
A Generic Auto-Provisioning Framework for
Cloud Databases

Jennie Rogers1, Olga Papaemmanouil2, Ugur Cetintemel1
1Brown University, 2 Brandeis University

jennie@cs.brown.edu, olga@cs.brandeis.edu, ugur@cs.brown.edu

Abstract— We discuss the problem of resource provisioning
for database management systems operating on top of an
Infrastructure-As-A-Service (IaaS) cloud. To solve this problem,
we describe an extensible framework that, given a target query
workload, continually optimizes the system’s operationalcost,
estimated based on the IaaS provider’s pricing model, whilesat-
isfying QoS expectations. Specifically, we describe two different
approaches, a “white-box” approach that uses a fine-grained
estimation of the expected resource consumption for a work-
load, and a “black-box” approach that relies on coarse-grained
profiling to characterize the workload’s end-to-end performance
across various cloud resources. We formalize both approaches as
a constraint programming problem and use a generic constraint
solver to efficiently tackle them.

We present preliminary experimental numbers, obtained by
running TPC-H queries with PostsgreSQL on Amazon’s EC2,
that provide evidence of the feasibility and utility of our ap-
proaches. We also briefly discuss the pertinent challenges and
directions of on-going research.

I. I NTRODUCTION

Cloud computing is widely touted as ”the greatest thing
since sliced bread”, as it allows computing to behave much
like a generic utility that is always available on-demand
from anywhere. This utility-oriented model of hardware and
software usage establishes cloud computing as a potentially
transformative technology, while the associated pay-as-you-go
model often renders it as a savvy economic choice for many
entities that would like to avoid up-front capital expensesand
reduce cost of ownership over time.

DBMSs are good candidates for adoption in the cloud —
they are difficult to configure and manage and serve workloads
that are resource-intensive and highly time varying. While
many DBMSs have already been ported as appliances on
virtualized hardware offered by IaaS providers, key questions
that challenge widespread, cost-effective deployment of cloud
databases remain open.

One such question involves database system optimization,
which traditionally assumes the availability of a fixed resource
configuration and exclusively deals with performance opti-
mization. This view ignores the operational (monetary) cost
of running the database. The pay-as-you-go model of cloud
computing, however, requires operational costs to be treated
as a prime consideration along with performance.

In this paper, we discuss the problem of minimizing the
operational cost of running a DBMS on IaaS. The operational
cost of a DBMS depends on the monetary cost function of
the underlying IaaS provider. That is to say, by how much

the provider charges for each resource type. We propose a
resource provisioning framework that identifies a collection
of minimum-cost infrastructure resources (i.e., a set of po-
tentially heterogeneous virtual machines) that can collectively
satisfy a predicted time-varying workload within target QoS
expectations. Moreover, at run-time, we make best use of the
reserved resources by intelligently routing incoming queries
to specific machines.

In this work-in-progress paper, we describe two solutions
to the resource provisioning problem.Black-box provisioning
uses end-to-end performance results of sample query execu-
tions, whereaswhite-box provisioning uses a finer grained
approach that relies on the DBMS optimizer to predict the
physical resource (i.e., I/O, memory, CPU) consumption for
each query. We formulate both solutions as multi-dimensional
bin-packing problems and efficiently tackle them using a
generic constraint solver. We discuss the strengths and lim-
itations of these approaches and present preliminary experi-
mental numbers (based on TPC-H queries running on top of
PostgreSQL/Amazon EC2) that offer additional insight about
their feasibility and utility.

II. SYSTEM MODEL

Cloud environment. Our model assumes a cloud infrastruc-
ture similar to the offerings from various IaaS providers [1],
[10]. Vendors provide access to pre-configured computing
virtual machines (VMs or cloud servers) on which users can
remotely install and run their software. Available VM types
are differentiated by the resources they provide such as CPU
power, I/O bandwidth, disk space and memory size.

Cloud resources are offered through a “pay-as-go” pricing
model; they are rentable for a certainreservation period,
typically an hour, and thisper-period cost is fixed in that
it depends only on the server configuration and not on the
actual server utilization over the course of the period. IaaS
clouds also provide storage and data transfer services, usually
with additionalper request charges. For example, Amazon’s
EBS service offers persistent storage volumes and charges per
request for each I/O operation. In this work we consider the
charges only for the VMs and I/O operations.

Regardless of the pricing model used, it is the responsibility
of the IaaS client to provision its resources appropriately.
Based on an estimation of the expected workload, clients
will deploy, observe, and accordingly adjust their computing

DB replicas

VM
1

CPU1
MEM1
.....

VM
2

CPU1
MEM1
.....

VM
3

CPU2
MEM2
.....

VM
4

CPU2
MEM2
.....

VM
5

CPU2
MEM2
.....

VM Type 1 VM Type 2

Performance goals

Target Workload

Cloud Provider
VM provisioning

& monitoring

Data Management Application

Constraint

Solver

Pricing

Model

VM specs

Workload profiler

Cloud Profiler

Fig. 1. High-level cloud DBMS and provisioning model.

capacity by reserving or releasing VMs over time to meet any
QoS requirements. Our framework addresses this problem.

Database deployment model.Cloud-based DBMSs are
typically instantiated through adatabase appliance [3], i.e., a
VM image with a pre-installed pre-configured database engine.
We assume a replicated database model on top of a shared-
nothing network of multiple VMs, each running an indepen-
dent database appliance (Figure 1). We consider read-mostly
workloads common to analytical processing applications. We
assume that write operations are performed off-line and in
parallel across all our cloud servers.

Target workload. For provisioning to be meaningful, the
query workload has to exhibit some predictability. We assume
the availability of a representative workload, which can be
obtained either manually (e.g., by the application provider or
the administrators) or automatically (through DBMS profilers).
We require that the representative workload consists of a set of
query classes along with the expected distribution of queries
across the different classes. In either case, the elasticity of
cloud resources allow quick re-provisioning, which amelio-
rates the negative impact of inaccurate workload predictions.

Resource Management.Given the target workload, QoS
goals (expressed as latency bounds), the cloud’s resource
specification and its monetary cost model, our framework
identifies the most cost-effective VM allocations that would
meet the QoS expectations of the workload. We propose two
provisioning approaches that rely on profiling techniques for
evaluating the resource availability of the cloud server, the
resource consumption of the target workload, as well as its
expected performance and operational cost. The recommended
set of VMs are reserved for the next reservation period and
each new VM will host a different replica of our database. This
process is then repeated for each reservation period, scaling
our system up or down depending on the expected workload.

Workload Management. During run-time, our framework
routes incoming user queries to the reserved machines. The
goal is to assign queries to machines with sufficient resources
to execute both new and existing queries within their QoS
bounds, while minimizing any extra monetary cost due to
per request charges. Moreover, the online query routing must
respect any assumptions/decisions of the provisioning phase

Fig. 2. Latency vs. cost for various input rates on one instance.

(e.g., assignment of certain query types to certain machines,
maximum acceptable query rate of each machines).

Constraint Solver. The constraint solver is responsible for
solving both the offline resource provisioning and online query
routing optimization problems. Both problems are expressed as
constraint programs, which get solved by a central coordinator
using an off-the-shelf optimization tool.

III. E XPERIMENTAL CONFIGURATION

Throughout this document we reference results using a
proof-of-concept for our framework deployed on Amazon Web
Services [1]. We deployed PostgreSQL 8.4.1 on a variety of
AWS instances rated in terms of being I/O-intensive, CPU-
intensive or well-weighted for both. We created our workload
based on TPC-H Query Classes 1-5 (scale factor 10), which
represent a mix of daily (short) and long term (strategic)
queries. We also extended the PostgreSQL optimizer to pro-
duce estimates for CPU and I/O operations used by each query.
We correlated this with actual resources consumed by using
kernel-level instrumentation (procfs, iostat). To sup-
port consistency and high availability in our configuration, we
use EBS volumes as storage disks. This creates an additional
charge for each I/O operation.

We experimented with two provisioning approaches. Black-
box relies on end-to-end query performance and assigns
queries to individual instances based on query arrival rates,
while white-box provisions a set of VMs using optimizer
estimates and limited fine-grained sampling. Both approaches
are expressed as bin-packing problems implemented using
iLog [11], a constraint problem solver.

IV. B LACK -BOX PROVISIONING

Black-box provisioning profiles the performance and cost
of different VM types under varying query input rates using
sample executions. Our goal is to capture the input rates each
VM can support without violating the QoS of the queries it
executes. Based on the profiling results, we identify the min-
cost collection of servers to be reserved for each query class
in order to complete the workload within its latency bounds.

Problem formulation. In this approach, each virtual server
configuration is characterized by a set ofperformance vectors,
one for each pair of query class and input rate for that class.
We presently evaluate performance vectors once per instance
type and deal with predicate uncertainty by running many
examples of each query class. Hence, for each combination
(i, j, k), wherei, 1 ≤ i ≤ z is the instance type,j, 1 ≤ j ≤ q
is the query class andk, 0 ≤ k ≤ m is a sample input rate,
we create a performance vectorpk

ij = [tkij , c
k
ij , l

k
ij], where

1) tkij is the expected input rate of the combination(i, j, k),
i.e., how many queries of classj it can accept within
the reservation period.

2) ck
ij is the cost per query, i.e.,ck

ij = c/tkij , wherec is the
total operational cost for achieving this input rate.

3) lkij is the cumulative distribution function of the query
latency for the combination(i, j, k). Also lkij(a) returns
the a%-percentile latency.

To eliminate any interference among different query classes
our provisioning approach does not mix queries from different
classes on the same servers. Also, we assume that the workload
we are provisioning for consists ofnj queries from each class
j that need to be completed within the reservation period.
Finally, all queries in a given classj have the same latency
expectation,QoSj .

The decision variable of our problem formulation isxk
i,j and

equals to the number of virtual servers of typei and the input
ratek they can receive in order to complete allnj queries of
that class within their expectationQoSj :

min

z∑

i=1

q∑

j=1

m∑

k=1

xk
i,j × ck

i,j × tki,j s.t. (1)

z∑

i=1

m∑

k=1

xk
i,j × tki,j ≥ nj (2)

z∑

i=1

m∑

k=1

xk
i,j × lki,j(100) ≤ QoSj (3)

The objective function 1 minimizes the total operational
cost. Note, that the cost per query might be different for
different combinations of VM instance types and input rates.
The constraint 2 guarantees that we have reserved enough
servers and assigned them incoming rates that allows us to
execute all queries of the classj. Constraint 3 ensures that
we assign input rates to each server such that all its assigned
queries can be executed within their latency constraints.

Input Rates. The black-box approach allows a user to
estimate the latency and cost for a given input rate. There is
a trade off to be harnessed here between query input rate and
latency (QoS). As the input rate goes up, the cost per query
goes down as the cost of the reservation period is amortized
over more queries. On the other hand, high query rates increase
contention leading to higher latency for each individual query.

We demonstrate this tradeoff by profiling a series of per-
formance vectors on an Amazon EC2 instance (m1.large).
We varied the time between for each query class from no
concurrency (i.e., the length of time for one query to run) tothe
threshold level (near overload) in declining increments of10%
from the case of no concurrency. These varying query input
rates correspond to different QoS (latency) options. Figure 2
shows the trade-off between cost per query and latency bounds.

We observe that relaxing latency requirements does indeed
drop monetary costs in most of our queries. In the cases of
Q3-Q5, this holds true. Q1 and Q2 are less amenable to having
multiple meaningful performance vectors for this instance. Q2
is “lighter” in that it is more likely to be fully cached and less

Input Rate Latency Instance (Qty) Cost / Query Cost / Hour
10 268.65 m1.small (2) $2.42406 $24.24
14 318.62 c1.medium (1) $2.42851 $34.00
12 293.22 m1.large (4) $2.37784 $28.53

TABLE I

INSTANCE SELECTIONS FORQUERY 4

likely to be interrupted, thus for the vast majority of inputrates
it requires the same latency and monetary cost. Q1 is heavier
and naturally overloads the system thus it allows almost no
changes in input rate. Thus this trade off of input rate for cost
and latency is most interesting in the case of moderate-weight
queries that stress the system in distinct ways, allowing them
to potentially share resources.

Illustrative provisioning example. Consider a scenario in
which we have a workload specification that calls for 81
queries/hour of Q4 with a latency bound of 333 seconds (this
corresponds to 125% of the best latency option available).
Drawing on the experiment set used to create Figure 2, we
have the options found in Table I. A greedy solution would
select 7 instances of m1.large because it has the least expen-
sive cost per query. However our solver selects 4 m1.large
instances, 1 c1.medium instance (at 13 queries per hour) and
2 m1.smalls. This provisions for exactly 81 queries as well
as saves on reservation costs with the slower instances, while
still meeting QoS requirements.

Online query routing. The solution to the above problem
specifies the types and number of cloud servers we should
reserve for each query class as well as the maximum incoming
query rate these servers can handle without violating the QoS
goals. At runtime, incoming queries should be routed to the
machines executing their query types and in a rate that does
not violate their acceptable input rate. This routing problem
can also be expressed as a constraint program, which we omit
due to space limitations.

V. WHITE-BOX PROVISIONING

The white-box approach solves the resource provisioning
problem by estimating the availability and consumption of
individual physical resources. First, it quantifies the available
resources by profiling the available VM configurations. Next, it
evaluates the resource requirements of the target workloadus-
ing query-specific statistics from the database optimizer paired
with a profiling-based scaling factor. Vector representations
of both the resource availability and query requirements are
evaluated once for an entire workload and then fed to a
constraint solver, which then recommends a set of VMs by
solving a multi-dimensional bin-packing problem.

Cloud profiling. We assume that the cloud provider offers
z different VM configurations, each characterized byd virtual
resources. We will use aresource vector ri = [r0

t , r1

t , .., rd
t],

1 ≤ t ≤ z to represent configuration of the computing instance
i of type t. Without loss of generality, we assume thatd = 3
and this vector includes (1) the I/O operations/sec, (2) CPU
cycles/sec and (3) the effective memory available in the server.

We estimate I/Os per second by benchmarking Amazon
EBS, through a mixed workload of reads, writes and copies

with unixbench. CPU and memory availibility are derived
from Amazon’s specifications.

Query profiling. For each query of a representative work-
load setQ = {Q1, ..., Qn}, we construct ad-dimensional
work vector that represents the query’s consumption of I/O
bandwidth, CPU cycles and memory. We obtain these statistics
through a “what-if” interface we built that collects optimizer
estimates under different resource configurations. We cope
with variety within a query class by experimenting with several
(5-10 in our experiments) examples per class.

Most database optimizers generate query plan costs as
estimated I/Os and CPU operations, using memory as
a constrained resource. For example, in PostgreSQL the
effective cache size parameter is a hint to the op-
timizer regarding the maximum memory available for that
query. Hence, different memory values could lead to varying
query plans which impact resource consumption. For example,
large memory values will drive the optimizer to pick plans that
reduce the number of I/O operations (e.g., opt for hash-joins).

In our PostgreSQL-based implementation, we experimented
with different values for theeffective cache size
parameter. Our goal was to identify a set of distinct
memory allocations that produce different query plans and
hence different work vectors, i.e., total resource requirements.
We then solve the bin-packing problem by picking only one
of these work vectors for each query and assigning it to a
virtual machine. We use an “no-execution” query planning
mode (PostgresSQL’sEXPLAIN command) to obtain these
hypothetical statistics without executing the query. To obtain
the set of work vectors for a given query, we sample the five
(5) distinct memory configurations available on AWS. For
each sample, we obtain the query’s I/O and CPU operation
estimates from the optimizer and create a new work vector.

Finally, work vectors and resource vectors need to be com-
patible in that they must be expressed with the same metrics.
Since, I/O (and CPU) resource availability is expressed with
rate-based metrics, we use the query-specific QoS targets as
our normalizing factor to transform total “total” number of
I/O (and CPU) operations to rate-based values. The QoS value
represents the maximum tolerable query response time for a
query. Specifically, we normalize the optimizer’s estimates by
the latency expectation for its corresponding query. This gives
us the minimum resource usage rate needed to ensure that the
query finishes within the specified QoS bound.

Problem formulation. We assumek different work vectors
for k different memory values for each of then queries in
our target workload, andm = n × z available instances, one
for each VM type and query statement. This is the maximum
number of possible configurations.

Moreover, each query belongs to one ofq different query
classes and we setyi,j to be equal to1 if query i belongs to
classj. We definezj,u to be equal to1 if machinej is assigned
a query of classu, zj,u = max1≤i≤n,1≤t≤k{a

t
i,j × yi,u}.

Finally, we assume each computing instance is rentable for
Ct dollars per reservation period and there are per-request
chargessl for each resource typel, 1 ≤ i ≤ d. We useat

i,j

as our decision variable that equals to 1 if the work vector
wij is assigned to the instancet, 1 ≤ t ≤ m. Our constraint
programming problem is:

min

m∑

t=1

(max
1≤i≤n,1≤j≤k

at
i,j) × Ct + (4)

d∑

l=1

(
m∑

t=1

k∑

j=1

n∑

i=1

at
i,j × wl

i,j) × sl s.t.

m∑

t=1

k∑

j=1

at
i,j = 1, ∀i, i ∈ {1, ..., n} (5)

k∑

j=1

n∑

i=1

at
i,j × wl

i,j < rl
t, ∀t, t ∈ {1, ...m}, ∀l, l ∈ {1, ...d}(6)

at
i,j ∈ {0, 1}, ∀i, i ∈ {1, ...n}, ∀j, j ∈ {1, ...k}(7)

∀t, t ∈ {1, ..., m}
q∑

u=1

zj,u = 1, ∀j ∈ {0, .., m} (8)

The objective (Eq. 4) aims to minimize the total operational
cost (the cost of renting the virtual machines for a single
reservation period as well as any per-request costs). Trying to
minimize both charges will drive our solver towards solutions
that minimize the number of machines we use, reserve the
cheapest machines when possible, and also choose a set
of work vectors that incur the lowest possible discrete cost
per resource (e.g., have the least possible I/O operations).
Constraint 5 guarantees that our solution uses exactly one work
vector from each query in the given workload. Constraint 6
ensures that each reserved machine has enough capacity to
cover the resource requirements of its assigned work vectors.
Given the solution to the above problem it is straightfoward
to identify the number and types of virtual machines we need
to reserve is. Finally, constraint 8 guarantees that each server
will be assigned queries of the same class.

Online query routing. At runtime, user queries can be
executed on any of the reserved machines, however, certain
query assignments could yield lower operational costs. For
instance, a machine with higher available memory could
execute query plans with fewer I/O operations. We assign
incoming queries to the reserved machines in two steps. First,
we construct the work vectors of the new queries. Second, we
solve an incremental bin-packing problem that is cognizant
to the currently executing queries and the residual resource
availability. We omit the details due to space constraints.

Calibrating Estimations. Our white-box approach relies
on the accuracy of its work vectors. To assess the accuracy
of the estimations, we ran several TPC-H queries in isolation
and quantified how many I/O operations and CPU cycles were
consumed. By running the queries alone with a cold cache, we
have a conservative estimate of the resources consumed. Thus,
this approach gives us the maximum slice of resources that a
query class will require. We experimented with five different
query examples for each of TPC-H queries Q1-Q5.

Fig. 3. Scaling factors for (a) I/O and (b) CPU operations.

We use optimizer estimates to guide our work vectors. These
estimates are typically provided as abstract units, which need
to be translated into “real” resource consumption values. Our
experiments demonstrated that a simple, linear scaling factor
(ratio of the actual resources consumed and the optimizer’s
estimate for that dimension) per query class could perform this
calibration accurately for the TPC-H queries we considered.
In Figure 3 we see the scaling factors for the CPU and I/O
estimates for our work vectors. PostgreSQL considers all of
its cost parameters in terms of time (their unit is comparable
to the time it takes to do one sequential read), so we must
scale it into resources used by converting I/O time into actual
I/Os and CPU time into cycles to normalize for clock speed.

The scaling factors for the I/O operations vary for different
query classes. The variation between classes are due to differ-
ent degrees of errors the optimizer makes in its estimations,
which are largely based on the complexity of the query plans
and skewed data distributions. Furthermore, scale factorsmay
also vary considerably between instances based on cache
size. The optimizer has only a very coarse knowledge of the
buffer pool usage, which leads to further errors. The scaling
factors for CPU usage normalization have similar properties.
In absolute values, they are much larger because we convert
from time units to cycles to be able to make EC2 instances
with varying compute unit power comparable.

While the scaling factors varied between queries, they
were relatively stable across queries in the same class. This
observation provides a motivation for not executing queries
from different classes on the same machine for predictability
reasons. Each query does not vary much in its scaling factor
despite their actual cost differing based on predicate ranges,
index selection and other path decisions. Our standard devi-
ation for scaling factors vary between 0-7% of the average
for each query class and similar results were obtained from
different EC2 instances.

Instance Selection.Our provisioning aims to select the
“cheapest” VMs that satisfy the workload’s QoS goals. Our
goal is to determine the cost/performance trade-off and demon-
strate that varying cloud server configurations yield varying
QoS levels and operating costs. To study the utility of our
approach we needed to determine whether the bin packer had
many competing options. Otherwise, if there is one clear VM
option a greedy solution would be sufficient.

To address the above, we experimented with a variety of
workload specifications for Q2. Specifically, we executed ten
different instances of the class Q2 on an m1.xlarge EC2

Input Rate (/ hour) Latency Req Best Inst Cost / Query Cost / Hour
720 30 c1.xlarge $0.00344 $2.47590
360 30 m1.large $0.00120 $0.43109
240 20 m1.large $0.00145 $0.34912
180 20 m1.large $0.00192 $0.34508
144 15 c1.xlarge $0.00474 $0.68300
120 15 c1.xlarge $0.00569 $0.68260
103 12 c1.xlarge $0.00663 $0.68257

TABLE II

INSTANCE SELECTION FOR VARYING WORKLOADS.

instance and varied the query input rates and latency require-
ments. Workloads with faster input rates had more relaxed
latency requirements. In contrast workloads with slower input
rates specified much tighter latency requirements. We calcu-
lated the cost per query as our reservation cost (divided by the
number of queries executed in the reservation period) plus the
average I/Os used per query multiplied by its EBS rate. We
selected the best instance based on the least expensive cost
per query that met our QoS requirements.

Our findings are in Table II. In this experiment our cost per
query changed as the input rate and latency requirements. For
low input rates Q2 starts out favouring a compute-intensive
instance (c1.xlarge) as the CPU is the resource with the most
contention. As we move on to a more moderate input the
preference switches to a memory-intensive instance (m1.large)
to minimize expensive I/Os used in page swapping. In the final
trials the tighter QoS causes a CPU bottleneck, so we revert
to c1.xlarge. These trials clearly demonstrate that the instance
to be selected will vary based on workload specifications.

VI. RELATED WORK

Recently, there has been enormous interest in the area of
cloud-based data management. Several groups (e.g., [2], [3])
discussed the benefits, drawbacks and challenges from moving
data management applications and tools into IaaS-based ma-
chines, although they do not address the resource provisioning
problem nor the cost/performance trade-offs that arise from the
elastic model of cloud infrastructures. However, the need for
including monetary cost as a database optimization objective
was acknowledged [8].

While a utility-driven solution for adaptively modifying
workload allocation within a cloud was presented in [14], this
work has not yet been extended to support monetary cost
and was not focused on cloud databases. In [5] and [12],
the authors focus on maintaining various levels of ACID
properties for databases on the cloud. While they do address
financial cost, they do not broach the issue of performance
while minimizing cost. In [6], the authors analyzed the changes
in price versus latency for different degrees of parallelism
for scientific workloads by using simulations of Amazon’s
AWS. In contrast, we are working with data warehousing
workloads and using real deployments for our source data and
evaluations.

Our framework is related to techniques for configuration
of virtual machines [16] and automatic performance modeling
of virtualized applications [15]. There has also been a sub-
stantial amount of work on the problem of tuning database
systems [19] and adapting databases to their use of various

Query 1 2 3 4 5
Std. Dev 11.9 1.09 18.92 19.07 10.74
Avg. Latency 619.42 20.23 268.62 300.38 255.09

TABLE III

STATISTICS FROM WORKLOAD AT VARIOUS TIMES OF DAY.

computing resources [13], [17]. However, in this work we
provision resources aiming to improve the monetary cost under
certain performance constraints. To the best of our knowledge,
such a tuning objective has yet to be studied. Our black-box
approach and optimizer scaling can borrow from the more
sophisticated learning-based predictive modelling [9].

Resource provisioning has been addressed from a profiling
perspective [18] and model-based approach [7] in other areas
of systems research. These approaches were not specifically
geared toward database systems, nor did they have a flexible
enough approach for dealing with monetary cost. We address
both of these topics in our research.

VII. O PEN CHALLENGES AND ONGOING WORK

Here we briefly summarize several open issues and our on-
going efforts to address them.

Mixed Workloads. Accurately modelling the behavior of
mixed workload execution is a key challenge. We plan to
explore systematic profiling to characterize the sensitivity
of query classes to mixed execution, along with predictive
techniques to do this with acceptable accuracy and cost in a
manner similar to [4].

Probabilistic Modeling of Resources and Queries.There
is often a lot of variation and unpredictability in the workload,
resource availability, and performance, as well as the accuracy
of the estimates. A simple, discrete modeling of such a
complex environment is unrealistic and fundamentally lead
to solutions that are overly conservative. We are currently
investigating probabilistic modeling of our resource and work
vectors to alleviate these problems.

To quantify some of this uncertainty in cloud resources,
we ran TPC-H queries Q1-Q5 every 6 hours for five days on
an m1.large EC2 instance with fixed predicates and plotted
execution latencies. Table III shows that, in this case, the
standard deviation of latencies was small enough to facilitate
effective provisioning but not too small to be ignored.

Expressing Domain-Specific Policies.A further utility of
our generic approach is in expressing domain-specific work-
load allocation policies. Such policies could be either driven by
system model constraints or heuristics that could potentially
improve the performance of the system. For example, if a
master-slave architecture is used then update queries needto
be forwarded to the master machines and read operations to the
slave machines. Or, we might want to exploit cache locality
by executing queries accessing the same tables in the same
machine. Such scenarios can be readily expressed within our
framework through additional constraints.

Fine-grained Resource Allocation. Our white-box so-
lution assumes that specific slices of CPU and I/O can be
allocated for each query. Most engines do not provide such
a fine-grained control over how resources are allocated inter-
nally. In those cases, we can still achieve a workable solution

if we know what allocation policies an engine uses. With
PostgresSQL, for example, a fair scheduling assumption that
gives queries a uniform share of the available resources seems
to be a realistic one. Our generic constraint programming-
based framework allows us to integrate such knowledge into
the solutions easily.

Gray-Box Formulations. The black-box approach requires
extensive experimentation, whereas the white-box approach
requires good optimizer estimates and some control over (or, at
the very least, the knowledge of) how resources are allocated
within the database engine. A hybrid approach that combines
the respective strengths of these two points in the solution
space is an area which we are actively pursuing.

VIII. A CKNOWLEDGEMENTS
This work has been partially supported by the National

Science Foundation under grant No. IIS-0916691 and IIS-
0905553.

REFERENCES

[1] Amazon Web Services, http://aws.amazon.com/.
[2] D. J. Abadi. Data management in the cloud: Limitations and opportu-

nities. IEEE Bulletin on Data Engineering, 32(1), 2009.
[3] A. Aboulnaga, K. Salem, A. A. Soror, and U. F. Minhas. Deploying

database appliance in the cloud.IEEE Bulletin on Data Engineering,
32(1), 2009.

[4] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala. Modeling
and exploiting query interactions in database systems. InCIKM ’08:
Proceeding of the 17th ACM conference on Information and knowledge
management, pages 183–192, New York, NY, USA, 2008. ACM.

[5] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska.
Building a database on s3. InSIGMOD, 2008.

[6] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The
cost of doing science on the cloud: the montage example. InSC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[7] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat. Model-
based resource provisioning in a web service utility. InUSITS, 2003.

[8] D. Florescu and D. Kossman. Rethinking cost and performance of
database systems. InACM SIGMOD Record, March 2009.

[9] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and
D. Patterson. Predicting multiple metrics for queries: Better decisions
enabled by machine learning. InICDE, 2009.

[10] GoGrid.com. http://gogrid.com/.
[11] IBM. ILOG CPLEX, http://www.ilog.com/products/cplex/.
[12] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Consistency

rationing in the cloud: Pay only when it matters. InVLDB, 2009.
[13] D. Narayanan, E. Thereska, and A. Ailamaki. Continuousresource

monitoring for self-predicting DBMS. InMASCOTS, 2005.
[14] N. W. Paton, M. A. T. de Arago, K. Lee, A. A. A. Fernandes,

and R. Sakellariou. Optimizing Utility in Cloud Computing through
Autonomic Workload Execution.IEEE Bulletin on Data Engineering,
32(1), 2009.

[15] P. Shivam, A. Demberel, P. Gunda, D. Irwin, L. Grit, A. Yumerefendi,
S. Babu, and J. Chase. Automated and On-Demand Provisioningof
Virtual Machines for Database Applications. InSIGMOD, 2007.

[16] A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and
S. Kamath. Automatic virtual machine configuration for database
workloads. InSIGMOD, 2008.

[17] A. J. Storm, C. Garcia-Arellano, S. S. Lightstone, Y. Diao, and M. Suren-
dra. Adaptive self-tuning memory in DB2. InVLDB, 2006.

[18] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and
application profiling in shared hosting plat forms. InOSDI, 2002.

[19] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback. Self-tuning
Database Technology and Information Services: from Wishful Thinking
to Viable Engineering. InVLDB, 2002.

