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Abstract. Although context is a key component to the success of build-
ing an object recognition system, it is difficult to scale and integrate
existing formulations of contextual rules to take into account multiple-
sources of information. In this paper, we propose a generic, object-level
image prior to represent rich, complicated contextual relationships. A
maximum entropy distribution is learned to model the possible layouts
of objects and scenes by placing constraints on the prior distribution.
We demonstrate that this new object-level image prior not only scales
well to include arbitrary high-order object relationships, but also seam-
lessly integrates multiple-sources of image information such as scene cat-
egorization, scene parsing and object detection. The result is a more
comprehensive understanding of the image.

1 Introduction

The occurrence of objects in images is far from random. The likelihood of ob-
serving an object is highly dependent on contextual information such as the
scene depicted, and the presence and location of other objects in the image. For
instance, a street scene is more likely to contain a car than an indoor scene.
Similarly, a window is likely to occur in a image with a building. However, a
window that is not spatially supported by a building is unlikely.

Recently, many works have attempted to take advantage of contextual in-
formation using a variety of representations. Contextual information may be
encoded at the scene level by describing if and where certain objects are likely
to occur in a scene [1, 2]. Several works represent pair-wise object relationships,
such as co-occurrence [3, 4], and spatial relationships [5–7], using conditional
random fields (CRFs). 3D geometry may be used to constrain the relative po-
sition of objects [8]. The direct use of large labeled image datasets can also
inherently represent contextual information by providing a dense sampling of
exemplars [9]. Each of these representations essentially encode a prior on the set
of possible object occurrences, object locations and scenes.
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Fig. 1. Overview of our system. Given an unknown input image, our system generates
contextually coherent scene parsings for stuff and object detections for things and
regularizes the output using an object level image prior capable of encoding a rich set
of contextual constraints. The output is a coherent scene parsing and object detections
ensemble.

One challenge of using contextual information is the integration and scale
of various amounts and types of information. The above representations are
designed to model certain subsets of information, but it is difficult to combine
these formulations. We want to utilize a variety of information sources for scene
parsing, e.g. scene categorization, segmentation and object detection such that
reliable sources can help disambiguate other, less reliable sources. Furthermore,
some representations may be intractable when considering relationships beyond
pair-wise, such as ternary and quaternary relationships.

In this paper, we propose a generic object-level image prior for modeling con-
textual relationships between both objects and scenes. The prior is a function of
binary variables encoding the presence of objects, specific spatial relationships
between objects, and scene types. The relationships between variables is encoded
using a maximum entropy framework that places constraints on the joint dis-
tribution. A maximum entropy distribution is learned to agree with everything
that is known and encoded by constraints, and to avoid assuming anything that
is unknown. This approach provides two main advantages. First, high order re-
lationships such as the presence of multiple objects may be encoded without
requiring exponential growth in problem complexity. Second, the prior may be
used to combine object and scene likelihood information from multiple sources.

We demonstrate the generality of our approach using both varying types of
contextual information and different sources of object and scene information.
Experiments on contextual information include the use of pair-wise and higher
order object occurrence information, spatial relationships between objects and
scene labels. In addition, we combine various sources of object and scene in-
formation from object detectors [10], SIFT flow [9], scene recognition [2] and
segment-based detectors [3]. The use of multiple information sources provides
better results than any one source alone. Selecting a useful and compact set of
contextual information can be difficult given the large number of possible rules.
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A feature pursuit algorithm [11] is adopted to automatically select contextual
information in a greedy manner. Our system is evaluated on a subset of LabelMe
database [12], demonstrating the performance gain due to the new formulation
of object-level image prior.

This paper is organized as follows: Prior work is described in the next sec-
tion. Section 3 describes our generic object-level image prior. A set of validation
experiments are provided in Section 4, followed by several real applications in
Section 5. Finally, sections7 contain conclusion of our work.

2 Prior Work

Many works have attempted to take advantage of contextual information for a
variety of tasks. Scene level context has proven useful for narrowing the collec-
tion and location of objects that may be present in an image [1, 2]. Relative 3D
location information has been used to reduce false positives in object detections
such as cars and people [8]. Pair-wise relationships between objects have been
explored in [3, 4] for co-occurrence and in [5–7] for spatial relationships such
as relative location, support and surround. Contextual information may also
be represented using a large dataset of labeled images [12]. In [9] optical flow
methods are used to transfer object label information from large image collec-
tions that inherently encode contextual information. Finally, an study of various
contextual information sources is studied in [13].

Recently, many works have demonstrated advances integrating contextual
information inherently in images. One family uses a top-down hierarchical and
generative approach and models scenes globally as containing objects, which at
the same time can be decomposed into parts; finally, they attempt to learn the
parameters of these hidden variables jointly [14–17]. These methods are useful
as they discover and enforce implicit semantic relationships between different
elements in a scene.

Maximum entropy models are widely used in areas like natural language
processing [18], object recognition [19], and image annotation [20], amongst many
others.

3 Object-level Image Prior

Our goal is to determine the most likely set of object and scene labelings given an
image. This is commonly formulated in two parts, a likelihood term and a prior
term. The likelihood term, also called the data term, computes the likelihood
of an object or scene directly from pixel information. The prior term represents
the contextual information by computing the probability of a configuration of
objects and scenes. We refer discussion of the likelihood term to section 4. We
now discuss the prior term.

Our prior is defined on a set of binary variables x that encode the set of
possible configurations of objects and scenes in the image. In its simplest form
x encodes the presence of objects. For instance, if a variable corresponds to the
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presence of a car it has a value of 1 if at least one car is present and a value
of 0 otherwise. Additional variables can be added to encode scene types, such
as indoor, street and forest scenes. Finally, x may include variables correspond-
ing to spatial relationships between objects, such as supporting, surrounding
and neighboring. That is, a single variable could represent whether at least one
window is supported by a building. If information about whether a door is sup-
ported by a building was also desired another variable would be added. Variables
may also be functions of the number of unique objects in an image, the number
instances for a specific object, etc.

Given a specific instance of variables x, we want to compute the prior prob-
ability p(x). We compute the prior using a maximum entropy framework. The
framework places a set of constraints on the joint distribution p(x). The dis-
tribution with maximum entropy that satisfies the constraints is then found. A
constraint is encoded using a binary function fi(x) ∈ {0, 1} and enforces the
following:

∑

x

p(x)fi(x) = p̃(fi) (1)

where p̃(fi) is the empirical probability of fi:

p̃(fi) =
1

m

m
∑

j=1

fi(xj) (2)

m is the number of training examples. We may interpret equation (2) as con-
straining certain marginal probabilities specified by fi to be equal to their corre-
sponding empirical probabilities. Constraints are typically used to constrain the
co-occurrence probabilities of small sets of variables. For instance, a constraint
function might have a value of 1 if a car and street street scene variable are both
1. As a result, we enforce the prior probability of observing a car in a street
scene will be equal to the empirical probability.

The maximum entropy distribution pΛ(x) that satisfies the constraints fi ∈
{f1, . . . , fn} has an exponential form:

pΛ(x) =
1

Z
exp

(

n
∑

i=1

λifi(x)

)

(3)

Z =
∑

x∈X

exp

(

n
∑

i=1

λifi(x)

)

(4)

where λi is the scalar weight corresponding to constraint function fi, Z is the
partition function, and X is the set of all valid variable assignments. Some vari-
able assignments may not be valid, such a assigning a value of 0 to the presence
of a building, but a value of 1 to the value of window supported by a building.
The weight vector Λ = {λ1, ..., λn} is learned using the Improved Iterative Scal-
ing algorithm [21]. If efficiency is desired improved algorithms may also be used
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[22]. When updating the weights Λ, the partition function and marginals pΛ(fi)
must be computed. If the state space ofX is too large, sampling techniques must
be used. In our experiments we used 40,000 samples per iteration.

4 Model Validation

We can use our prior model in conjunction to a likelihood term to regularize
noisy observations. In this section we will demonstrate the flexibility of our prior
term for integrating multiple contextual rules in the area of multi-class object
recognition. Specifically, the task will be, given an image, to associate class labels
given object-level segments in an image. To simplify the framework, and fairly
evaluate the role of the prior, we assume the case of ideal segmentations (i.e. use
ground truth segmentations).

4.1 Implementation details

We model an image as an ensemble of objects interacting with each other ac-
cording to a contextual dictionary. Let c = {c1.c2, ...ck} be the vector of object
class labels given to each of the segments S = {S1, .S2, ..., Sk} in the image I and
the scene class label d ∈ D. In this formulation, our likelihood term will model
the generation of each independent element by a hidden variable while our prior
term will model the contextual relationships in the scene. We decompose our
model into a likelihood and a prior term following Bayes’ rule.

p(c, d|S, I) =
p(S|c)p(I|d)p(c, d)

p(S, I)

∝ p(S|c)p(I|d)p(c, d)

We assume the likelihood of the segments and image are independent given
the object class and scene information. In the above formulation our likelihood
term is p(S|c)p(I|d) and our prior is p(c, d).

We compute the likelihood of the segments given the class labels using a
feature vector composed of a normalized histogram of visual words, color cen-
ters, and size. For simplicity, each class distribution is modeled as a mixture of
Gaussians.

p(Si|ci) = κ(Si; ci, θcolor)τ(Si; ci, θsift)ψ(Si; ci, θsize)

where for each object class ci, κ(Si; ci, θcolor) denotes the mixture of Gaus-
sians modeling the color component, τ(Si; ci, θsift) denotes the mixture of Gaus-
sians modeling the texture component (dense SIFT), and ψ(Si; ci, θsize) denotes
the mixture of Gaussians modeling the size feature component.

The data term assumes independence between each segment and each feature
type (color, texture, and shape) and is computed as the product over all segments
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of the probability of each segment Si being generated by its associated hidden
variable ci.

p(S|c) =

k
∏

i=1

p(Si|ci)

The scene likelihood term p(I|d) is a binary vector corresponding to whether
the gist descriptor [23] indicates the specified scene type.

The prior term is computed from equation (3), p(c, d) = pΛ(x), by creating a
set of variables x that indicate the occurrence of each object and scene type. That
is, the number of variables in x is equal to the number of object types plus the
number of scene types. For experiments using spatial relationships, additional
corresponding variables are added. The values of x are computed directly from
the label assignments c and d. The constraint values are found using the statistics
of the training set.

We explore a variety of contextual constraints to form a dictionary of con-
straints on the prior distribution. In addition to the following high level con-
straints, we also use a set of baseline constraints on the occurrence of each
individual variable. Many contextual rules can be integrated in this framework,
here we describe some examples:

– Co-occurrenceWe consider all pairwise co-occurrences,as well as the triplets,
and quadruplets that appear often (more than 5% of the time) in the training
set.

– Scene-to-object relationships Images can also be classified into different
scenes as a function of the objects present in the image. For each image,
we construct a binary feature vector indicating the presence or absence of
each object class. We further train SVM classifiers for each scene category
using these image vectors to determine, given a vector of class occurrences,
to which scene category the class might belong to, if any. Each SVM will
represent a contextual rule for its associated scene class and its binary output
will be the output its constraint function.

– Gist-based scene co-occurrence with object classes Another way to
integrate scene information is using the gist descriptor [23], shown successful
describing scenes in absence of the identity of the objects present. We build
an SVM classifier to associate an image to a scene class. These gist-based
constraint functions take the AND between a co-occurrence constraint and
a gist-based scene classifier. Note that this evaluation function differs on the
scene-to-objects relationship in that it uses the gist data as opposed to the
object labels.

– Attachment relationships Aimed at scenes with objects that are part of
a larger object or are composed by other objects (e.g. windows, doors, and
awnings are attached to buildings, cars are supported by ground planes like
roads, etc.). Given two segmentation masks, we can compute their overlap-
ping region to check if one of the segments is inside the other one.
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Finally, we perform inference using Gibbs sampling. As described in section
4, the posterior probability for a label assignment can be easily evaluated. How-
ever, it is intractable to evaluate the posterior probability for all possible label
assignments when the number of segments becomes large. We perform 10,000
iterations of Gibbs sampling with 10 random restarts using the likelihood term
labels as an initial guess.

4.2 Evaluation

We evaluate the contribution of the prior term on the MSRC data set containing
21 classes, and the spatial envelope subset of the LabelMe database using the 17
most frequently occurring categories. Each data set was split into training and
testing portions following the splits published by [24] and [25].

We start by exploring class co-occurrence relations of different orders in the
MSRC data set as well as scene-to-object relationships (since images in this set
center mostly on the main object and gist-based scene constraints would not
appear reliable). Figure 4.2 a shows the total pixel precision for objects in the
database comparing the likelihood term alone and the result after context inte-
gration; notice the consistent improvement when considering context. Figure 4.2
shows the overall pixel precision as a function of the different context terms used.
Notice the great improvement form 45% recognition rate to 63% just by adding
binary co-occurrences, the boost to 65% when considering ternary relationships,
and the marginal improvement by adding higher order relationships. Higher or-
der relationships are not necessary for the MSRC dataset since the number of
objects in an image is typically below four.

Using the LabelMe dataset, we explore gist-based scene constraints together
with basic co-occurrences and attachment relationships. Figure 4.2b shows the
per-class recognition results. Most of the classes show considerable improvement
compared to the likelihood term in isolation.

5 Application: enhancing scene parsings with object

detectors

Sliding window object detectors are known to work well for objects with well
defined parts such as people and cars, but have difficulty learning templates of
polymophous regions such as roads and skies. Conversely, segmentation-based
approaches perform well separating large and amorphous regions such as the sky
and grass but have limitations segmenting small objects such as windows and
cars. Therefore, we separate our object classes into stuff and things. We start
by using a slight modification of SIFT-flow-based parsing system [25] by only
transferring labels of stuff -type categories and generating N contextually sound
candidate scene parsings. Furthermore, we train object detectors for thingsusing
a state-of-the-art sliding window detector [10]. SIFT-flow parsings consist of a
pixel-level segmentation and labels for each pixel. A parsing for a query image
is generated by retrieving the top nearest neighbors from the labeled database
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Fig. 2. Validation on MSRC toy set. We explore how much context can improve recog-
nition given a simple likelihood term in the scenario of ideal segmentations in the
MSRC and a subset of the LabelMe database. We observe a quick improvement in the
per-pixel precision for several classes by only including pair-wise object co-occurrences.
The addition of higher order constraints (ternary, quaternary, and scene-based) shows
an asymptotic improvement (right) in the overall precision. This is because the dataset
has few objects per image (between 1 and 5).

and warping the annotations of the neighbors to adapt to the query image. And
advantage of SIFT-flow parsings is the inherent contextual coherence at a high
level present in the transferred labels as they originate from the same image. In
this setup, we will redefine our vector of label assignments c now as built by two
label types for each kind of input (a scene parsing or an object detection of a
particular class) and the vector S now containing the observed image information
required for each kind of detection:

c =
[

mstuff, cthings
]

S =
[

Sstuff,Sthings

]

wheremstuff ∈ {1, ..., N} denotes the index of one of the top N scene parsings
from the nearest neighbors of the sift flow match and cthings = {cjk|cjk ∈ {0, 1}}
indicates the presence/absence of the kth detection for the jth object class of
the things ; Sstuff in this case is the SIFT flow matching score of the mstuffth
neighbor and Sthings is a vector of containing the object detection scores for
each of the detected windows.

Finally, we assume independence between each element in the image and
generate the likelihood for the image as a product of the likelihoods of each
image element (object detections and scene parsing).

p(S|c) = p(Sstuff|mstuffis a good match)p(Sthings|cthings)

= p(Sstuff|mstuffis a good match)

nthings
∏

j=1

mj
∏

k=1

p(Sjk|cjk)
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Fig. 3. Validation on LabelMe toy set. The number of images in this set lie between
2 and 30. Therefore, the prior we use for this set includes co-occurrences, gist-based
scene relations to object classes, and attachment relationships.

where p(Sstuff|mstuffis a good match) is the probability of obtaining a match-
ing score of Sstuff for the selected mstuffth nearest SIFT-based neighbor match
given that this match is a good one; for simplicity, we’ll abbreviate abbreviate
this term as p(Sstuff|mstuff) . Finally, p(Sthings|cthings) is the probability of a cur-
rent set of detections given their respective bounding boxes. This last term can
be broken into multiple independent factors p(Sjk|cjk) encoding the probability
of observing the kth bounding box from the detection given the jth object class.

The prior term is computed with a set of variables x that now indicate the
occurrence of each object, the detected scene type, and the attachment sat-
isfaction information. Given some label configuration, the occurrence of each
object can be easily extracted from the labels of the selected scene parsing and
the categories of the detections that have been selected as active. The detected
scene type is obtained from the scene category classifier that with the highest
confidence given the image data. Finally, the attachment information is com-
puted by checking for overlaps between pairs of segments given the current label
configuration.

Notice that, due to the flexibility of our object prior and its decoupling from
the likelihood term, we can apply the same prior learned in 4 directly to our new
input data regardless of the change in the form of the input. The only variant
will lie in the likelihood term and in reshaping the contextual rule evaluation
functions to fit to the new data.

Generating candidate scene parsings The original SIFT-flow parsing method
generates one parsing per query image by consolidating votes from the top near-
est neighbor labelings. Our framework is designed to consider multiple candi-
dates and choose the most contextually coherent one. We slightly modify the
original SIFT-flow parsing framework to generate multiple parsings. One way
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is by directly taking the warped parsing of each N nearest neighbor. Another
alternative consists of randomly sampling a subgroup of top nearest neighbors
and merging their votes to generate multiple consolidated parsings. We explore
both methods and show their respective results in figure 4

Inference We add a slight modification our original inference method to minimize
the number of iterations required to find the correct configuration. Because of
the potentially high number of detections per image, the vector c can have up
to 100 dimensions. However, as many of the detections satisfy the same group
of contextual rules in isolation, we can group the detections depending on the
rules they would satisfy if they were selected. For example, we can group the
car detections on top of the road in one cluster and the ones on top of the sky
in another. This block sampling mode reduces the dimensionality of our input
vector and requires much less time to find the correct configuration.

6 Experiments and results

Figure 4 shows the per-pixel precision for each stuff class. We consider two
scenarios for generating candidate parsings: (1) the independent parsings from
the top 10 nearest neihgbors and (2) different candidate parsings generated by
randomly selecting 5 of the nearest neighbors and merging them to generate a
consolidated parsing like in [25]. For the first case using independent parsings,
our baseline is the parsing from the first nearest neighbor; for the second case,
the result merging the top 5 nearest neighbors is our baseline. We observe a
higher increase in overall performance using the prior in the first scenario (from
46.45% to 52.98%) in comparison with the second case (from 61.3% to 66.75%).
This might be because the second type of parsing already integrates some low
level context by considering the votes of more than a nearest neighbor.

Figure 6 also shows the precision-recall curves for the car and window de-
tections. We observe a greater increase in performance in the car class because
of the high false positive rate. Given this formulation, we will only be able to
remove contextually incoherent results for detections, removing false positives,
but will not find new detections. Notice how the remaining false positives ??are
still contextually coherent.

Finally, figure 6 shows examples with the query image, the generated parsings
and detections, and the selected results after integrating our prior. Notice how
in many cases, the first scene parsing belongs to a scene category different from
the query image. The gist-based scene detector is very helpful in this scenario to
constraint the object classes present and pick more contextually coherent scene
parsings. The gray segments indicate unlabeled regions (our database is no longer
fully labeled since we restrict the objects to the most commonly occurring stuff

classes.
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Fig. 4. Results for stuff on LabelMe data. Per-pixel precision rates for stuff categories
when (1) directly selecting the scene parsing of the top nearest neighbor compared to
using our prior to select from the top 10 nearest neighbor SIFT parsings (top), and (2)
directly selecting the parsing after merging the labels from the top 5 results compared
to using our prior to select from 10 candidates generated from merging groups of 5
results from the nearest neighbor pool (bottom).

7 Conclusion

We have presented a general framework to easily encode a rich variety of con-
textual rules to create object-level image priors ranging from simple object-
class co-occurrences to higher order constraints at the scene level. We validated
our framework connecting different priors to our simplified likelihood term and
showed the role of different types of context regularizing noisy observations from
the likelihood term. Despite using a very simple generative likelihood term,
we observed considerable performance increases nearing that of CRF-based ap-
proaches in the MSRC set using co-occurrence relations. Furthermore, we demon-
strate how to adapt our framework creating an end-to-end system that merges
SIFT-flow scene parsings and object detections to eliminate contextually inco-
herent false detections as well as to pick the most contextually coherent parsing.
With the advent of multiple algorithms to solve the problem of object recogni-
tion, a great number of solutions exist to understand images at the scene, object,
segment, patch, and many other levels. Each feature and method presents ad-
vantages and disadvantages in different scenarios; our model serves as a catalyst
to put these techniques to one unified framework.
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Fig. 6.Qualitative results after integrating scene parsings with object detections. Given
query image (a) we infer its scene category, retrieve N = 10 scene parsings for the stuff
categories present using our labeled training database, and detect candidate bounding
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