaxed

We use optimizer estimates to guide our work vectors. Theggency requirements. In contrast workloads with slowguin

estimates are typically provided as abstract units, whe#n 4105 specified much tighter latency requirements. We ealcu
to be translated into “real” resource consumption values. Ojaeq the cost per query as our reservation cost (divideddy t
experiments demonstrated that a simple, linear scalingrac,,mper of queries executed in the reservation period) pleis t
(ratio of the actual resources consumed and the Opt'm'zeé'\?erage I/Os used per query multiplied by its EBS rate. We

estimate for that dimension) per query class could perfoien t ggjected the best instance based on the least expensive cost
calibration accurately for the TPC-H queries we considere&er query that met our QoS requirements.

In Figure 3 we see the scaling factors for the CPU and I/O o findings are in Table II. In this experiment our cost per

estimates for our work vectors. PostgreSQL considers all Qfiery changed as the input rate and latency requirements. Fo
its cost parameters in terms of time (their unit is compa&al,, input rates Q2 starts out favouring a compute-intensive
to the time it takes to do one sequential read), so we Mystiance (c1.xlarge) as the CPU is the resource with the most
scale it into resources used by converting I/O time into @cty.qtention. As we move on to a more moderate input the
/Os and CPU time into cycles to normalize for clock speedyreference switches to a memory-intensive instance (nyk)a

The scaling factors for the /O operations vary for différeng minimize expensive 1/0s used in page swapping. In the final
query classes. The variation between classes are due éo-diffria|s the tighter QoS causes a CPU bottleneck, so we revert
ent degrees of errors the optimizer makes in its estimatioRs c1.xlarge. These trials clearly demonstrate that theaime

which are largely based on the complexity of the query plags pe selected will vary based on workload specifications.
and skewed data distributions. Furthermore, scale factans

also vary considerably between instances based on cache VI. RELATED WORK

size. The optimizer has only a very coarse knowledge of therecently, there has been enormous interest in the area of
buffer pool usage, which leads to further errors. The sgali|oud-based data management. Several groups (e.g., [P], [3
factors for CPU usage normalization have similar propsrtigjiscussed the benefits, drawbacks and challenges from govin
In absolute values, they are much larger because we conyg{ta management applications and tools into laaS-based ma-
from time units to cycles to be able to make EC2 instancgfines, although they do not address the resource proirigion
with varying compute unit power comparable. problem nor the cost/performance trade-offs that arise tiwe
While the scaling factors varied between queries, theyastic model of cloud infrastructures. However, the nemd f
were relatively stable across queries in the same class. Tifcluding monetary cost as a database optimization obgecti
observation provides a motivation for not executing queriguas acknowledged [8].
from different classes on the same machine for predictgbili \while a utility-driven solution for adaptively modifying
reasons. Each query does not vary much in its scaling fact@srkload allocation within a cloud was presented in [14jsth
despite their actual cost differing based on predicate@angwork has not yet been extended to support monetary cost
index selection and other path decisions. Our standard deyhd was not focused on cloud databases. In [5] and [12],
ation for scaling factors vary between 0-7% of the averagige authors focus on maintaining various levels of ACID
for each query class and similar results were obtained froffoperties for databases on the cloud. While they do address
different EC2 instances. financial cost, they do not broach the issue of performance
Instance Selection.Our provisioning aims to select thewhile minimizing cost. In [6], the authors analyzed the apas
“cheapest” VMs that satisfy the workload’s QoS goals. Oun price versus latency for different degrees of paraltelis
goal is to determine the cost/performance trade-off andosem for scientific workloads by using simulations of Amazon’s
strate that varying cloud server configurations yield vagyi AWS. In contrast, we are working with data warehousing
QoS levels and operating costs. To study the utility of owvorkloads and using real deployments for our source data and
approach we needed to determine whether the bin packer kadluations.
many competing options. Otherwise, if there is one clear VM Our framework is related to techniques for configuration
option a greedy solution would be sufficient. of virtual machines [16] and automatic performance modglin
To address the above, we experimented with a variety of virtualized applications [15]. There has also been a sub-
workload specifications for Q2. Specifically, we executed testantial amount of work on the problem of tuning database
different instances of the class Q2 on an ml.xlarge EGfstems [19] and adapting databases to their use of various

Fig. 3. Scaling factors for (a) I/O and (b) CPU operations.

er 1 2 3 4 5
2{3_ ,’;e\, 19 T 109 1892 | 1907 1074 if we know what allocation policies an engine uses. With
Avg. Latency | 619.42 | 20.23 | 268.62 | 300.38 | 255.09 PostgresSQL, for example, a fair scheduling assumption tha

TABLE IlI gives queries a uniform share of the available resourcaasee
STATISTICS FROM WORKLOAD AT VARIOUS TIMES OF DAY to be a realistic one. Our generic constraint programming-

computing resources [13], [17]. However, in this work wdased frz_;\mework_ allows us to integrate such knowledge into
provision resources aiming to improve the monetary coseundh€ solutions easily. .
certain performance constraints. To the best of our knogded Gray-Box Formulations. The black-box approach requires
such a tuning objective has yet to be studied. Our black-b§X€nsive experimentation, whereas the white-box approac
approach and optimizer scaling can borrow from the mofgduires good optimizer estimates and some control oveaior
sophisticated learning-based predictive modelling [9]. the very least, the knowledge of) how resources are alldcate

Resource provisioning has been addressed from a profilifyf§ghin the database engine. A hybrid approach that combines
perspective [18] and model-based approach [7] in othersardB€ respective strengths of these fwo points in the solution
of systems research. These approaches were not specificigce is an area which we are actively pursuing.

geared toward database systems, nor did they have a flexible VIII. A CKNOWLEDGEMENTS
enough approach for dealing with monetary cost. We addressrhis work has been partially supported by the National
both of these topics in our research. 88665n5c583 Foundation under grant No. 11S-0916691 and IIS-

VII. OPENCHALLENGES AND ONGOING WORK

Here we briefly summarize several open issues and our on-
going efforts to address them. REFERENCES
Mixed Workloads. Accurately modelling the behavior of [1] Amazon Web Services, http:/aws.amazon.com/.

. - . 2] D. J. Abadi. Data management in the cloud: Limitationsl apportu-
mixed workload execution is a key challenge. We plan td nities. IEEE Bulletin on Data Engineering, 32(1), 2009.

explore systematic profiling to characterize the senstivi [3] A. Aboulnaga, K. Salem, A. A. Soror, and U. F. Minhas. Dmphg
of query classes to mixed execution, along with predictive database appliance in the cloutEEE Bulletin on Data Engineering,

. L . 32(1), 2009.

technlque.s t.o do this with acceptable accuracy and cost A M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala. Modglin

manner similar to [4]. and exploiting query interactions in database systemsCIKM *08:
Probabilistic Modeling of Resources and QueriesThere Proceeding of the 17th ACM conference on Information and knowledge

. - . e management, pages 183-192, New York, NY, USA, 2008. ACM.
is often a lot of variation and unpredictability in the warkd, [5] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. $ke

resource availability, and performance, as well as theracgu Building a database on s3. BGMOD, 2008.
of the estimates. A simple, discrete modeling of such &l E. Deeiman, G. Singh, M. Livny, B. Berriman, and J. Good.heT

. . s cost of doing science on the cloud: the montage exampleSCIn08:
complex environment is unrealistic and fundamentally lead Proceedings of the 2008 ACM/IEEE conference on Supercomputing,

to solutions that are overly conservative. We are currently pages 1-12, Piscataway, NJ, USA, 2008. IEEE Press.

investigating probabilistic modeling of our resource anatkv [7] E- P-(;Doyle, J.S. Chase, O. M. Asad,bW. Jin, amil_le. mé\T/ghg%:(;iP?I-

. ased resource provisioning In a web service utility. .
vectors to aj”eVIate these prOblemS' . . [8] D. Florescu and D. Kossman. Rethinking cost and perfoceaof
To quantify some of this uncertainty in cloud resources, = database systems. KCM SGMOD Record, March 2009.

we ran TPC-H queries Q1-Q5 every 6 hours for five days oif] g- (;anapathi, I;- Kdum u. Dflayall, J. L. Wiefner, A. Fox, gﬂért;ian, and
H . . H . Patterson. redicting multiple metrics for queries:t ecisions

an mll.large EC? instance with fixed pred|c.:ates. and plotted -\ 4 by machine learning. IGDE, 2009,

execution latencies. Table Il shows that, in this case, t®] GoGrid.com. http://gogrid.com/.

standard deviation of latencies was small enough to fatglit [11] IBM. ILOG CPLEX, http://www.ilog.com/products/cpté

. L. . [12] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. siiency
effective provisioning but not too small to be ignored. rationing in the cloud: Pay only when it matters. DB, 2009.

Expressing Domain-Specific PoliciesA further utility of [13] D. Narayanan, E. Thereska, and A. Ailamaki. Continusesource
our generic approach is in expressing domain-specific Wor[k-] monitoring for Self-predictigg DBMS. IMASCOTS, 2005. J
. - s f . 14] N. W. Paton, M. A. T. de Arago, K. Lee, A. A. A. Fernandes,
load allocation poI|C|es._ Such poI|C|_es.couId be eltheveimby_ and R. Sakellariou. Optimizing Uty in Cloud Computingrough
system model constraints or heuristics that could potintia Autonomic Workload Execution]EEE Bulletin on Data Engineering,
improve the performance of the system. For example, if a5] iZ(é)],, 2009-A Demberel. P. Gunda. b. Inuin. L. Grit. A erefend
H H H . ivam, A. Demberel, P. Gunda, D. Irwin, L. Grit, A. nferefendi,
master-slave architecture is useq then update quen(?stuee[)1 S. Babu, and J. Chase, Automated and On-Demand Provisiaing
be forwarded to the master machines and read operations to th virtual Machines for Database Applications. SIGMOD, 2007.
slave machines. Or, we might want to exploit cache localit}6] é- ioror, rl]J FAMinhaS_, A Ab?ulnagﬁ_, K. Salf?m, P. KO'fﬂﬁSi, and
: : H H . amath. utomatic virtual machine configuration for dhaise
by executing queries accessing the same tables in t.he. same - vioads. InSGMOD, 2008.
machine. Such scenarios can be readily expressed within AWl A.J. Storm, C. Garcia-Arellano, S. S. Lightstone, YaBjand M. Suren-
framework through additional constraints. (18] dra. Adaptli<ve Self-stl;]ning merréory in DB2. MLDB, 2006. .
A : : e _ [18] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource oukirtgp an
Flne grained Resource”A”OC_a“on' Our white-box so application profiling in shared hosting plat forms. @8DI, 2002.
lution assumes that specific slices of CPU and I/O can p@] G. weikum, A. Moenkeberg, C. Hasse, and P. Zabback. -t8eifg
allocated for each query. Most engines do not provide such Database Technology and Information Services: from Wishfiinking
a fine-grained control over how resources are allocated-inte ~ © Viable Engineering. IVLDB, 2002.

nally. In those cases, we can still achieve a workable swiuti

